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The Resolution of Genotype x 
Environment Interact ion in Segregation 
Analysis of Nuclear Families 

Lindon J. Eaves 

Department of Human Genetics, Medical College of Virginia, Richmond 

A model is presented for the effects of one or two loci, a measured index of the 
environment and genotype X environment (G X E) interaction of risk for a discon- 
tinuous trait. Initial properties of the model are explored for the single locus case, 
with and without the effects of environment and GXE interaction. Seven data sets 
were simulated, each comprising 500 nuclear families on whom an environmental 
index has been measured. Maximum-likelihood estimation procedures were used 
to obtain parameter estimates under seven models for each data set. Likelihood 
ratio tests were constructed, and in all cases it was possible to identify the 
“correct” model for the simulated data. The matrices of information realized 
showed that the parameters could be estimated with acceptable precision and that 
the effects of genes, environment, and GXE interaction could be resolved in the 
simulated populations. The effects on conventional segregation analysis of ignor- 
ing the environment and G X E are considered. 

Key words genotype x environment interaction, segregation analysis, simulation, nuclear family, 
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INTRODUCTION 

Most models for the effects of genes and environment on human variation 
assume that the effects of genes and environment are additive. They assume there is 
no genotype X environment (GXE) interaction. Recent advances in the genetic and 
epidemiological study of common disease lead to a pressing need for tractabie models 
of G x E interaction that can be applied to human data. 

Family studies of hypertension, for example, have shown almost beyond doubt 
that there is a substantial genetic component to the disease [Havlik and Feinleib, 
19821. On the other hand, experimental and epidemiological studies suggest that 
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dietary sodium may be an important environmental factor [Luft and Weinberger, 
19821. More recently, it has been argued that only certain genotypes may be especially 
sensitive to dietary sodium [Kawasaki et al, 19781. Thus, there is already a growing 
awareness of the importance of G X E in cardiovascular disorder. 

Similar considerations appear in the area of psychiatric disorders. The so-called 
“diathesis-stress” model is commonly used as an heuristic device in exploring the 
etiology of such diseases [Gottesman and Shields, 19731. The model recognizes that 
some individuals are especially predisposed to respond more markedly to their 
environment. Two disorders for which a G XE model may be especially important 
are depression and criminality. Family and adoption studies have shown that depres- 
sion has a significant genetic component [Gershon et al, 19761. Epidemiological 
studies have identified specific environmental stresses that increase the risk of depres- 
sion [Brown and Harris, 19781. Indeed, the latter authors argue that certain individuals 
may be especially prone to environmental stress but, so far, no general strategy has 
evolved for the analysis of genetic effects on discontinuous traits with data on 
measured aspects of the environment. 

Cloninger et a1 [1982] have shown how Scandanavian adoption data relating to 
petty criminality permit resolution of social and genetic effects on behavior. Indeed, 
the probability that an individual will develop a particular behavior pattern is a 
nonadditive function of his genotype (assessed through the phenotype of the biological 
parent) and his family environment (measured by the phenotype of his foster parent). 
Thus, on the scale of “probability,” genes and environment interact in the etiology of 
criminality. 

In purely statistical terms, the magnitude of G X E interaction is assessed by the 
extent to which the average performance of the genotype and the average effect of a 
given environment fail to predict the responses of individual combinations of geno- 
types and environments. The biological and genetic importance of G xE, however, 
can only be appreciated by examining the extensive literature of G x E in species 
other than man. A wealth of experimental studies have shown that G x E, though it 
can be described in statistical terms, is better conceived as the genetic control of 
sensitivity to the environment [Mather and Jinks, 19821. Such experimental studies in 
fungi, higher plants, Drosophila spp, and mammals have shown beyond doubt that 
G x E  interaction is a fundamental property of many genetic systems. More important, 
however, are the demonstrations that: 1) the genes that control sensitivity to the 
environment are often quite distinct from those that determine the average response 
of the individual over all environments, 2) the genes responsible for sensitivity to the 
environment have their own additive and dominance relationships, which may be 
quite different from those shown by genes that affect the average response, and 3 )  
different genes are responsible for controlling sensitivity to different environmental 
factors. 

In a random sample of 82 inbred lines of Nicotiana rustica, Perkins and Jinks 
[1971] showed that average performance and sensitivity to the environment are under 
separate genetic control. A chromosome assay of sternopleural chaeta number in the 
inbred lines Wellington and Samarkand in D melanogaster [Caiigari and Mather, 
1975; Mather and Caligari, 19761 showed that the genes responsible for average 
performance were located chiefly on chromosome 111, whereas those for sensitivity 
to temperature were mainly on chromosome 11. 

