Univariate modeling

Sarah Medland

Starting at the beginning...

- Data preparation
 - The algebra style used in Mx expects 1 line per case/family
 - (Almost) limitless number of families and variables
 - Missing data
 - Default missing code is now NA
 - No missing covariates/definition variables!
 - Quick R http://www.statmethods.net/

Selecting and sub-setting data

Make separate data sets for the MZ and DZ

```
    Check data is
numeric and behaves
as expected
```

```
> cov(mzData,use="complete")
          bmi1
                    bmi2
bmi1 0.8779390 0.6734489
bmi2 0.6734489 0.8987715
> cov(dzData,use="complete")
          bmi1
                    bmi2
bmi1 0.8908474 0.2872594
bmi2 0.2872594 0.8657751
> colMeans(mzData,na.rm=TRUE)
    bmi1
             bmi2
21.75089 21.73471
> colMeans(dzData,na.rm=TRUE)
    bmi1
             bmi2
21.68689 21.88095
```

Common problem

0.52

Problem: data contains a non numeric value

1	0.53	5	1	58 64	1.6299	NA	21.83	NA	A	NA
1	0.37	5	2	53 65	1.5698	1.73	21.5019	21.7181	21.477	21.547
1	0.35	5	2	51 79	1.5999	1.7998	19.9219	24.3827	20.9427	22.3571
b: b: V I E S	colMean rror in colMean	bmi1 908474 872594 message zData, ns (mzDa colMea ns (dzDa	bm: 0.287259 0.865779 :: use = "(ita,na.rn ins(mzDat ita,na.rn	i2 94 51 complete" m=TRUE) ta, na.rm m=TRUE)) : NAs ir = TRUE) : = TRUE) :	'x' mu	st be n	umeric		

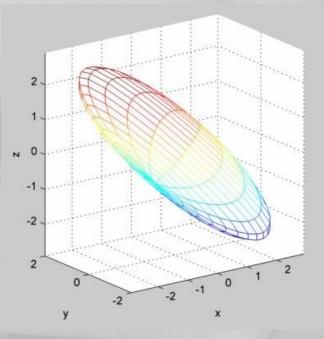
1.6299 1.73

22.5827 25.7276 21.8203 22.7329

Equivalent Mx Classic error - Uh-oh... I'm having trouble reading a number in D or E format

Important structural stuff

- openMx has a very fluid and flexible stucture
- Each code snippet is being saved as a variable
- We tend to reuse the variable names in our scripts
- This makes it very important to create a new project for each series of analyses
- Remember the project also contains the data so these files can become very large.


Matrices are the building blocks

mxMatrix(type="Lower", nrow=nv, ncol=nv, free=TRUE, values=.6, label="a11", name="a"), #X

- Many types eg. type="Lower"
- Denoted by names eg. name="a"
- Size eg. nrow=nv, ncol=nv
- All estimated parameters must be placed in a matrix & Mx must be told what type of matrix it is

Choosing the model

- Thinking about parameter space...
- Imagine an ACE model
- Solution space bounded by Cls

Choosing the model

- ACE vs ADE
 - With twins alone can't joint estimate ACDE
 - Options
 - Add in an extra relationship
 - Fix one of these parameters and estimate the other 3
 - Accept this limitation
 - All models are wrong some are useful (George E. P. Box)
 - Reject the twin model, pretend genes have no influence and interpret biological inheritance as a social phenomenon
 - No 1 size fits all solution

Quantifying and Addressing Parameter Indeterminacy in the Classical Twin Design

Matthew C. Keller¹ and William L. Coventry^{2,3}

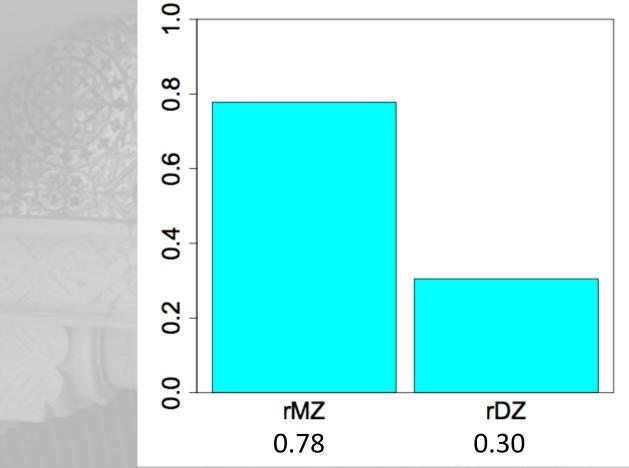
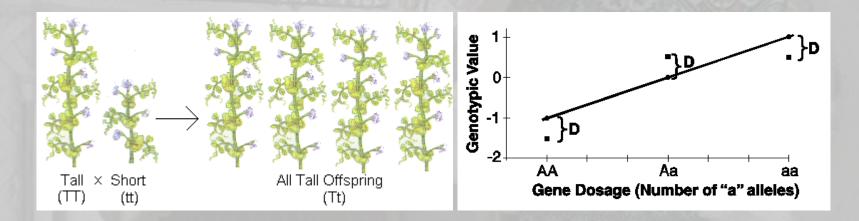

