Genetic Epidemiology in the Genomic Age: The Role of Twin Studies in the Genomic Era & Missing Heritability

Nick Martin Queensland Institute of Medical Research Brisbane

> Intro Workshop Boulder March 7, 2014

Genetic Epidemiology: Stages of Genetic Mapping

- Are there genes influencing this trait?
 - Twin family studies of some genomic phenotypes
- Where are those genes?
 - Linkage analysis
- What are those genes?
 - Association analysis
- How do they work beyond the sequence?
 - Epigenetics, transcriptomics, proteomics
- What can we do with them ?
 - Translational medicine

Epigenetic mechanismsDNA methylationHistone binding

 Modifications of genome other than nucleotide changes that regulate gene expression (e.g. methylation of cytosines, histone modifications, microRNAs, ...)

How DNA methylation affects gene transcription (gene expression)

Average correlation across all probes of normalised methylation measurements between relative pairs

Relationship	# Pairs	Correlation	Expected
MZ twin	67	0.200	h^2
DZ twin	111	0.109	h ² /2
Sibling	262	0.090	h ² /2
Parent – Offspring	362	0.089	h ² /2
Parent – Parent	58	0.023	0
Unrelated	187331	-0.002	0

Distribution of heritability estimates for DNA methylation levels

Allan McRae

Meta-analysis of telomere length in 19,713 subjects Linda Broer et al. (ENGAGE consortium)

	n	r	p-value
<u>Siblings</u>	1,553	0.49	3.46*10 ⁻⁹⁶
Monozygotic twins	2,534	0.69	0*
Dizygotic twins	1,940	0.25	2.82*10 ⁻³⁰
<u>Spouses (<55)</u>	962	0.20	3.24*10 ⁻¹⁰
<u>Spouses (>55)</u>	977	0.31	4.27*10 ⁻²³
Parent offspring	n	r	p-value
Father-son	791	0.34	2.57*10 ⁻²³
Father-daughter	882	0.33	3.99*10 ⁻²⁴
Mother-son	850	0.42	5.06*10 ⁻³⁷
Mother-daughter	1,005	0.42	2.99*10 ⁻⁴⁵

Heritability ~70%

Eur J Hum Genet. 2013 Oct;21(10):1163-8.

Genetic Epidemiology: Stages of Genetic Mapping

- Are there genes influencing this trait?
 - Genetic epidemiological studies
- Where are those genes?
 - Linkage analysis
- What are those genes?
 - Association analysis
- How do they work beyond the sequence?
 - Epigenetics, transcriptomics, proteomics
- What can we do with them ?
 - Translational medicine

Thomas Hunt Morgan – discoverer of linkage

Linkage analysis ь

4/16 = 1/4 sibs share BOTH parental alleles IBD = 2

8/16 = 1/2 sibs share ONE parental allele IBD = 1

4/16 = 1/4 sibs share NO parental alleles IBD = 0

Human OCA2 and eye colour

Zhu et al., Twin Research 7:197-210 (2004)

Finding the genes - association

 Looks for correlation between specific alleles and phenotype (trait value, disease risk)

Variation: Single Nucleotide Polymorphisms

Complex disease marker? SNPs are single-base differences in DNA.

Linkage disequilibrium

Linkage disequilibrium

Indirect association

High density SNP arrays – up to 1 million SNPs

Genome-Wide Association Studies

Genetic Case Control Study

Allele G is 'associated' with disease

Allele-based tests (case-control)

- Each individual contributes two counts to 2x2 table.
- Test of association

$$X^{2} = \sum_{i=0,1} \sum_{j=A,U} \frac{(n_{ij} - E[n_{ij}])^{2}}{E[n_{ij}]}$$

where

$$\mathbf{E}[\mathbf{n}_{ij}] = \frac{\mathbf{n}_{i} \cdot \mathbf{n}_{.j}}{\mathbf{n}_{..}}$$

• X^2 has χ^2 distribution with 1 degrees of freedom under null hypothesis.

