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Biometrical Genetics

How do genes contribute to statistics 
(e.g. means, variances, skewness, 

kurtosis)?
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UK: Chapman Hall.
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Families. Ch 3.  Dordrecht: Kluwer Academic Publisher. (See revised ed. Neale and 
Maes, pdf on VIPBG website)



Requires synthesis of two intellectual 
traditions…..







“Mendelian” Crosses
with Quantitative Traits



Mendelian Basis of Continuous Variation?
Experimental Breeding Experiments



Ronald Fisher (1890-1962)

1918:  The Correlation Between Relatives on the Supposition of Mendelian Inheritance
1921: Introduced concept of “likelihood”

1930:  The Genetical Theory of Natural Selection
1935:  The Design of Experiments



Fisher (1918): Basic Ideas

• Continuous variation caused by lots of genes 
(“polygenic inheritance”)

• Each gene followed Mendel’s laws

• Environment smoothed out genetic differences

• Genes may show different degrees of “dominance”

• Genes may have many forms (“mutliple alleles”)

• Mating may not be random (“assortative mating”)

• Showed that correlations obtained by e.g. Pearson 
and Lee were explained well by polygenic inheritance
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“Biometrical Genetics”

• Parsimonious specification of genetic influences in 
terms of effects and frequencies of individual genes  
(“model-building”)

• “Sensitivity to the environment” (GxE) is a phenotype 
like any other and analyzed with similar models

• rGE modeled by specifying genetic effects on 
environment e.g. effects of sibling and maternal 
genotype on home environment

• Systematic approach to choosing between different 
interpretations of the same data (“model-fitting”) e.g. 
effects of maternal genotype



Biometrical Genetics

• Worked out on experimental organisms

• Experimental manipulation of genotype –
inbreeding and crossing

• Experimental control of environment –
measurement and randomization

• Large, powerful, randomized genetic studies 
reveal subtleties of genetic systems – dominance, 
epistasis, linkage, GxE, environmental effects of 
genes, number of genes, genetic correlation, 
development…..



Model organisms



SCALE!!!!!











A “Good” Model

• Fits the data
• Explains a lot of different data in terms of relatively few 

theoretical constructs
• Predicts and embraces new data without substantial 

modification or post-hoc explanation (“fudging”)

See e.g.  Lakatos I, Musgrave A (1970, Eds.) “Criticism and 
the Growth of Knowledge” Cambridge: Cambridge U.P.
Also:       Urbach, P (1974 ) Progress and degeneration in the 
IQ debate. Brit. J. Phil. Sci. 25:235-259.



“Sociologists are like foootbol
team:

zey play ze game, lose, zen shout

‘goals don’t count’”

Imre Lakatos, c. 1972. 



Theory Model Data

Model-building Study design
Data collection

Model-Fitting

Fits?Revise Publish
estimates

YESNO

“The Logic of Scientific Discovery”



Assumptions (Initially)

• Autosomal inheritance

• No epistasis

• No sex-dependent gene expression

• Random mating

• Genes of relatives (e.g. mothers) do not affect 
phenotype directly

• No GxE (see Mather and Jinks for GxE)

• No G-E correlation

• Simple model for environment

• Effects of selection/mutation too small to affect result.



Basic Model for Effects of a Single Gene on a Quantitative Trait

Mid-homozygote

Homozygous effect

Dominance
deviation

Increasing Decreasing 



Derivation of Genotype Frequencies
“Hardy-Weinberg Equilibrium”



Genotype Frequencies
in Randomly Mating Population

“Hardy-Weinberg Equilibrium”
frequencies



What is the mean expected to be?

Note: Effects measured from mid-homozygote (“m”)



With equal allele frequencies (easier!) put u=v= ½ 

And the mean is expected to be….



How does A/a affect the variance?



Equal allele frequencies u=v= ½ 

Additive component

Dominance component



Q: What happens with lots of genes?

A: The effects of the individual genes add up.