¹Center for Society and Genetics, University of California, Los Angeles, United States of America ²Queensland Institute of Medical Research, Brisbane, Australia ²School of Psychology, University of New England, Armidale, Australia

Table 1

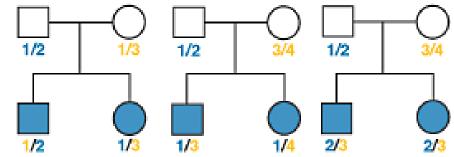
Methods of Obtaining $\hat{V}_{_{A'}}$, $\hat{V}_{_{C'}}$ and $\hat{V}_{_{MA}}$ from $C\hat{V}_{_{MZ}}$ and $C\hat{V}_{_{ZZ}}$ and the Boundaries of the Parameter Space Given Eight Different Pairs of Fixed Parameters Possible in Twin-Only Designs

Fixed Parameters	Ŵ	Ŷ _{ha}	Ŵ _c	0.18	(0,	29, 17)	•	
$C\hat{V}_{ee}/C\hat{V}_{Nz} > 1/2$				0.16			• Boundaries $(\hat{V}_A, \hat{V}_{NA}, \hat{V}_C) \times 10^{-10}$	00
1. <i>î</i> = 0, <i>V</i> _A = 0	0 min	CŶ _{N2} – CŶ _{oz} inter	CŴ _æ max	TOPEN A SPECE			Classical Twin Design Estimate	es
2. ř=0, Ŷ _{NA} =0	2(CV _{NZ} – CV _{oz}) max	0 min	2C V _{ez} – C V _{wz} min	0.14			$\hat{r} = 0$	
3. $\hat{r} = .25$, $\hat{V_A} = 0$	0 min	4/3(C V̂ _{NZ} — C V̂ _∞) max	4/3CV̂ _{oz} − ¹ /3CV̂ _{wz} inter	0.1				
4. r̂ = .25, V̂ _{HA} = 0	2(CV _{NZ} — CV _{oz}) max	0 min	2CV _{ez} – CV _{wz} min	0.08	(0, 39, 8)		$\hat{r} = 0.25$	
CV _{az} /CV _{Nz} < 1/2				0.0000000000000000000000000000000000000				
5. $\hat{r} = 0, \ \hat{V}_{A} = 0$	0 min	CV _{NZ} – CV _{GZ} inter	CV _œ max	0.06				
6. $\hat{r} = 0, \ \hat{V}_c = 0$	2CV̂ _œ max	CV _{NZ} – 2CV _{oz} min	0 min	0.04				
7. $\hat{r} = .25$, $\hat{V_A} = 0$	0 min	⁴/3(C V̂ _{NZ} – C V̂ _œ) max	4/3CV̂ _{oz} − ¹ /3CV̂ _{NZ} inter	0.02		(23, 24, 0)	(35, 12, 0)	n
8. ř = .25, V _c =0	4CV _{az} – CV _{nz} inter	2CV _{ez} – 4CV _{ez} inter	0 min	0 -	-0.4 -0.3	-0.2 -0.1	$\Theta_0 0.1 0.2^{(33, 12, 0)}$ - \hat{V}_{NA}	,


Yesterday we ran an ADE Model

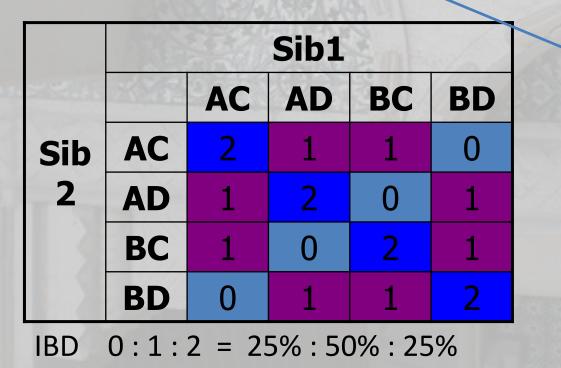
• Why?