	Cases	Controls	Total
G	n _{1A}	n _{1U}	n ₁ .
Т	n _{0A}	n_{0U}	n ₀ .
Total	n _{-A}	n _{.U}	n

Simple Regression Model of Association (continuous trait)

 $Y_i = \alpha + \beta X_i + e_i$

where

 $Y_i =$ trait value for individual i $X_i =$ number of 'A' alleles an individual has

Association test is whether $\beta > 0$

We define genome-wide significance as .05/1 million effective tests = 5 x 10^{-8}

Figure 3. Genome-wide Association Findings in Rheumatoid Arthritis

Figure 1. Hypothetical Quantile-Quantile Plots in Genome-wide Association Studies

Meta-analyses identify 13 loci associated with age at menopause and highlight DNA repair and immune pathways

To newly identify loci for age at natural menopause, we carried out a meta-analysis of 22 genome-wide association studies (GWAS) in 38,968 women of European descent, with replication in up to 14,435 women. In addition to four known loci, we identified 13 loci newly associated with age at natural menopause (at $P < 5 \times 10^{-8}$). Candidate genes located at these newly associated loci include genes implicated in DNA repair (*EXO1*, *HELQ*, *UIMC1*, *FAM175A*, *FANCI*, *TLK1*, *POLG* and *PRIM1*) and immune function (*IL11*, *NLRP11* and *PRRC2A* (also known as *BAT2*)). Gene-set enrichment pathway analyses using the full GWAS data set identified exoDNase, NF- κ B signaling and mitochondrial dysfunction as biological processes related to timing of menopause.

Figure 1 Discovery GWAS results. Manhattan plot of discovery meta-analysis. Inset, quantilequantile plot of discovery primary analysis (red) and double genomic control-adjusted primary analysis (black). Obs., observed; exp., expected.

Identification of seven loci affecting mean telomere length and their association with disease Veryan Codd et al. (ENGAGE consortium) *NG*, 2013

Genome-wide association study in alopecia areata implicates both innate and adaptive immunity

Lynn Petukhova¹, Madeleine Duvic², Maria Hordinsky³, David Norris⁴, Vera Price⁵, Yutaka Shimomura¹, Hyunmi Kim¹, Pallavi Singh¹, Annette Lee⁶, Wei V. Chen⁷, Katja C. Meyer⁸, Ralf Paus^{8,9}, Colin A. B. Jahoda¹⁰, Christopher I. Amos⁷, Peter K. Gregersen⁶ & Angela M. Christiano^{1,11}

NATURE Vol 466 1 July 2010

Region	Gene	Function	Strongest association (P value)	Maximum odds ratio	Involved in other autoimmune disease
2q33.2	CTLA4	Co-stimulatory family	3.55×10^{-13}	1.44	T1D, RA, CeD, MS, SLE, GD
	ICOS	Co-stimulatory family	4.33×10^{-8}	1.32	
lq27	IL-21/IL-2	T-, B- and NK-cell proliferation	4.27×10^{-8}	1.34	T1D, RA, CeD, PS
5q25.1	ULBP6	NKG2D activating ligand	4.49×10^{-19}	1.65	None
	ULBP3	NKG2D activating ligand	4.43×10^{-17}	1.52	None
9q31.1	STX17	Premature hair greying	3.60×10^{-7}	1.33	None
0p15.1	IL-2RA	T-cell proliferation	1.74×10^{-12}	1.41	T1D, MS, GD, GV
1q13	PRDX5	Antioxidant enzyme	4.14×10^{-7}	1.33	MS
2q13	Eos (IKZF4)	T _{reg} transcription factor	3.21×10^{-8}	1.34	T1D, SLE
	ERBB3	Epidermal growth factor receptor	1.27×10^{-7}	1.34	T1D, SLE
p21.32	MICA	NKG2D activating ligand	1.19×10^{-7}	1.44	T1D, RA, CeD, UC, PS, SLE
HLA)	NOTCH4	Haematopoietic differentiation	1.03×10^{-8}	1.61	T1D, RA, MS
	C6orf10	Unknown	1.45×10^{-16}	2.36	T1D, RA, PS, GV
	BTNL2	Co-stimulatory family	2.11×10^{-26}	2.70	T1D, RA, UC, CD, SLE, MS, GV
	HLA-DRA	Antigen presentation	2.93×10^{-31}	2.62	T1D, RA, CeD, MS, GV
	HLA-DQA1	Antigen presentation	3.60×10^{-17}	2.15	T1D, RA, CeD, MS, SLE, PS, CD, UC,
	HLA-DQA2	Antigen presentation	1.38×10^{-35}	5.43	T1D, RA
	HLA-DQB2	Antigen presentation	1.73×10^{-13}	1.60	RA