Jinks and Connelly [ 19751 showed, in the fungus Schizophyllum commune, that 
the direction of selection, and the quality of the environment in which selection 
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occurred, had predictable consequences for the genetic control of environmental 
sensitivity. A more recent study of Nicotiana rustica by Jinks and Pooni [1983] 
confirmed these earlier experiments on a different species. 

Early studies of G X E by Bucio-Alanis [ 19661 and Bucio-Alanis and Hill [ 19661 
showed how the additive and dominance properties of genes responsible for sensitivity 
to the environment may be estimated in the same way as effects on average perform- 
ance. Perkins and Jinks [ 19711 demonstrated how epistatic interactions could be 
detected between loci affecting response to the environment. Equally significant are 
demonstrations that the additive and dominance properties of genes controlling sensi- 
tivity and mean performance may differ, as is the case in Mather and Jinks’ [1982] 
analysis of Powers’ [1941] data from the cross Danmark X Johannisfeuer in the 
tomato. 

Some genes controlling response to the environment may have effects that are 
generalized over a range of different environmental agents. The effects of other genes 
may be specific to individual environments. Thus, for example, Perkins and Jinks 
[1971] concluded in their analysis of the performance of the lines 2 and 42 of N 
rustica in a wide range of controlled and uncontrolled environments that there was 
“considerable specificity in the reactions of the genotypes to the different kinds of 
environmental variation. ” Thus, we must consider the possibility that different genes 
control responses to quite specific features of the environment. 

All these studies point to the fact that G X E interaction is a significant compo- 
nent of any genetic system, that GXE has its own genetic properties distinct from 
those of average performance, and that G X E may be influenced quite independently 
by natural and artificial selection. 

In spite of the evidence for G x E  in other organisms, its effects have largely 
been ignored in human genetics. There may be two reasons for this neglect of GXE. 
In the first place, most of the tractable models for human variation are additive. Path 
analytic methods, for example, are virtually useless for deriving nonadditive contri- 
butions to family resemblance. As a result, the contribution of GXE has been 
relegated to residual effects for which no single powerful test is available. The second 
reason for the lack of interest shown by human geneticists in GXE is the fact that 
most approaches to the analysis of G X E in man have assumed that the environment 
cannot be measured directly but its effects only inferred from correlations between 
relatives. 

Jinks and Fulker [ 19701 suggested one test of G X E in man that detects correla- 
tions between the genes responsible for average effect and those creating environmen- 
tal sensitivity. They suggested examining the relationship between the means and 
standard deviations of MZ twin pairs. For twins reared apart, this would provide a 
test of G x E involving all postnatal environmental effects. For twins reared together, 
the test would only detect interactions betweeen genotype and environmental effects 
unique to individuals within the family. A related approach, suggested by Eaves and 
Eysenck [ 19761 is to examine the relationshp between environmental measures made 
on DZ twin pairs (or sibships) and the within sibship variance. This test should detect 
interaction between the measured environment and genetic differences within sib- 
ships. The problem with both the latter test and that devised for MZ twins reared 
together is that they are not specific for G X E but may also detect interaction between 
purely environmental factors within and between families. Furthermore, they do not 
help us discriminate between genes that control average performance and those that 
control sensitivity to the environment. 
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In this paper we present a model for the interaction of genetic and environmental 
effects that may be used in the analysis of dichotomous traits and yields, as special 
cases, most of the simpler models for genetic effects employed in conventional 
segregation analysis. Some of the features of the model are illustrated by the analysis 
of simulated data on nuclear families in which members are assigned to either 
“affected” or “unaffected” status and measured on a single environmental factor 
hypothesized to contribute to disease liability. There is no theoretical barrier to the 
incorporation of multivariate environmental indices into the model. We explore both 
additive and nonadditive models for the effects of genes and environment on disease 
liability and show how they can be resolved by a more general form of segregation 
analysis. 

MODEL 

The model is used to predict the probability of a disorder, “risk” (R), as a 
function of genetic and environmental components of liability, L. Since 0 < R < 1, it 
is unlikely that genetic effects, or environmental effects, will contribute additively to 
risk unless the variation in liability is small. However, on the continuous scale of 
liability, -m < L <  +m, the effects of genes may be additive, nonadditive, or both. 
Our model assumes that liability to the disease can be continuous (though might only 
be due to one or two genes) but that the risk to the disease, R, can be expressed as a 
function of liability, L, thus: 

R = l/[l + exp(-L)]. 

