
More on thresholds

Sarah Medland

A plug for OpenMx?

- Very few packages can handle ordinal data adequately...
- OpenMx can also be used for more than just genetic analyses
 - Regression
 - Polycohoric correlations
 - Factor analysis...

Two approaches to the liability threshold model

- Problem
 - Ordinal data has 1 less degree of freedom
 - MZcov, DZcov, Prevalence
 - No information on the variance
 - Thinking about our ACE/ADE model
 - 4 parameters being estimated
 - A C E mean
 - ACE/ADE model is unidentified without adding a constraint

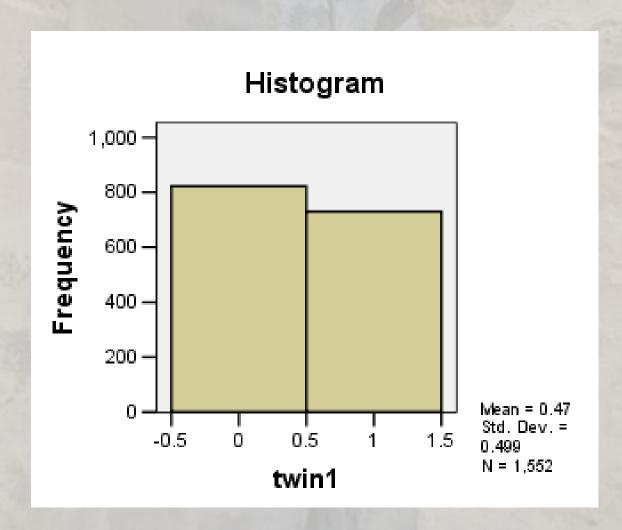
Two approaches to the liability threshold model

- Solution?
- Traditional
 - Maps data to a standard normal distribution
 - Total variance constrained to be 1
- Alternate
 - Fixes an alternate parameter (usually E)
 - Estimates the remaining parameters

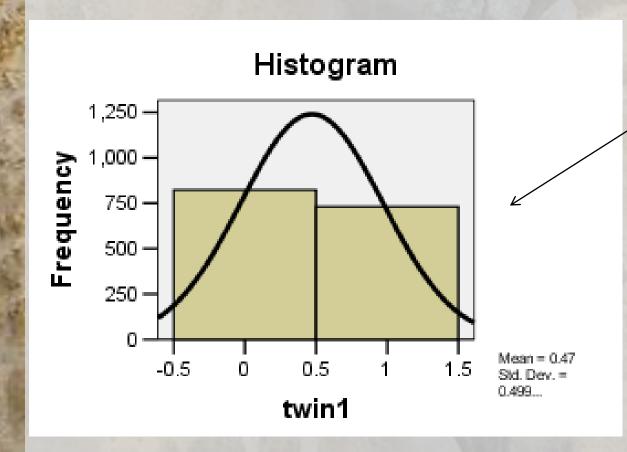
Traditional Approach

- Imagine we have a set of binary data
- Trait lifetime cannabis use
 - Never Smoked/Ever Smoked

Zyg	twin1	twin2	Age	Sex
1	0	0	25.80	1
1	0	0	21.10	1
1	0	0	21.79	1
1	0	0	21.12	1
1	0	0	32.05	1
1	0	0	37.41	1
1	0	0	33.56	0

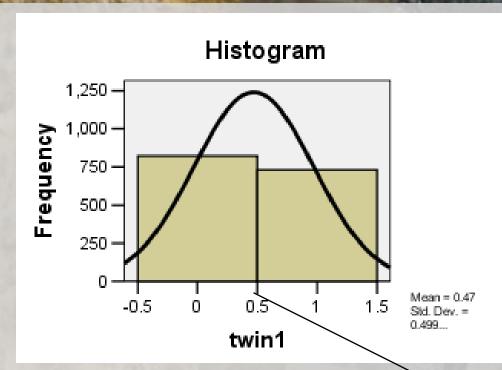

Twin 1 cannabis use

• 0 = never used


twin1

					Cumulative
		Frequency	Percent	Valid Percent	Percent
Valid	0	822	47.5	53.0	53.0
	1	730	42.2	47.0	100.0
	Total	1552	89.7	100.0	
Missing	System	179	10.3		
Total		1731	100.0		

