Extending Simplex model to model $\mathrm{Ph} \rightarrow \mathrm{E}$ transmission

JANNEKE m. de kort \& C.V. DolAn

Contact: i.m.de.kort@vu.nl, C.v.dolan@vu.nl

Nature versus Nurture Role GEcov in Psychopathology

ADHD diagnosis

GE covariance: Genotypic control over environmental exposures
\square Evocative: Behavior of individual evokes reaction from environment consistent with genotype \square Do people with ADHD evoke different behavior in others?
>ADHD child: Intrudes on games more often
>ADHD adolescent: Has more frequent school disciplinary actions
>ADHD adult: more often has work conflicts
\square Active: Individuals actively seek out environments consistent with their phenotype (e.g. Niche Picking)Do people diagnosed with ADHD seek more risky environments
>ADHD child: climb more trees
>ADHD adolescent : does more binge drinking and has casual sex more often
>ADHD adults: has more driving violations, uses more drugs

Translate path diagram into matrices ACE SIMPLEX Ph->E SIMPLEX
Competing models

OBJECTIVE: model the observed covariance matrix

```
S = 4 observed variables for twin 1, 4 for twin 2, thus 8 x 8
            twin 1
t=1 t=2 t=3 t=4 t=1 t=2 t=3 t=4
t=1 t=2 t=3 t=4 t=1 t=2 t=3 t=4
t=1 t=2 t=3 t=4 t=1 t=2 t=3 t=4
twin 2
varP11
covP11P12 varP12
covP11P13 covP12P13 varP13
covP11P14 covP12P14 covP13P14 varP14
covP11P21 covP12P21 covP13P21 covP14P
covP11P22 covP12P22 covP13P2
covP11P23 covP12P23 covP13P23
varP23
covP11P24 covP12P24 covP13P24
covP23P24 varP24
```


Matrices used in Model

$$
\Sigma=\Lambda(\mathrm{I}-\mathrm{B})-\Psi(\mathrm{I}-\mathrm{B})-\mathrm{t} \Lambda \mathrm{t}+\Theta
$$

ne $=$ number of latent variables in the model
ny = number of observed variables
$\Sigma=$ Sigma $=$ Expected covariance matrix observed variables y
= ny x ny
Λ = Lambda = Factor Loading Matrix

$$
=n y \times n e
$$

$B=$ Beta $\quad=\quad$ Matrix with regression coefficients between latent variables

$$
=\text { ne } \times \text { ne }
$$

$\theta=$ Theta $=$ Matrix with residuals
= ny x ny
$\Psi=$ Psy $\quad=\quad$ Matrix with variances and covariance between latent
variables =nexne

Dimensions of matrices for 4 time points in normal simplex specification

```
\sumMZ = ^* solve(I- B) * \PsiMZ * t(solve(I-B)) * t(\Lambda) + ӨMZ
\SigmaDZ = ^ * solve(I- B) * \PsiDZ * t(solve(I-B)) * t(\Lambda) + ӨDZ
```

- Twins = 2
-Time points = 4
-ny = 4 time points for 2 twins $=8$
-ne = latent variables A, C, E at each timepoint for each twin: 3

$\Sigma=$ Sigma	=	8×8		= ny n ny		Does not allow us
$\Lambda=$ Lambda	=	8×24		$=n y \times$ ne		
B = Beta		$=$	24×24		$=$ ne \times ne	
$\Psi=$ Psy	=	24×24		= ne x ne		

PRUBLEIVI:

Regression from Observed to Latent variable

Normally

PSY matrix only has latent variables.
In case of twin modeling: the variables A, C, and E $\rightarrow 24 \times 24$

Problem

Impossible to regress from observed to latent
For that we need all variables in Ψ, thus P, A, C, and E.
Solution: Change dimensions of matrices
Beam observed variables into Ψ space

Dimensions of matrices for 4 time points in our simplex specification

```
\sumMZ = ^* solve(I- B) * \PsiMZ * t(solve(I-B)) * t(\Lambda) + ӨMZ
\SigmaDZ = ^ * solve(I- B) * \PsiDZ * t(solve(I-B)) * t(\Lambda) + ӨDZ
```

-Twins = 2
-Time points $=4$
-ny $=4$ time points for 2 twins $=8$
-ne = latent variables A, C, E plus observed P at each time point for each twin: $4 x$ $4 \times 2=32$
$\Sigma=$ Sigma $=8 \times 8 \quad=n y \times n y$
$\Lambda=$ Lambda $=8 \times 32=$ ny \times ne
$B=$ Beta $\quad=\quad 32 \times 32=$ ne \times ne
$\Psi=$ Psy
$=\quad 32 \times 32$
$=n e x$ ne

Specification SIMPLEX in OpenMx

General code

PRACTICAL
 Replicate findings in following article

Conor V. Dolan ${ }^{1, *}$, Janneke M. de Kort ${ }^{1,}$ Kees-Jan Kan ${ }^{1,2}$, Catharina E. M. van Beijsterveldt ${ }^{1,3}$, Meike Bartels ${ }^{1,3,4}$ and Dorret I. Boomsma ${ }^{1,3,4}$

${ }_{3}$ Department of Methods, VU University, van der Beechorststraat 1, 1081 BT , Amsterdam, the Netherlands
${ }^{4}$ Neuroscience Campus Amsterdam (NCA), de Beelelaan 1085, 1081 HV, Amsterdam, the Netherlands

* Author to whom correspondence should be addressed; E-Mail: c.v.dolan@vu.nl;

Tel.: +31-20-5986332; Fax: $+31-20-5988832$.
Received: / Accepted: / Published:
 it as phenotype to environment ($\mathrm{Ph}->\mathrm{E}$) transmission in twin data. The model fits as well as the standard genetic simplex nodel, which assumes uncorrelated genetic and environmental infuences. We use the results to explore lend credence to the role of GE-sey in the Flynn effect.
Keywords: genotype-environment covariance; Flynn effect; Dickens and Flynn model; longitudinal genetic modeling.

Model fitting: Ph -> E SIMPLEX MODEL

DATA: Full scale Intelligence In MZ and DZ twins Measured 4 time points NTR data

DROP a time specific

FIT 1

Final model

A1

E1

A2

E2

