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Factor analysis Part I:
The linear factor model

as a statistical (regression) model - formal representation

as a causal — psychometric - model (vs data reduction)

- what is a common factor substantively?

- implication in terms of data summary and causal modeling

- why is the phenotypic factor model relevant to genetic modeling?

- what can we learn about the phenotypic common factors from twin
data?



If you understand linear regression,
you understand a key ingredient of the linear factor model
(as a statistical model).

If you understand logistic linear regression,
you understand a key ingredient of the ordinal factor model
(as a statistical model).
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Path diagram regression mode
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regression of Y on X”:

The model for the Y, = b0 + b1*X. + e,

The implied model for the mean:
mean(Y) = b0 + b1*mean(X)
mean(Y) = b0 (if mean(x) = 0)

The implied model for the covariance matrix:
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Distributional assumption in linear regression concerns
the y's given (conditional on) a fixed value of x (xe).
Two Important aspects: Linearity, Homoskasticity




T1 T2

In absence of any interaction, this model is homoskedastic too!

BTW: if you understand heteroskedasticity you understand an important
conceptualization of GxE interaction.



Single common factor model:
A set of linear regression equations
A
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The implied model for the covariance matrix:
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But what is the point if the common factor
(the independent variable, 1) is not
observed?



Single common factor model:
A set of linear regression equations
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A set of linear regression coefficients expressed
as a single matrix equation: using matrix algebra

Yo—tL=Am+&, -
Yio =1, = An + &,
Yis =3 = A7, + &3,
Yia —ty = A + &4

~  Yi—t=An; tg

Matrix algebra is
1) Notationally Efficient
2) Basis of Multivariate StatistiCs (useful to know!)
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— ﬂini +&,, | nynumber of variables
ne number of common factors
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V., = ﬂini +&,, | nynumber of variables
ne number of common factors
Yio = 410 + &y,

Yis = 437 + Eis,

Yia = A0 T Eiy-

” yi = An; + g Centered t = 0!

nyx1l nyxne nexl nyxl

= Ely*y = E[(An; + &)(An; + &)1 = (1)
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E[AN; A+ Angl+ gNAT + g8 = (3)
E[AMN, NitA 1+ E[An&t]+ E[gntA] + E[g€g!]=  (4)

AEM; NIA+ AEME 1+ E[gMIA + E[gg!]=  (5)
g, = AEM; MIA+ E[gE!] = (6)

14



V., = 2’177i +&,, | nynumber of variables
ne number of common factors
Yio = A1 + &, -
s yi = An; + &

Yis = A7 + &3, SN T
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E[T]I nit] — ‘P and E[Si Sit] - @

You can represent this model in OpenMx using matrices
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So what? What is the use?



Depression items

| feel lonely

| feel confused or in a fog

| cry a lot

| worry about my future.

| am afraid | might think or do something bad

| feel that | have to be perfect

| feel that no one loves me

| feel worthless or inferior

| am nervous or tense

| lack self confidence | am too fearful or anxious
| feel too guilty

| am self-conscious or easily embarrassed

| am unhappy, sad or depressed

| worry a lot

| am too concerned about how | look

| worry about my relations with the opposite sex

Are the data consistent
with the presence of a
latent construct that
underlies the observed
variables (items) and
that accounts for the
Inter-correlations
between variables?




The use is to test the hypothesis that the linear
relations among my 4 indicators of neuroticism, as
expressed in the correlation or covariance matrix, are
consistent with the presence of a single common
influence, the latent variable “neuroticism”.
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#
datf=read.table('rdataf')
colnames (datf)=c('sex"',
lanI |n2|’ vn3|, 'H4', 'H5', 'H6',

lelV, '62', '83', '64', '65', '66',
'ol', 'o2', 'o3', 'od', '05', 'o6',
lalV, '62', va3|’ va4v, |a51, 'a6',
'cl', 'c2', 'c3', 'cd', 'c5', 'c6')

datf n4=datf[,4:7]

Snd=cov (datf n4)

round (Sn4, 3)

fal=factanal (covmat=Sn4,n.obs=361, factors=1)
#

library (OpenMx)

datf n4=as.data.frame (datf n4)

ny=4

selvars=colnames (datf n4)