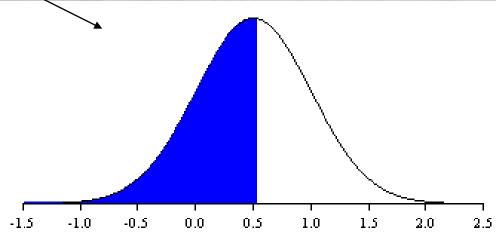
Twin 1 cannabis use

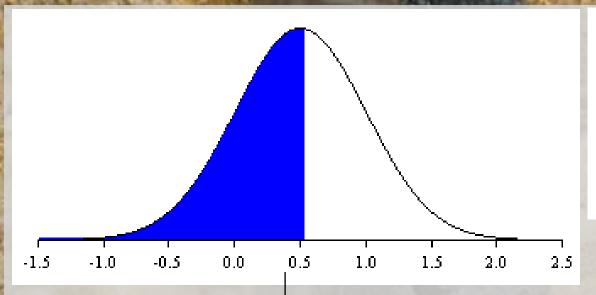


Twin 1 cannabis use

Liability or 'risk' of initiation distribution

Just because an individual has never used cannabis does not mean their 'risk' of initiation is zero

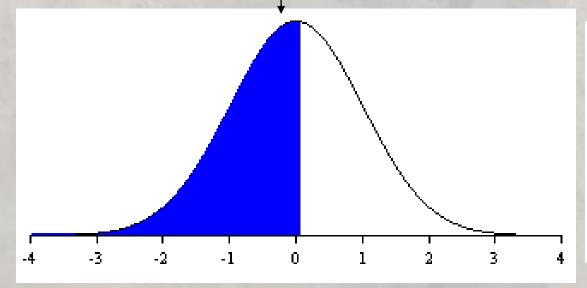

Mean = .47


=.499

Non Smokers =53%

The observed phenotype is an *imperfect* measurement of an underlying continuous distribution

ie Obesity vs BMI MDD vs quantitative depression scales


Raw data distribution

Mean = .47

SD = .499

Non Smokers =53%

Threshold =.53

Standard normal distribution

Mean = 0

SD = 1

Non Smokers =53%

Threshold =.074

Threshold = .074 - Huh what?

- How can I work this out
 - Excell
 - =NORMSINV()
 - Thresholds.xls

▼ (NORMSINV(C2)					
В	С	D	Е	F	
Binary Data	Brisbane	Amsterdam	Boulder < 2009	Boulder > 2009	
Percent of non-smokers	52.96%	85.00%	65.00%	35.00%	
Threshold	0.074365	1.03643339	0.385320466	-0.385320466	

Why rescale the data this way?

- Convenience
 - Variance always 1
 - Mean is always 0
 - We can interpret the area under a curve between two z-values as a probability or percentage

Threshold.R

```
require(OpenMx)
Canabis <- read.table ('two cat.dat', header=T )
# Print Descriptive Statistics
summary(Canabis$twin1)
table (Canabis$twin1)
# Select data
Canabis1 <-data.frame(Canabis$twin1)</pre>
print( "Note no subset command because I want to use all the data")
head(Canabis1)
print( "This won't work because data names cannot contain '.'")
names(Canabis1) <- "twin1"
head(Canabis1)
```