Each of the eight regions implicated in our study contains multiple significant SNPs, which are detailed in Supplementary Tables 1 and 2. Here we display candidate genes within the implicated regions, and include the *P* value of the most significant SNP, and the odds ratio for the SNP with the largest effect estimate. Diseases are listed for which a GWAS or previous candidate gene study identified the same region (http://www.genome.gov/gwastudies, http://www.cdc.gov/genomics/hugenet): Crohn's disease (CD), celiac disease (CeD), Graves disease (GD), generalized vitiligo (GV), multiple sclerosis (MS), psoriasis (PS), rheumatoid arthritis (RA), system lupus erythematosus (SLE), type I diabetes (T1D), and ulcerative colitis (UC).

GWAS publications since 2005

Manolio, Nature Reviews Genetics, August 2013

Examples of Previously Unsuspected Associations between Certain Conditions and Genes and the Related Metabolic Function or Pathway, According to Genomewide Association Studies

 Table 1. Examples of Previously Unsuspected Associations between Certain Conditions and Genes and the Related

 Metabolic Function or Pathway, According to Genomewide Association Studies.

Condition	Gene	Function or Pathway	Source of Data
Age-related macular degeneration	CFH	Complement-mediated inflammation	Klein et al.25
Coronary disease	CDKN2A, CDKN2B	Cell-cycle regulator	Helgadottir et al. ³⁶
Childhood asthma	ORMDL3	Unknown	Moffatt et al.37
Type 2 diabetes	CDKAL1	Cell-cycle regulator	Scott et al. ³
Crohn's disease	ATG16L1	Autophagy	Rioux et al. ³⁸

Manolio T. N Engl J Med 2010;363:166-176

Examples of loci shared by conditions or traits previously thought to be unrelated, according to Genomewide Association Studies

Gene	Conditions Sharing Associations	Source of Data
CDKN2A, CDKN2B	Coronary disease	Helgadottir et al. ³⁶
	Type 2 diabetes	Scott et al. ³
	Invasive melanoma	Kamb et al.43
ORMDL3	Childhood asthma	Moffatt et al.37
	Crohn's disease	Barrett et al.27
CDKAL1	Type 2 diabetes	Scott et al. ³
	Prostate cancer	Steinthorsdottir et al.44
LRRK2	Parkinson's disease	Paisán-Ruíz et al.45
	Crohn's disease	Barrett et al.27
KITLG	Testicular carcinoma	Rapley et al.46
	Blond or brown hair	Sulem et al.47
C10orf67	Sarcoidosis	Franke et al. ⁴⁸
	Celiac disease	Franke et al.48
JAZF1	Height	Johansson et al.49
	Type 2 diabetes	Zeggini et al.50
	Prostate cancer	Thomas et al.17

Manolio T. N Engl J Med 2010;363:166-176

Functional classifications of 465 Trait-Associated SNPs and the SNPs in Linkage Disequilibrium with them

Manolio T. N Engl J Med 2010;363:166-176

Correlations of presumed regulatory regions defined from GWAS

DNaseI peaks indicate regions of open chromatin accessible to the transcription apparatus and transcription factor binding sites where this this apparatus attached to the DNA

Manolio, Nature Reviews Genetics, August 2013

Genome-wide association analysis of coffee drinking suggests association with CYP1A1/CYP1A2 and NRCAM

GWAS of monocyte counts - help from expression data

Discovery N=4,225 (QIMR+NTR), replication N=1,517 (Busselton, GenomEUtwin)

Ferreira et al. (2009) AJHG 85: 745; Zeller et al. (2010) PLoS One 5: e10693.