What is D again?

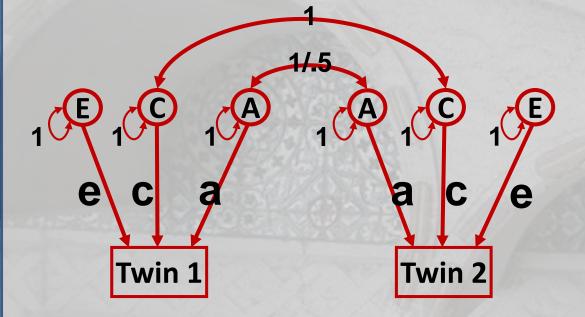

 Dominance refers to non-additive genetic effects resulting from interactions between alleles at the same locus or different loci (epistasis)

What is D again?

- DZ twins/full siblings share
 - ~50% of their segregating DNA &
 - for ~25% loci they share not only the genotype but also the parental origin of each allele



DZ twins/full siblings share


This is where the .5A comes from

- ~50% of their segregating DNA &
- for ~25% loci they share not only the genotype but also the parental origin of each allele

Consider a mating between mother AB x father CD:

This is where the .25D comes from

MZ DZ $a^{2}+c^{2}+e^{2}$ $a^{2}+c^{2}$ $a^{2}+c^{2}$ $a^{2}+c^{2}+e^{2}$ $.5a^{2}+c^{2}$ $a^{2}+c^{2}$ $a^{2}+c^{2}+e^{2}$ $.5a^{2}+c^{2}$ $a^{2}+c^{2}+e^{2}$

Additive genetic effects

- Why is the coefficient for DZ pairs .5?
- Average genetic sharing between siblings/DZ

twins Sib1 AC AD BC BD AC Sib AD 0 BC BD 0 $a^{2}+c^{2}+e^{2}$ a^2+c^2

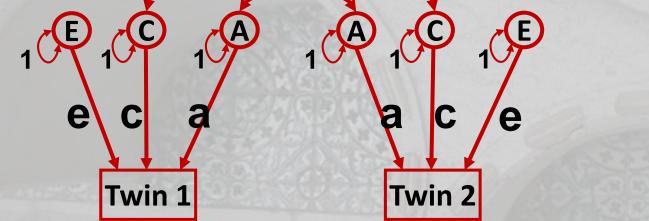
 $a^{2}+c^{2}+e^{2}$

 a^2+c^2

MZ

DZ $a^{2}+c^{2}+e^{2}$ $.5a^{2}+c^{2}$ $a^{2}+c^{2}+e^{2}$ $.5a^{2}+c^{2}$

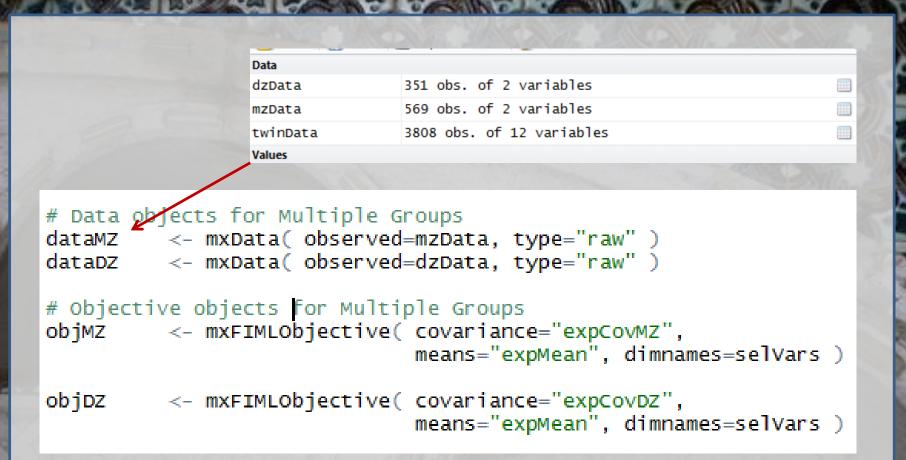
Common environmental effects


- Coefficient =1 for MZ and DZ pairs
- Equal environment assumption for all the environmental influences THAT MATTER there is ON AVERAGE no differences in the degree of environmental sharing between MZ and DZ pairs