Threshold.R

```
# Specify and Run Saturated Model (Tetrachoric correlations) with RawData
nvar <- 1
nthresh <- 1
Vars <-('twin1')</pre>
selVars <- ('twin1')
Canabis1$twin1 <- mxFactor(Canabis1$twin1. levels=c(0:1) )
                mxMatrix(type="Zero", nrow=nvar, ncol=nvar, name="expMean" )
Means
Thresholds <-
                mxMatrix(type="Full", nrow=nvar, ncol=nthresh, free=TRUE, values=0,
                 name="expThresh", label="threshold1",dimnames=list('th1'.selVars) )
Corelation <-
                mxMatrix(type="Stand", nrow=nvar, ncol=nvar, name="expCor")
data
                mxData(Canabis1, type="raw")
obj
           <-
                mxFIMLObjective( covariance="expCor", means="expMean", dimnames=selVars,
                 thresholds="expThresh" )
ThresholdModel <- mxModel("checkThreshold", Means, Thresholds, Corelation, data, obj)
checkThresholdFit <- mxRun(ThresholdModel)</pre>
checkThresholdSumm <- summary(checkThresholdFit)</pre>
checkThresholdSumm
```

	B2	•	fx	=NORMS	SINV(B1)
		,	Д		В
1	Percent of non-smokers			0.52964	
2	Threshold				0.074365
-					

> checkThresholdFit\$expThresh

FullMatrix 'expThresh'

@labels twin1 th1 "threshold1"

@values

twin1 th1 0.07436543

@free

twin1 th1 TRUE

@lbound: No lower bounds assigned.

@ubound: No upper bounds assigned.

> checkThresholdFit\$expMean ZeroMatrix 'expMean'

@labels: No labels assigned.

@values twin1 [1,]

@free: No free parameters.

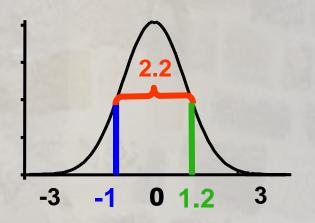
@lbound: No lower bounds assigned. @lbound: No lower bounds assigned.

> checkThresholdFit\$expCor

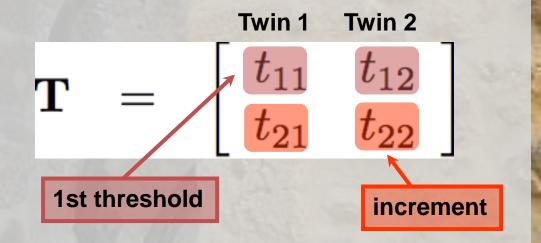
StandMatrix 'expCor'

@labels: No labels assigned.

@values twin1 twin1 1

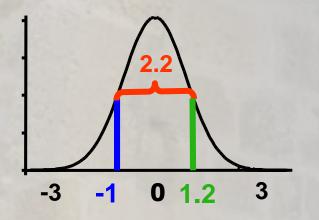

@free: No free parameters.

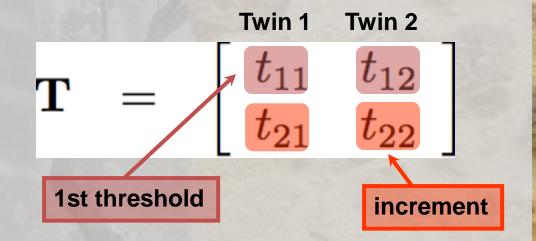
@ubound: No upper bounds assigned. @ubound: No upper bounds assigned.


What about more than 2 categories?

- Very similar
 - We create a matrix containing the 1st threshold and the displacements between subsequent matrices
 - We then add the 1st threshold and the displacement to obtain the subsequent thresholds