IF… the genes are independent 
(“linkage equilibrium”)

Requires random mating, complete admixture



So:

Additive Genetic Variance Dominance Genetic Variance



Additive and Dominance Components:
Unequal allele frequencies.

Can show (see e.g. Mather, 1949)

VA VD

Q:  What happens when u=v?



Bottom line:

With unequal allele frequencies can 
still separate VA and VD but their 

definitions change
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What about the environment???



Two main sources of environment

• Individual experiences – not shared with 
siblings:  

VE

• “Family” environment – shared with siblings:

VC



So: the TOTAL variance
(Genes + Environment) is:

VP = VA+VD+VE+VC



“Heritability”

“Broad” heritability: 
h2

b=(VA+VD)/VP

Proportion of total variance explained 
by genes 

“Narrow” heritability: 
h2

n=VA/VP

Proportion of total variance explained 
by additive (homozygous) genetic 

effects (predicts response to selection 
– Fisher, 1930) 



So far: have looked at effects on 
total variance…

How do VA and VD affect the 
correlations between relatives?



Contribution of genes to 
correlation between relatives (r):

r = C/VP

Where C=Covariance between 
relative pairs

“C”  depends of kind of relationship 
(sibling, parent-offspring, MZ twin 

etc)

But can also be expressed in terms of 
VA and VD



Approach
1. For a given relationship, work out expected frequencies of

each type of pair (AA, aa etc.)
2. Write phenotypes of each type of relative
3. Compute cross-products of phenotypes of members of

type of pair
4. Each cross-product by the corresponding frequency
5. Add the result of “4” across all pair types

The answer is the covariance you want (if you have done
the algebra right!)



For equal allele frequencies….





Contribution of one gene to covariance:



Notice that terms in d2 and h2 are 
separated – but their coefficients 

change as a function of relationship



Can add over all genes to get 
total contribution to covariance

Cov(MZ) = VA + VD

Cov(DZ) = ½VA +  ¼VD

Cov(U)= 0



Can use the same approach for other 
relationships



Relationship

Contribution to Covariance

VA VD

Total variance 1 1

Sibling (DZ twin) ½ ¼ 

MZ twin 1 1

Half-sibling ¼ 0

First cousin 1/8 0

Parent-offspring ½ 0

Avuncular ¼ 0

Grand-parent 1/8 0

Unrelated 0 0

Contributions of VA  and VD to covariances
between relatives (ignoring environment)



Adding effects of Environment

VP = VA + VD + VE + VC

Cov(MZ) = VA + VD + VC

Cov(DZ) = ½VA +  ¼VD +  VC

Cov(UT) =    VC

Etc.



To get the expected correlations

Just divided expectations by expected 
total variance

Results are proportional contributions 
of VA, VD etc. to total variance



Practice (paper and pencil)

• Set “d” = 1

• Pick an “h”  (e.g. h=-1.0,-0.5,0,0.5,1.0)

• Pick a frequency for the increasing (A) allele 
(e.g. u=0.25, 0.5, 0.75)

• Work out m, VA and VD

• Tabulate on board



m = (u-v)d + 2uvh

VA=2uv[d + (v-u)h]2

VD=4u2v2h2

Substitute in algebra:
Get your own parameter values



d<-1     #  Homozygous effect ("additive")
h<-1      #  Heterozygous deviation ("dominance")
u<-seq(0.01,0.99,by=.01)    # Vector of frequencies of increasing allele
v<-1-u                      # Frequencies of decreasing allele
VA<-2*u*v*(d+(v-u)*h)^2   # Additive genetic variance
VD<-4*u*u*v*v*h*h         # Dominance genetic variance
VP<-VA+VD                 # Total (genetic) variance
#  Plot results
plot(u,VP,type="l",
main="VA (red) and VD (green) as function of increasing allele frequency",
xlab="Frequency of increasing allele",ylab="Variance component")
# Add line for VA
lines(u,VA,col="red")
# Add line for VD
lines(u,VD,col="green")

Plotting Effect of Allele frequency on Genetic 
Variance Components (“R”)
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