MZ $a^{2}+c^{2}+e^{2}$ $a^{2}+c^{2}$ $a^{2}+c^{2}$ $a^{2}+c^{2}+e^{2}$ DZ $a^{2}+c^{2}+e^{2}$.5 $a^{2}+c^{2}$

 $.5a^{2}+c^{2}$ $a^{2}+c^{2}+e^{2}$

- Open RStudio
- faculty/sarah/tues_morning
- Copy everything


1/.5

pathA	<- mxMatrix(type="Full", nrow=nv, ncol=nv, free=TRUE,
	values=.6, label="a11", name="a")
pathC	<- mxMatrix(type="Full", nrow=nv, ncol=nv, free=TRUE,
	<pre>values=.6, label="c11", name="c")</pre>
pathE	<- mxMatrix(type="Full", nrow=nv, ncol=nv, free=TRUE,
	values=.6, label="e11", name="e")
meanG	<- mxMatrix(type="Full", nrow=1, ncol=ntv, free=TRUE,
	values= 20, label="mean", name="expMean")

COVA	<-	<pre>mxAlgebra(</pre>	a	%*%	t(a),	name="A"))
COVC	<-	mxAlgebra(C	%*%	t(c),	name="C"))
COVE	<-	mxAlgebra(e	%*%	t(e),	name="E"))

covMZ <- mxAlgebra(rbind(cbind(A+C+E , A+C), cbind(A+C , A+C+E)), name="expCovMZ")

 $MZ = \begin{bmatrix} covDZ & <-mxAlgebra($ rbind(cbind(A+C+E, 0.5%x%A+C), $cbind(0.5%x%A+C, A+C+E)), name="expCovDZ" \end{bmatrix}$ $MZ = \begin{bmatrix} DZ \\ a^2+c^2+e^2 & a^2+c^2 & a^2+c^2 + e^2 \\ a^2+c^2+e^2 & a^2+c^2 + e^2 & .5a^2+c^2 \\ a^2+c^2 & a^2+c^2+e^2 & .5a^2+c^2 & a^2+c^2+e^2 \end{bmatrix}$

To fit a model to data, the differences between the observed covariance matrix and model-implied expected covariance matrix are minimized. Objective functions are functions for which free parameter values are chosen such that the value of the objective function is minimized. mxFIMLObjective() uses full-information maximum likelihood to provide maximum likelihood estimates of free parameters in the algebra defined by the covariance and means arguments. mode1MZ <- mxModel(pars, defAge, meanG, expMean, expCovMZ, dataMZ, objMZ, name="MZ") <- mxModel(pars, defAge, meanG, expMean, expCovDZ, dataDZ, objDZ, mode1DZ name="DZ")

<- mxAlgebra(expression=MZ.objective + DZ.objective, name="m2LL") minus211

This models requires path parameters, means, covariance, data and objectives

Automatic naming – you don't need to predefine this

Run ACE model aceSumm aceSumm

aceFit <- mxRun(aceModel)</pre> <- summary(aceFit)

Submodels

Run AE model

```
aeModel <- mxModel( aceFit, name="AE" )</pre>
aeModel <- omxSetParameters( aeModel, labels="c11",
                               free=FALSE, values=0 )
```

aeFit <- mxRun(aeModel) round(aeFit@output\$estimate,4)

> Pickup the previously prepared model Edit as required **Rerun and compare**

Saving your output

- Save the R workspace
 - On closing click yes
 - Very big
 - Saves everything
- Save the fitted model
 - Equivalent to save in classic Mx
 - save(univACEFit, file="test.omxs")
 - load("test.omxs") need to load OpenMx first

What to report

- Summary statistics
 - Usually from a simplified 'saturated' model
- Standardized estimates
 - Easier to conceptualise
 - ie 40% of the phenotypic variance vs a genetic effect of 2.84
 - Can easily be returned to original scale if summary statistics are provided

What to report

- Path coefficients
 - Very important in multivariate analyses
 - Gives a much clearer picture of the directionality of effects
- Variance components/proportion of variance explained
- Genetic correlations

General Advice/Problem solving

- Scripting styles differ
- Check the sample description
- Learn to love the webpage
- Comments are your friends

Bus shelter on the road to Sintra (Portugal)