This is the “logistic” function, which has proved convenient in the prediction of 
discontinuous variables from continuous measures [eg, Kleinbaum et al, 19821 and is 
used widely in epidemiological studies. Most logistic regressions assume that the risk 
can be expressed as a function of measured variables. In our application, however, 
we assume that only the environment can be measured directly and allow for the 
effects of a latent component due to one or two genes that may either effect liability 
directly and equally in all environments (ie, in the absence of GXE interaction) or 
may effect the sensitivity to the environment in a manner comparable to that found in 
many animal and plant studies of environmental and genetic effects. In either case, 
whether or not the effects on L are additive, they could only contribute additively to 
risk over a very small range. 

In the current version of the model it is assumed that one or two genes affect 
liability and that the relevant environment can adequately be summarized by a single 
environmental index, E. We assume two alleles at each locus and let pa and Pb be the 
frequencies of the increasing alleles at loci A and B, respectively. Following the 
conventions of biometrical genetics [Mather and Jinks, 19821, which are more flexible 
than those often employed in human genetics, we let A and B denote the increasing 
alleles and a and b be the decreasing alleles, regardless of the dominance relationships 
among the alleles. We let ej denote the jth level of the environment. 

For the liability of the ith genotype in the jth environment we write: 

L =gi +biej, 

where gi is the average response of the ith genotype and bi is the sensitivity of the ith 
genotype to the measured environment. The model thus assumes that liability is a 
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linear function of the environment in a given genotype. If bi is zero for every 
genotype, there is no regression of liability on the measured environment. If the bi 
are the same for all genotypes, there are environmental effects but no G X E interac- 
tion. If the bi vary among genotypes there is GXE interaction because different 
genotypes respond differently to the indexed environment. The model, as we have 
written it, thus assumes linearity of regression of liability on environment. This is not 
a necessary restriction but one which, in practice, has been found effective [eg, Jinks 
and Connelly, 19751. 

In a model involving only one or two loci we may devise parameters to express 
the average effects, gi, of the loci on liability and their effects on sensitivity to the 
environment, bi. We define m as the midpoint in liability between the aabb homozy- 
gote and the AABB homozygote in the average environment. Then for each locus we 
may define additive deviations from m: d, and db. Similarly, the deviation of the 
heterozygote at each locus from m can be specified: ha and hb. This parameterization 
of the gene effects is that employed by Mather and Jinks [1982] and captures both the 
usual cases encountered in human genetics and the more general cases explored in the 
genetic analysis of complex variables in other species. Thus, if the heterozygous 
effect, h, is zero at a given locus, the heterozygote is exactly intermediate in liability 
between the two homozygotes. This corresponds to the classical case of “codominant” 
inheritance. If h = d at a locus, the allele that increases liability is dominant. This 
corresponds to the classical case of “dominance” for the disease. If h = -d, then 
the allele that decreases liability is dominant. This case corresponds to the classical 
“recessivity ” for the disease state. Various degrees of “partial dominance” (or 
recessivity) are captured by intermediate values of -d < h < d. 

Since the model allows for the effects of two loci on liability, we may also 
incorporate, in theory at least, the epistatic interactions between loci. Following 
Mather and Jinks [1982] we recognize that four parameters are required for a 
complete specification of digenic interactions: 

iab is the interaction between the homozygotes AA and BB; 
jab is the interaction between the AA homozygote and the Bb heterozygote; 
jb, is the interaction between the Aa heterozygote and the BB homozygote; 
l ab  is the interaction between the heterozygotes Aa and Bb. 
Mather and Jinks show how different constraints on the four interaction param- 

eters correspond to the classical instances of digenic interaction including classical 
duplicate and complementary gene interaction. The model, however, recognizes that 
the classical forms of epistasis are merely special cases of a more general model for 
digenic interactions. The resolution of epistatic effects is likely to be difficult in man 
but the general model leads to a better understanding of the arbitrariness that accom- 
panies the specification of epistatic effects in many attempts at segregation analysis 
under the two-locus model. 

The effects of each genotype on sensitivity to the environment may be specified 
similarly in terms of additive and dominance effects. Thus, we define: 

g, = the mean sensitivity of the AABB and aabb homozygotes to the measured 
environment; 

gda = the deviation in sensitivity of the AA homozygote from the average 
sensitivity ; 

gha = the deviation in sensitivity of the heterozygote AA from the mean 
sensitivity to the environment. 
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Fig. 1 The relationship between liability and environment under the genotype X environment interac- 
tion model. See text for definitions of parameters. 