Selected quantitative traits

Selected diseases

Number of Loci Identified is a Function of Sample Size

Visscher PM, et.al. (2012) Am J Hum Genetics

October 2011

Dramatic progress in GWAS for Schizophrenia

-

Molecular Psychiatry (2012), 1–15 © 2012 Macmillan Publishers Limited All rights reserved 1359-4184/12

www.nature.com/mp

ORIGINAL ARTICLE

A mega-analysis of genome-wide association studies for major depressive disorder

Major Depressive Disorder Working Group of the Psychiatric GWAS Consortium¹

9240 MDD cases 9519 controls …Nothing ⊗

In the MDD-bipolar crossdisorder analysis, 15 SNPs exceeded GWS, and all were in a 248 kb interval of high LD on 3p21.1(rs2535629)

Significance and effect size for the top hit with cases split into non-overlapping quartiles by age-at-onset within their study

Schizophrenia (ISC) Q-Q plot

Consistent with:

Stratification?

Genotyping bias?

Distribution of true polygenic effects?

Genomic inflation factors under polygenic inheritance

Jian Yang^{*,1}, Michael N Weedon², Shaun Purcell^{3,4}, Guillaume Lettre⁵, Karol Estrada⁶, Cristen J Willer⁷, Albert V Smith⁸, Erik Ingelsson⁹, Jeffrey R O'Connell¹⁰, Massimo Mangino¹¹, Reedik Mägi¹², Pamela A Madden¹³, Andrew C Heath¹³, Dale R Nyholt¹, Nicholas G Martin¹, Grant W Montgomery¹, Timothy M Frayling², Joel N Hirschhorn^{3,14,15}, Mark I McCarthy^{12,16}, Michael E Goddard¹⁷, Peter M Visscher¹ and the GIANT Consortium

Population structure, including population stratification and cryptic relatedness, can cause spurious associations in genome-wide association studies (GWAS). Usually, the scaled median or mean test statistic for association calculated from multiple single-nucleotide-polymorphisms across the genome is used to assess such effects, and 'genomic control' can be applied subsequently to adjust test statistics at individual loci by a genomic inflation factor. Published GWAS have clearly shown that there are many loci underlying genetic variation for a wide range of complex diseases and traits, implying that a substantial proportion of the genome should show inflation of the test statistic. Here, we show by theory, simulation and analysis of data that in the absence of population structure and other technical artefacts, but in the presence of polygenic inheritance, substantial genomic inflation is expected. Its magnitude depends on sample size, heritability, linkage disequilibrium structure and the number of causal variants. Our predictions are consistent with empirical observations on height in independent samples of ~ 4000 and $\sim 133\,000$ individuals.

$$\lambda_{\text{mean}}^{\text{QT}} \approx 1 + \frac{Nh^2 r^2 \overline{s}}{n}$$
$$\lambda_{\text{mean}}^{\text{CC}} \approx 1 + \frac{Nh^2 \overline{r^2} \overline{s} i^2 v (1 - v)}{n(1 - K)^2}$$

2 - 1 2 2

European Journal of Human Genetics (2011) 19, 807–812

Sciencexpress

Reports

GWAS of 126,559 Individuals Identifies Genetic Variants Associated with Educational Attainment

All authors with their affiliations appear at the end of this paper.

- Finnish twin cohort
- Netherlands twin register
- QIMR (Australian twin register)
- Swedish twin register
- TwinsUK
- Minnesota Twin family study
- Twin registers supply 44,751 Ss (i.e. >35% of total sample size)
- There are 6 twin cohorts and total of 52 cohorts (11%)

ured at an age at which subjects were very likely to have completed their education [over 95% of the sample was at least 30; (5)]. On average, subjects have 13.3 years of schooling, and 23.1% have a college degree. To enable pooling of GWAS results, all studies conducted analyses with data imputed to the HapMap 2 CEU (r22.b36) reference set. To guard against population stratification, the first four principal

> cific lled, ussamhree little **ELOC** OE

vere

10rt-

The value of DZ twins for within-pair association tests for ruling out population stratification

Within-family regression results of the polygenic scores on *College* and *EduYears* in the QIMR and Swedish Twin Registry cohorts using SNPs selected from the meta-analysis <u>excluding</u> the QIMR and STR cohorts.