#

Rn4=nmxMatrix (type="'Stand',nrow=ny,ncol=ny, free=TRUE,value=.5,

lbound=-.9,ubound=.9, name="'corn4d"')

Sdsn4=mxMatrix (type='Diag', nrow=ny,ncol=ny, free=TRUE,value=5,name="'sdsn4")
Meannd=mxMatrix (type='Full',nrow=1,ncol=ny, free=TRUE,value=20,name="men4")

MkS=mxAlgebra (expression=sdsnd%*%cornd4$*%sdsn4,name="'Ssatnd")
modelpl=mxModel ('partl',Rn4, Sdsn4, Meann4,MkS)

#

N4modelO=mxModel ("N4sat",
mxData ( observed=datf, type="raw"), # the data
mxFIMLObjective ( covariance="partl.Ssatn4", means="partl.mend",
dimnames=selvars) # the fit function

)
Modell <- mxModel ("modell", modelpl, N4modelO,
mxAlgebra (Ndsat.objective, name="minus2loglikelihood"),
mxAlgebraObjective ("minus2loglikelihood"))

# fit the model

Modell o <- mxRun (Modell)

#

Ly=mxMatrix (type='Full',nrow=ny,ncol=1, free=TRUE,value=1,name="Ly")
Te=mxMatrix (type='Diag',nrow=ny,ncol=ny, free=TRUE, value=5, name="Te")
Ps=mxMatrix (type='Symm',nrow=1,ncol=1, free=FALSE,value=1,name="'Ps"')

Meann4=mxMatrix (type='Full',nrow=1,ncol=ny, free=TRUE,value=20,name="men4")

MkS=mxAlgebra (expression=Ly%$*%Ps%*%t (Ly) +Te,name="'S1fn4")
#
modelpl=mxModel ('partl',Ly, Te, Ps, Meann4, MkS)
#
N4model2=mxModel ("N4f1",
mxData ( observed=datf, type="raw"), # the data
mxFIMLObjective ( covariance="partl.S1fn4", means="partl.men4",
dimnames=selvars) # the fit function
# )
Model2 <- mxModel ("modell", modelpl, N4model2,
mxAlgebra (N4fl.objective, name="minus2loglikelihood"),
mxAlgebraObjective ("minus2loglikelihood"))
# fit the model
Model2 o <- mxRun (Model2)
MxCompare (Modell o,Model2 o)

The chi2 goodness of fit test (y2=1.36, df=2) suggest
that the model fits well. The observed covariance
structure is consistent with my theory.

Does this prove the presence of the latent variable?
necessary but not sufficient....

Why df=27?

Count the observed statistics (S), and the estimated
parameters (P): df = S-P.



A technical aspect of the common factor model: scaling.
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The mean and variance of the common factor? The common factor is latent!

Scale by setting the mean to zero. (un = 0)
Scale by fixing variance to “sensible value” |

Scale by making it dependent on an indicator by fixing a factor loading to 1 (A,=1)
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But we know about scaling, because this model uses the same scaling
(var(E)=var(C)=var(A) = 1, mean(A)=mean(C)=mean(E)=0)

T1 T2




A technical aspect of the common factor model: scaling.
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A technical aspect of the common factor model: scaling.
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Or making it dependent on an indicator by fixing a factor loading to 1 (A,=1)
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A substantive aspect of the common factor
model: interpretation (you bring to the model!)

. @ Strong realistic view of the latent variable N:
w2/ . 24
N is a real, causal, unidimensional source of individual
» » I y differences. It exists beyond the realm of the indicator
1 1 1 1 set, and is not dependent on any given indicator set.
éD é é Causal - part I: The position of N determines causally the
response to the items. N is the only direct cause of
systematic variation in the items. l.e., if you condition on

Reflective indicators: N, then the correlations among the items are zero: local

They reflect the causal action independence.
of the latent variable N




Causal - part I: The position of N determines causally the
response to the items. N is the only direct cause of

. systematic variation in the items. l.e., if you condition on
oL\ X N, then the correlations among the items are zero: local
independence (as it is called in psychometrics).
nl n2 n3 n

4

Reflective indicators:
They reflect the causal action
of the latent variable N



A substantive aspect of the common factor

Q model: interpretation (you bring to the model).