Similarly, we may define the additive and heterozygous effects of the B/b locus 
on sensitivity to the environment. If the regression of the heterozygote’s liability on 
the environment is exactly midway between that of the two homozygotes, then there 
is no dominance for sensitivity to the environment. If, in addition, the two homozy- 
gotes are equally sensitive to the environment on the scale of liability and there is no 
genotype x environment interaction in any sense that is consistent with the concept 
of G x E  in quantitative genetics. Theoretically, we could specify epistatic effects of 
the two genes on sensitivity to the environment but such sophistication is almost 
certain to be of academic interest only in the analysis of human differences. 

The two-locus model has been specified in some detail because it embodies, as 
special cases, a number of important alternative hypotheses about the additive and 
nonadditive effects of genes and environment on disease liability, which have been all 
but ignored in the analysis of segregation. 

For example, the animal and plant studies described above give reason to specify 
a model in which different genes affect average response and sensitivity to the 
environment. The model allows for this possibility when the regression parameters 
gd and gh are set equal to zero at the first locus (thus allowing no genetic effect of the 
first locus on sensitivity) and the average effect db and hb are equal to zero at the 
second locus. Clearly, there are many alternative models that are special cases of the 
general two-locus model for G X E we have described. It remains to be seen how very 
subtle alternatives can be distinguished. 

The interpretation of the parameters for a single locus is illustrated in Figure 1,  
which shows the regression of the liability of each genotype on the environmental 
index as a function of the additive and dominance components of average effect and 
environmental sensitivity. 



Genotype x Environment Interaction 221 

TABLE I. Expected Liabilities of Genotypes at Two Loci as Function of Additive and Nonadditive Genetic 
Effects, Measure Environmental Effects (ej), and Their Interaction With Genotype (G xE) 

Genotype 

AABB 
AABb 
AAbb 
AaBB 
AaBb 
Aabb 
aaBB 
aaBb 

m 

1 
1 
1 
1 
1 
1 
1 
1 

__ 

Genetic effects 
Additive Dominant Epistatic 

da db ha hb iab jab jba lab 

I 1 0 0  1 0 0 0  
I 0 0  I 0 1  0 0  
1 - 1 0 0 - 1 0 0 0  
0 1 1 0  0 0  1 0  
0 0 1 1  0 0 0 1  
0 - 1 1  0 0 0 - 1 0  

-1 1 0 0 - 1 0 0 0  
- 1  0 0 1  0 - 1  0 0  

Environment + G x Ea 

gm gda gda 

1 1 1 
1 1 0  
1 1 -1 
1 0 1 
1 0 0  
1 0 -1 
1 - I  1 
1 -1 0 

g h a  ghb 

0 0  
0 1  
0 0  
1 0  
1 1  
1 0  
0 0  
0 1  

aabb I -1 - 1  0 0 1 0 0 0 1 - 1  -1 0 0 

aThe coefficients of the environmental and G X E  component are multiplied by the environmental index measure, 
e,, to give the expected liability in a given environment. 

In Table I we give the expected liability of each genotype in a given environment 
in terms of the parameters of the two-locus model. 

Further grasp of the model may be obtained from Figure 2, which gives the risk 
of the disorder as a function of genotype and environment for a special case in which 
the A/a gene has effects both on average liability and sensitivity to the environment. 

The three curves describe, for each genotype at the A locus, the probability of 
being affected as a function of the independent environmental index, E. The curves, 
therefore, show the variation in penetrance of the three genotypes as a function of the 
environmental index. In drawing the curves we have assumed the following parame- 
ters are nonzero: d, = 2, g, = 2, gda = 2. Thus, the heterozgote is assumed to be 
intermediate in penetrance and liability in the average environment (E = 0). The AA 
homozygote is assumed to increase average effect and show increasing liability as the 
environmental index increases, whereas the combination of a positive average regres- 
sion (g, = 2) with the effect of the decreasing homozygote on sensitivity to the 
environment ( -gda = -2) makes the penetrance and liability of the aa homozygote 
constant in all environments. This particular set of parameter values predicts a 
reversal of the ranking of the three genotypes, and their dominance relationships, as 
the environment increases beyond E = - 1. Such crossover interactions, though not 
ubiquitous, are not unknown in careful studies of G X E interaction. 