Phenotype		$p_{\mathrm{SNPs}} <$	$p_{ m SNPs}$ $<$	$p_{ m SNPs}$ $<$	All
(PGS)		5×10 ⁻⁸	5×10-5	5×10 ⁻³	SNPs
EduYears	R^2	0.017	0.003	0.220	0.310
(College)	(%)				
	P	0.455	0.739	0.006	0.001
EduYears	R^2	0.002	0.001	0.110	0.190
(EduYears)	(%)				
	P	0.791	0.846	0.065	0.011

Prediction in QIMR + STR

Analyses for QIMR are based on 572 full-sib pairs from independent 572 families. Analyses for STR are based on 2,774 DZ twins from 2,774 independent families.

Science. 2013 Jun 21;340:1467-71

Education SNPs predict IQ

Koellinger, submitted

Genetic variants associated with breast size also influence breast cancer risk

GWAS of Bra cup size on 16,000 women (23andMe)

BMC Medical Genetics 2012, 13:53

How much variance have GWAS studies explained?

GWAS' greatest success: T1D

Proportion of population

Current known loci explain a λ_s of just under five, as compared with the value of 15 often quoted. However, it is likely that the latter figure is exaggerated, and the λ_s attributable to inheritance is likely to be less than ten. The heritability explained will be increased to some degree when the known regions are more fully studied, but the bulk of the remaining heritability is likely to be attributable to many small (or rare) effects, most of which are unlikely to be mapped. Thus, even for this highly heritable disease, the prediction achievable could fall some way short of that required for a targeted prevention strategy.

and Interaction in Complex Disease Genetics: Diabetes Prediction ewpoints

PEN O ACCESS Freely av

Trait or Disease	h ² Pedigree Studies	h ² GWAS Hits ^a	h ² All GWAS SNPs ^b	Varianco
Type 1 diabetes	0.9 ⁹⁸	0.6 ^{99 ,c}	0.3^{12}	variance
Type 2 diabetes	0.3–0.6 ¹⁰⁰	0.05-0.10 ³⁴		ovnlaino
Obesity (BMI)	0.4-0.6 ^{101,102}	0.01-0.0236	0.2^{14}	схріаніє
Crohn's disease	0.6-0.8 ¹⁰³	0.111	0.4^{12}	hv GWΔS
Ulcerative colitis	0.5 ¹⁰³	0.05^{12}		by GIIAS
Multiple sclerosis	$0.3 - 0.8^{104}$	0.145		for
Ankylosing spondylitis	$>0.90^{105}$	0.2^{106}		
Rheumatoid arthritis	0.6 ¹⁰⁷			selected
Schizophrenia	$0.7 - 0.8^{108}$	0.0179	0.3 ¹⁰⁹	
Bipolar disorder	0.6-0.7 ¹⁰⁸	0.02 ⁷⁹	0.4^{12}	complex
Breast cancer	0.3 ¹¹⁰	0.08^{111}		
Von Willebrand factor	0.66-0.75 ^{112,113}	0.13^{114}	0.2514	traits
Height	0.8 ^{115,116}	0.113	0.5 ^{13,14}	
Bone mineral density	0.6-0.8 ¹¹⁷	0.05^{118}		
QT interval	0.37-0.60 ^{119,120}	0.07 ¹²¹	0.2^{14}	
HDL cholesterol	0.5 ¹²²	0.157		
Platelet count	0.8 ¹²³	0.05-0.158		

Possible explanations for missing heritability (not mutually exclusive, but in order of increasing plausibility ?)

- Heritability estimates are wrong
- Nonadditivity of gene effects epistasis, GxE
- Epigenetics including parent-of-origin effects
- Low power for common small effects
- Disease heterogeneity lots of different diseases with the same phenotype
- Poor tagging (1)
 - rare mutations of large effect (including CNVs)
- Poor tagging (2)
 - common variants in problematic genomic regions

Possible explanations for missing heritability (in order of increasing plausibility ?)