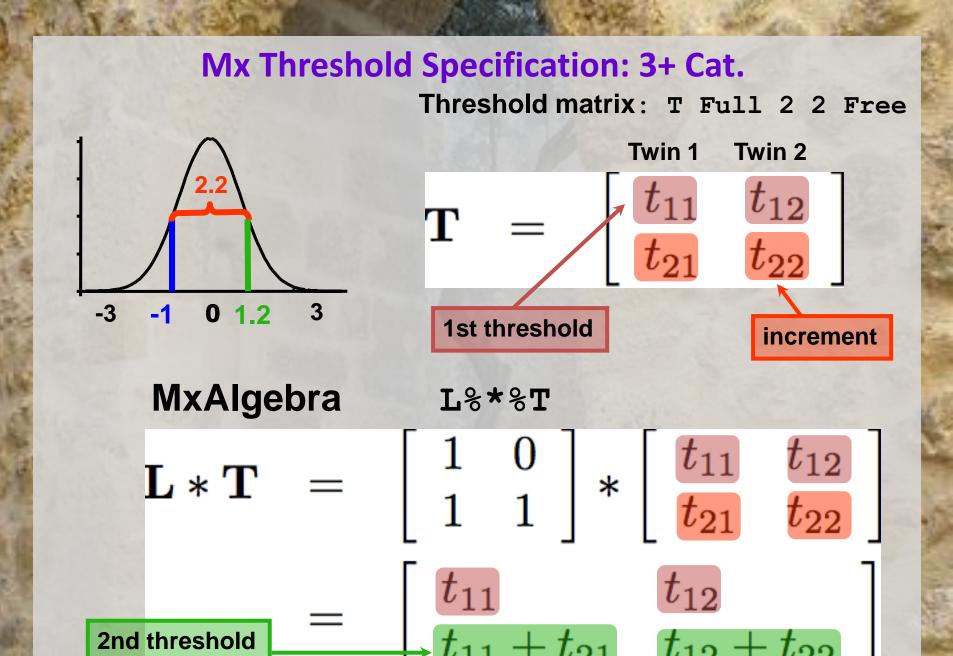
Mx Threshold Specification: 3+ Cat.




Threshold matrix: T Full 2 2 Free

Mx Threshold Specification: 3+ Cat.

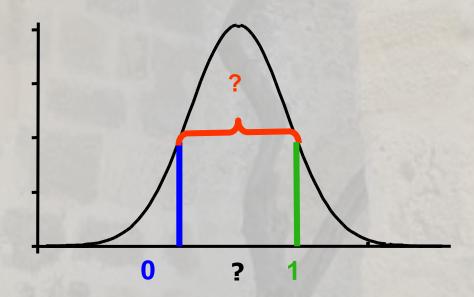
Threshold matrix: T Full 2 2 Free



MxAlgebra

L%*%T

$$t_{12} \\ t_{12} + t_{22}$$


Check the xls spreadsheet...

Ordinal Data	Brisbane	Amsterdam	Boulder < 2009	Boulder > 2009
Never used	52.96%	85.00%	65.00%	35.00%
used >10 times	5.00%	5.00%	5.00%	5.00%
used<10 times	42.04%	10.00%	30.00%	60.00%
Threshold 1	0.074365	1.03643339	0.385320466	-0.385320466
Threshold 2	0.200973	1.28155157	0.524400513	-0.253347103
T11 (1st threshold)	0.074365	1.03643339	0.385320466	-0.385320466
T21 (displacement)	0.126608	0.24511818	0.139080046	0.131973363
T11+T21	0.200973	1.28155157	0.524400513	-0.253347103

Two approaches to the liability threshold model

- Solution?
- Traditional
 - Maps data to a standard normal distribution
 - Total variance constrained to be 1
- Alternate
 - Fixes an alternate parameter
 - Binary or Ordinal data fix E
 - Ordinal data fix 1st two thresholds (aka invariant threshold approach)
 - Estimate the remaining parameters

Fixed Thresholds

Models are equivalent, but...

- Alternate approach means the data is no longer mapped to a standard normal
- No easy conversion to %
- Makes it difficult to compare between groups as the scaling is now arbitrary

- We are going to run traditional and Fixed Thresholds ACE models with ordinal data
 - twinAceOrd-Traditional.R
 - twinAceOrd-FixThreshold.R
- There is are other scripts in the folder that have multiple threshold models in them – take a look later
 - twinAceBin-Traditional.R
 - twinAceBin-FixE.R
 - twinAceOrd-FixE.R