MAXIMUM-LIKELIHOOD ESTIMATION 

The above model has been implemented in a FORTRAN program for the 
segregation analysis of nuclear families, which employs copyright software from the 
Numerical Algorithms Group’s [ 19821 FORTRAN library of numerical analysis 
programs. The program employs the NAG subroutines E04HBF and E04JAF for 
minimization of a general function of many variables subject to linear and nonlinear 
constraints. The main difference between segregation analysis under the more classi- 
cal models and under the model described here is that each individual in the sample 
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Fig. 2 The relationship between risk and measured environment for the three genotypes for one of the 
simulated examples. Parameter values assumed: m = 0, d, = 2 ,  g, = 2, gd = 2, h = gh =o. 

has a unique probability of being affected that is a function of genotype at the two 
loci and the value of the environmental index. Thus, for a given mating type, the 
probability that an offspring will be affected is not the same for all children but varies 
with the environment. The program computes and maximizes the likelihood over all 
families, given the measured values of the environmental index and permits some or 
all of the parameters of the model to be free or fixed. Sampling may be random, or 
the ascertainment probability, ?r , may be fixed or estimated as desired. 

The method of maximum-likelihood may be applied to the estimation of param- 
eters under a number of alternative hypotheses in order to compare models in which 
there is no regression on the environmental index with those in which the environment 
affects liability and models that assume additive effects of genes and environment on 
liability with those in which there are genetic effects on sensitivity to the environment 
(G X E interaction). The matrix of information realized at the final solution is com- 
puted for free parameters using a numerical procedure suggested by Davis and 
Polonsky [ 19651 and inverted to provide approximate variances and covariances for 
the parameter estimates. 

SlMULATiON 

The segregation analysis program was implemented in the VCU Amdahl com- 
puter and employed in the analysis of seven sets of nuclear family data simulated on 
the Department of Human Genetics PDP 11-44 computer using a FORTRAN 77 
program. Each set comprised 500 families of two parents and four children. In this 
simulation study it was assumed that the families were sampled at random from a 
population in which a single common gene was segregating (pa = 0.3) and that there 
was a single measure of the environment, which was N[O,l]. In these simulations the 
environment was assumed to be distributed randomly with respect to family members. 
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The seven data sets were simulated to represent all the main combinations of 
genetic, environmental, and GXE effects possible in the single locus model though 
clearly there are many more possibilities than those explored in this basic treatment. 
It was assumed throughout that the gene effects on average liability and sensitivity 
were additive, ie, the heterozygote is intermediate in average liability and in sensitiv- 
ity to the environment. 

The seven data sets were simulated as follows: Set 1: average genetic effect 
only, no environmental effect or G x E  (8, = 0, gda = 0); Set 2: environmental 
regression only, no genetic effects or GXE; Set 3: gene affects sensitivity to environ- 
ment only (“GXE only”) and no average effect; Set 4: average genetic effect, 
environmental effect, no G x E; Set 5: average genetic effect, G x E due to same gene; 
g, = 0; Set 6: average regression on environment and G X E but no average genetic 
effect on liability; Set 7: average genetic effect, average environmental effect, and 
G x E interaction due to same locus. 

The computer program for maximum-likelihood estimation was employed to 
analyze each of the seven data sets in turn. The seven models described above were 
fitted to each of the seven data sets. Parameter estimates were obtained for each 
model. The matrices of information realized were computed for each data set only 
for the model employed in simulating each particular set. 

RESULTS 

Table I1 summarizes the parameter estimates for all seven models fitted to the 
seven data sets. 

The inverse of the matrix of information realized is given only for the seventh 
data set, which was simulated with genetic, environmental, and G X E interaction 
effects in Table III. 

In each case, model 7 is regarded as the “full model” because it includes genes, 
environment, and GXE. This model should give the highest likelihood (L) or the 
smallest value of -L. The same model should not fit significantly better than any 
submodel in which redundant parameters are deleted. Deletion of parameters that are 
making a “real” contribution to variation and family resemblance, however, shouid 
lead to a significant reduction in likelihood. We assume that any change in log- 
likelihood greater than 1.92 associated with removal of a single parameter indicates 
the significance of that effect at the 5% level. 

For every data set, we find that these criteria lead us to the correct decision 
about the mode of inheritance. For example, in the first data set, which was simulated 
on the assumption that liability (though not “risk”) was due entirely to the effects of 
a single additive locus without any environment effect or G X E, the full model does 
not offer a significant improvement on the simple model that assumes exactly what 
was specified in simulating the data. The likelihood under the full model is - 1891.11, 
when the effects of the environment and G X E are eliminated from the model, support 
only increases by 2.08 units for 2 df. By contrast, all models in which the main effect 
of the gene is excluded are far less well supported, typically by over 50 units. 