- Heritability estimates are wrong
- Nonadditivity of gene effects epistasis, GxE
- Epigenetics including parent-of-origin effects
- Low power for common small effects
- Disease heterogeneity lots of different diseases with the same phenotype
- Poor tagging (1)
 - rare mutations of large effect (including CNVs)
- Poor tagging (2)
 - common variants in problematic genomic regions

Non-additive variance?

OPEN O ACCESS Freely available online

PLOS GENETICS

Data and Theory Point to Mainly Additive Genetic Variance for Complex Traits

William G. Hill¹*, Michael E. Goddard^{2,3}, Peter M. Visscher⁴

Figure 1. Distribution of $r_{MZ} - 2r_{DZ}$ for all traits on human twins.

Estimates of chromosomal heritabilities for height

EVIDENCE FOR POLYGENIC EPISTATIC INTERACTIONS IN MAN?

A. C. HEATH, N. G. MARTIN, L. J. EAVES AND D. LOESCH

Observed familial correlations for finger pattern intensity and the expected contributions of the main components of gene action

	N	r	Genetic contribution		
Relationship			VA	VD	VAA
MZ male twins	60	0.91	1	1	1
MZ female twins	50	0.90	1	1	1
DZ male twins	62	0.24	1/2	1/4	1/4
DZ female twins	49	0.36	1/2	1/4	1/4
Male siblings	461	0.40	1/2	1/4	14
Female siblings	309	0.33	1/2	1/4	1/4
Opposite-sex siblings	857	0.33	1/2	1/4	1/4
Father-son	469	0.33	1/2	0	1/4
Father-daughter	547	0.40	1/2	0	1/4
Mother-son	460	0.41	1/2	0	1/4
Mother-daughter	540	0.31	1/2	0	1/4
Spouses	281	0.04	0	0	0

Abbreviations used are: VA, additive genetic variance; VD, dominance variance; VAA, epistatic variance arising from interactions of additive effects of genes.

Genetics 106: 719-727,1984

Finding the sources of missing heritability in a yeast cross

Joshua S. Bloom^{1,2}, Ian M. Ehrenreich^{1,3}, Wesley T. Loo^{1,2}, Thúy-Lan Võ Lite^{1,2} & Leonid Kruglyak^{1,4,5}

Contribution to heritability of gene–gene interactions varies among traits, from ~0 to ~50%

Possible explanations for missing heritability (in order of increasing plausibility ?)

- Heritability estimates are wrong
- Nonadditivity of gene effects epistasis, GxE
- Epigenetics including parent-of-origin effects
- Low power for common small effects
- Disease heterogeneity lots of different diseases with the same phenotype
- Poor tagging (1)
 rare mutations of large effect (including CNVs)
- Poor tagging (2)
 - common variants in problematic genomic regions

Effects sizes of validated variants from 1st 16 GWAS studies

Prediction of individual genetic risk of complex disease Naomi R Wray¹, Michael E Goddard² and Peter M Visscher¹

Current Opinion in Genetics & Development 2008, 18:257-263

...and will need huge sample sizes to detect

Possible explanations for missing heritability (in order of increasing plausibility ?)

- Heritability estimates are wrong
- Nonadditivity of gene effects epistasis, GxE
- Epigenetics including parent-of-origin effects
- Low power for common small effects
- Disease heterogeneity lots of different diseases with the same phenotype
- Poor tagging (1)
 rare mutations of large effect (including CNVs)
- Poor tagging (2)
 - common variants in problematic genomic regions

What if our "disease" is actually dozens (hundreds, thousands) of different diseases that all look the same?

Loci for Inherited Peripheral Neuropathies Multiple causal loci for Charcot Marie Tooth disease (CMT) 10 2 3 5 8 dHMN V KIF1B CMT2A CMT2E NEFL 9 CMT2D GARS 7776 dHMN-J HSPB1 CMT2F CH, CMT1, CMT4A EGR2 GDAP1 DSS CMT4C2 HMSN-R HMSN-P HMSN-L NDRG1 DI-CMTA dHMN VII DSS 111 RAB7 CMT2B CMT4 SPTLC1 HSN I SH3TC2 HSAN IV I HSN III NTRK1 HSAN V IKBKAP MPZ CMT1B ALS4/dHMN LMNA DSS CH "CMT2" ARCMT2A х 22 15

Possible explanations for missing heritability (in order of increasing plausibility ?)