The same trend is found in all cases. The original model is recovered with great 
reliability for the parameter values assumed in the simulations. Some apparent 
anomalies can be explained. For example, in the second data set, for which only 
environmental effects are responsible for the observed trait, we note that the model 
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TABLE 11. Results of Fitting Models for Genetic, Environmental, and G x E Interaction to Seven 
Simulated Data Sets 

Parameters 

Dataset Model Pa m da g m  gd  -L 

Given 0.3 
1 0.269 
2 0” 
3 lb 
4 0.272 
5 0.427 
6 0.010 
7 0.299 

Given 0.3 
1 0.485 
2 0” 
3 lb 
4 0.440 
5 lb 
6 0.226 
7 0.964 

Given 0.3 
1 0.489 
2 0” 
3 0.280 
4 0.529 
5 0.281 
6 0.261 
7 0.264 

Given 0.3 
1 0.370 
2 la 
3 lb 
4 0.283 
5 0.983 
6 Oh 
7 0.610 

Given 0.3 
1 0.475 
2 lh 
3 0.324 
4 0.057 
5 0.308 
6 0.149 
7 0.289 

1 0.486 

3 0.777 
4 0.585 
5 0.776 
6 0.263 
7 0.261 

Given 0.3 

2 l b  

0. 
0.206 

-0.618 
-0.618 

0.189 
-0.545 
-0.631 
-0.066 

0. 
0.023 
0.045 
0.045 
0.045 

-0.549 
0.045 

-3.647 
0. 
0.052 
0.045 
0.046 
0.045 
0.067 
0.046 
0.067 
0. 

-0.187 
-0.595 
-0.595 
-0.008 
- 10. 
-0.000b 
-1.151 

-0.501 
-0.494 
-0.583 

0. 

2.830 
-0.026 
-0.626 

0.056 
0. 
0.069 
0.063 
0.064 
0.063 
0.235 
0.066 

-0.141 

2.0 
2.109 
0” 
0“ 
2.104 
2.047 
0” 
2.162 
0. 

-0.OoO 
0“ 
0” 
0.000 
0.594 
0” 
3.762 
0. 
0.000 
0” 
0“ 

-0.005 
0.054 
Oa 
0.049 
2.0 
0.961 
0“ 
0“ 
1.566 
9.475 
Oa 
1.627 
2.0 
1.213 
0” 
0” 
3.666 
2.482 
0“ 
2.402 
0. 

-0.000 
0” 
Oa 

-0.OOO 
-0.345 

0“ 
-0.324 

0. 
0” 
0.021 
0“ 
0.029 
Oa 
9.985 
0.162 
2.0 
0” 
2.023 
0“ 
2.023 
0” 
2.023 

10.000~ 
0. 
0” 

0” 
-0.498 

Oa 
0.080 
0.069 
2.0 
0” 
1.622 
0“ 
1.935 
0” 
1.641 
2.059 
0. 
0” 

-0.361 
0“ 

0” 
1.068 
0.089 
2.0 
0” 
0.705 
0” 
0.705 
0” 
2.177 
2.211 

-0.498 

-0.490 

0. 
0” 
0” 
0.021 
0“ 
0.503 
9.997 
0.513 
0. 
0“ 
0“ 
2.023 
0” 
2.023 
0.000 

- 8.052 
2.0 
0” 
0” 
1.610 
0” 
1.616 
1.637 
1.638 
0. 
0” 
0” 
1.622 
0” 
1.682 
0.019 

-0.312 
2.0 
0” 
0” 
1.330 
0” 
2.438 
2.107 
2.373 
2.0 
oa 
0“ 
1.729 
Oa 
1.735 
2.098 
2.132 

- 

1893.19 
1942.8 1 
1942.8 1 
1893.04 
1891.99 
1942.32 
1891.11 

2079.25 
1390.30 
1390.30 
1390.30 
1390.30 
1390.30 
1389.03 

2078.43 
1993.59 
1973.26 
1993.59 
1973.22 
1973.23 
1973.20 

20 12.34 
1495.60 
1495.60 
1481.84 
1493.2 1 
1495.60 
1481.77 

1981.15 
1950.39 
1933.43 
1928.78 
1876.81 
1928.66 
1876.69 

2077.64 
1928.6 1 
1913.53 
1928.6 1 
19 12.05 
1909.58 
1908.17 

- 

- 

- 

- 

- 

(continued) 
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TABLE 11. Results of Fitting Models for Genetic Environmental, and G X E Interaction to Seven 
Simulated Data Sets (continued) 

Data set Model 

7 Given 
1 
2 
3 
4 
5 
6 
7 

__ 
Pa 

0.3 
0.122 
Ib  
0.848 
0.815 
0.714 
0.119 
0.273 

Parameters 

m da g m  
0. 2.0 2.0 
0.685 2.009 Oa 

-0.834 Oa 0.784 
-0.869 0" Oa 

-10 .000b 9.943 1.271 
-2.101 2.382 0" 
-0.939 Oa 4.984 

0.098 2.003 2.112 

gd 

2.0 
Oa 
Oa 
1.294 
Oa 
2.100 
4.547 
2.049 

-L 
- 

1851.23 
17 15.43 
1710.01 
1663.21 
1641.90 
1694.77 
1639.35 

aParameter fixed ex hypothesi 
bParameter on boundary. 

that assumes only G X E (instead of environmental effects) gives an identical likelihood 
to the environmental model but that the gene frequency becomes fixed at the upper 
bound of unity, making the model equivalent to the pure environmental model. The 
absence of polymorphism for sensitivity to the environment corresponds to the 
conventional environmental model. Gene frequencies carry no information in cases 
where the additive genetic effect is close to zero. 

The recovery of the true parameters is easiest in the first three data sets in which 
the main effects on liability are assumed to operate one at a time. In the fourth and 
fifth data sets, which reflect a gene of additive effect either with environmental effects 
(Set 4) or GXE (Set 5 )  the true causes of inheritance are identified with these large 
samples without difficulty. In the sixth data set, for which environmental effects and 
G x E  are present without an average additive deviation, the "correct" model is only 
about 3 units better supported than are models in which the environmental effect is 
deleted or replaced by a (nonsignificant) additive average genetic effect. Although 
such a difference is significant in samples of this size, the power of the test is likely 
to be low in smaller studies. Similar conclusions follow from the last data set. 
Although the full model is the best supported and the parameter estimates are very 
close to those assumed in simulating the data, we find that the model that sets to zero 
the midhomozygous regression on the environment is only likely to be significantly 
worse in samples of comparable magnitude to those we have employed. 

Examination of the covariances and standard errors given in Table I1 reveals 
that the standard errors of the parameter estimates are acceptably small, given these 
sample sizes, and confirm, for the case of the most complex model, that the estimated 
values of the parameters come acceptably close to those provided as population values 
to the simulation program. Thus, in this case, the parameter estimates are not 
seriously biased when the right model is fitted. This may not be true in general for 
more extreme parameter values, for example, for very small gene frequencies. The 
large correlations between some parameters may detract from the power of the design 
for resolving G x E in some circumstances. 

By contrast, when complex effects are ignored, serious biases may occur in 
parameter estimates. For example, if the data sets generated are subjected to analyses 
that ignore the effects of environment and genotype X environment interaction, errors 
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TABLE 111. The Inverse of the Matrix of Information Realized at the ML Parameter Values for a 
Simulated Data Set Involviag Genetic, Environmental, and G X E Effects* 

Parameter 

Pa  
m 
da 
grn 
gda 
Estimate 
se 

Pa 

0.00142 - 

-0.867 
-0.289 
-0.778 
-0.417 

0.213 
0.038 

m da 

-0.00767 -0.00208 
0.05508 0.027 1 7 
0.606 0.03653 
0.843 0.434 
0.556 0.435 
0.098 2.003 
0.235 0.191 

gm 

-0.00907 
0.06 1 20 
0.02565 
0.09562 
0.832 
2.112 
0.309 

gda 

- 0.004 19 
0.03484 
0 -022 16 
0.06865 
0.071 19 
2.049 
0.267 

*Variances on diagonal, covariances in upper triangle, correlations between estimates in lower triangle. 

of inference can occur. The first model assumes that variation in liability is due only 
to a single gene. The heteroygote and midhomozygote correspond to the “zero” point 
on the scale of liability, given the parameter values assumed in simulating the data. 
The heterozygote thus has, in an average environment, a 50% chance of manifesting 
the affected phenotype. Since the two homozygotes deviate by 2 liability units in 
either direction, the probability that the aa homozygote will be affected is 0.1192 and 
the AA homozygote has a penetrance of 0.8808. The simple additive genetic model, 
therefore, allows for purely stochastic error in the translation of liability into risk. By 
altering the additive and dominance deviations any set of “penetrance” values may 
be captured by the logistic model in its simplest form. However, the general model 
allows for more complex factors to affect penetrance, including environmental effects 
and G x E .  It is instructive to see how such effects contribute to biases when models 
are fitted that assume they are absent. If we simply consider the seven data sets 
described here and examine what happens when we fit just the conventional single- 
gene model, we find that the first data set indeed is consistent with the single-gene 
model, with due allowance for stochastic effects between liability and risk, and that 
the parameter estimates are close to those used to simulate the data. 