- Heritability estimates are wrong
- Nonadditivity of gene effects epistasis, GxE
- Epigenetics including parent-of-origin effects
- Low power for common small effects
- **Disease heterogeneity** lots of different diseases with the same phenotype
- Poor tagging (1)
 - rare mutations of large effect (including CNVs)
- Poor tagging (2)
 - common variants in problematic genomic regions

Genetic diversity is larger than differences in DNA sequence

When we take into account:

- Structural variation [e.g. copy number variants (CNV)]
- Epigenetic differences (DNA methylation status)

For example: Bipolar disorder

Molecular Psychiatry (2009) 14, 376–380 © 2009 Nature Publishing Group All rights reserved 1359-4184/09 \$32.00

www.nature.com/mp

IMMEDIATE COMMUNICATION

Singleton deletions throughout the genome increase risk of bipolar disorder

D Zhang¹, L Cheng¹, Y Qian¹, N Alliey-Rodriguez¹, JR Kelsoe², T Greenwood², C Nievergelt², TB Barrett², R McKinney², N Schork^{3,4}, EN Smith^{3,4}, C Bloss^{3,4}, J Nurnberger⁵, HJ Edenberg^{6,7}, T Foroud⁷, W Sheftner⁸, WB Lawson⁹, EA Nwulia⁹, M Hipolito⁹, W Coryell¹⁰, J Rice¹¹, W Byerley¹², F McMahon¹³, TG Schulze¹³, W Berrettini¹⁴, JB Potash¹⁵, PL Belmonte¹⁵, PP Zandi¹⁵, MG McInnis¹⁶, S Zöllner¹⁶, D Craig¹⁷, S Szelinger¹⁷, D Koller⁵, SL Christian¹⁸, C Liu^{1*} and ES Gershon^{1,18*}

... we present a genome-wide copy number variant (CNV) survey of 1001 cases and 1034 controls ... <u>Singleton deletions (deletions that appear only once in the dataset) more than 100 kb in length are present in 16.2% of BD cases and in 12.3% of controls (permutation P = 0.007). Our results strongly suggest that BD can result from the effects of multiple</u>

rare structural variants.

Possible explanations for missing heritability (in order of increasing plausibility ?)

- Heritability estimates are wrong
- Nonadditivity of gene effects epistasis, GxE
- Epigenetics including parent-of-origin effects
- Low power for common small effects
- Disease heterogeneity lots of different diseases with the same phenotype
- Poor tagging (1)
 rare mutations of large effect (including CNVs)
- Poor tagging (2)
 - common variants in problematic genomic regions

50% of human genome is repetitive DNA. **Only 1.2%** is coding

Types of repetitive elements and their chromosomal locations

Centromere

Intercalary tandem repeats

Centromere-associated tandem repeats

Telomeric and subtelomeric repeats Dispersed tandem repeats

Dispersed Ty1-copia-like retroelements and microsatellites

LINEs (non-LTR retroelements)

Single and low-copy sequences including genes

Summary

- Huge amount of repetitive sequence
- Highly polymorphic
- Some evidence that it has functional significance
- Earlier studies too small (100s) to detect effect sizes now known to be realistic
- Much (most?) such variation poorly tagged with current chips
- Current CNV arrays only detect large variants; no systematic coverage of the vast number of small CNVs (including microsatellites)

twin research and human genetics

- Editor: Nick Martin
- Publisher:
 Cambridge
 University Press
- Fully online
- Fast turnaround
- First submission free to workshop participants!!!!!©

The party is needed to be latticing matrices. MIXARE PLANED MARKED Annual Matrice (17th) Ecological Contemp¹⁶ Content Contemp¹⁶ Content Matrices Planet

BEHAVIOR GENETICS

A Journal Devoted to Research in the Inheritance of Behavior

KLUWER ACADEMIC / PLENUM PUBLISHERS

- Editor: John Hewitt
- Editorial assistant Christina Hewitt
- Publisher: Springer
- Fully online
- http://www.bga.org