In the second and third data sets there is also no problem, because the effects of 
environment and G x E interaction eradicate all evidence of an average effect of 
genotype on liability. In these cases, even when the additive genetic effect is allowed 
to take its own value, it rapidly approaches zero. The same is true for the sixth data 
set, in which the environment and genetic sensitivity alone contribute to liability. 
There is no chance that a major gene will be wrongly identified in these cases 
because, when the environment is random as we have assumed, there is no family 
aggregation of the phenotype even when there is genetic sensitivity to the environ- 
ment. It should be noted, however, that the absence of an average effect of the gene 
in the sixth data set does not mean that genetic studies are uninformative. Rather, 
classical genetic studies would miss the effects that are expressed only in the right 
environment. 

The problems of bias and mistaken inference become acute when the effects of 
genes operate against a background of environmental effects or G x E  that cannot 
simply be written off as differences in “penetrance” between the three genotypes. In 
this respect data sets 4, 5 ,  and 7 are especially instructive. Fitting the simplest genetic 
model to data set 4 gives a gene frequency estimate of 0.37 compared with the true 
value of 0.3, and an additive genetic deviation (average effect) of 0.961 compared 
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with the true value of 2.0. The reason for the difference in average effect lies in the 
fact that the model is forced to assign all the effects of the environmental variable to 
differences in penetrance. With the fifth data set, which reflects the effects of the 
same gene on average liability and sensitivity to the environment, we find that the 
estimated gene frequency is seriously biased and, if we ignored GXE interaction, our 
interpretation of the data would be seriously impoverished. In the last data set, in 
which there are genetic, environmental, and G x E interaction effects, misspecification 
of the model leads to wild variation in the estimates of the gene frequency. If the 
conventional model is assumed, the estimated gene frequency is 0.122 (Set 1). If 
environmental effects are ignored but G X E specified in addition to the average effects 
(Set 5 )  the gene frequency estimate is 0.714. Allowing for environmental effects but 
ignoring G X E gives an estimate of 0.119 (Set 6). 

DISCUSSION 

These simulations are not exhaustive. Several important questions remain un- 
answered but, nevertheless, are well within the scope of the model and method 
described here. 

We need further studies to determine whether or not: 1) the inclusion of 
heterozygous effects in the model (“dominance or recessivity ”) detract from the 
resolution of G X E from other genetic effects; 2) the average effects of one gene and 
the effects of a second on sensitivity can be resolved from the effects of one gene on 
both average liability and sensitivity; 3) the power of the method is affected by 
correlations between the environments of family members; and 4) the power of the 
method is affected by the problems of ascertainment associated with less frequent 
traits. 

These issues notwithstanding, however, the simulations begin to investigate the 
extent to which segregation analysis may resolve more subtle effects than those 
considered in most treatments so far. 

Recent criticism of methods commonly used in genetic epidemiology [eg, Karlin 
et al, 19811 has focused on assumptions commonly made in analyzing human differ- 
ences. One such criticism is that the effects of genotype x environment interaction 
are ignored. Unfortunately, the criticism may be given undue credence in the absence 
of a viable approach for the statistical investigation of G X E and any firm understand- 
ing of the biological and clinical significance of such interactions. Though it is true 
that many human geneticists have dismissed interactions as being of secondary 
importance, Karlin et a1 do not offer any clear guidelines for the analysis or under- 
standing of G X E interaction. The model and simulations reported in this study show 
how the effects of environmental heterogeneity and G X E interaction can be examined 
without altering the basic principles of model-fitting, which have given such a strong 
direction to quantitative genetic research in man and other species. Though further 
investigation is certainly needed, our initial simulations suggest that significant genetic 
information may be missed in analyses that ignore G x E  when it is present. In 
particular, estimates of the gene frequency may be biased. With the growing aware- 
ness in epidemiology that only certain genotypes may be especially sensitive to 
particular environments, the basic model described here may have some value in 
conceptualizing and analyzing such interactions of genes and environment. 
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