Causal part Il: The relationship between any
external variable (latent or observed) and the

. : indicators is mediated by the common factor N:
m/ k\\ essence of “measurement invariance”.

If you condition on N, then the correlation

nl n2 n3 n4
I I | I between the external variables and the
@ indicators is zero.




Direct relationships are supposed to be absent.
(these destroy unidimensionality....)

Twin design affords an omnibus test of the
mediatory role of N
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Common pathway model
Psychometric model

Phenotypic unidimensionality

N mediates all external sources of
individual differences

Independent pathway model
Biometric model

Phenotypic multidimensionality.....

What about N in the phenotypic analysis?
The phenotypic model was incorrect!



A different interpretation: factor analysis as a data summary
Just a way to reduce multiple phenotypes into a single index.

(Alternative statistical technique used to this end: principal component
analysis; PCA)

General
health

Life style Cooper Blood Life style
diet Test score | pressure smoke

Formative variable. No causal interpretation: General Health does not cause
smoking! Common pathway model is not going to fit the data!



When to use a sum score?

Genetic
variant

General
health

General
health

Life style Cooper Blood Life style
diet Test score | pressure smoke

Sum these and analyze the phenotype “General Health”




Back to the common factor model !

Multiple common factors, CFA vs. EFA with rotation

EFA (always more than one common factor).

Aim: determine dimensionality and derive meaning of factors from loadings

Exploratory approach: How many latent variables? What is the pattern of factor
loadings? Low on prior theory, but still involves choices.

How many latent variables: Screeplot, Eigenvalue > 1 rule, Goodness of fit measures (y?,
RMSEA, NNFI), info criteria (BIC, AIC).

Pattern of factor loadings: Type of rotation (varimax, oblimin, many choices!).



EFA (two) factor model as it is fitted in standard programs




Y1
Yo
Y3
Y4
Ys
Ye

_ ' 2 2 2 2 2 2
O = dlag(csl O%p O3 Oy O7gs c786)

= A My
= Ay My
= Ay My
= Ay My
= Mgy My
= Mg My

Ay My
Ay My
A3y My
Mgy Mo
Asy M,
Mgy Mo

+ + + + + +

[N, Myl

11

> >

21

51

> >

61

12

> >

22

52

> S

62

+ + 4+ + + +

Zy =
(ny x ny)

Yi = An; + g

/

/N T

nyx1l nyxne nexl

A

(ny x ne)(ne x ne)(ne x ny) + (ny x ny)

b4

At

ny x 1

+ ©®



yi = Ay Myt Ay + g

Yo = Aoy My + Ay My + &y

Y3 = A3 My + Ay My + &5 _ Meaning of the common factors?
Yo = Ay My + Ay My + &y Based on these factor loadings? No!
Vs = Agy My + Asy Ny + &g

Yo = Aot My + Agy Ny + &

—

AT® A is diagonal (identifying constraint)
Associated with the identifying constraint: unique values of A, but rotatable.

AM=A*, MM"=1,sothatX, =AMM"A' + @=AIA"+ O



AM = A*

M: Rotation matrix is calculated by maximizing a rotation
criterion. These minimize of maximize loadings to improve
interpretability.

Orthogonal rotation leaves common factors uncorrelated
Oblique rotation allows for correlation.

Rotation is just a transformation of results (no testing!).
E.g., test whether factor correlations are O is not possible.



eigenvalues

BIG 5 data 361 females students

Screeplot locate the “elbow joint” (5)
Eigenvalues > 1 rule (6?)

5 EFA factor model: Chi2(295) = 822.0



eigenvalues

WAIS-III
1868 US whites

Screeplot locate the “elbow joint” (1)
Eigenvalues > 1 rule (3)

3 EFA factor model: Chi2(42) =111.9



rep(0, ny)

S =7 ] T~
2 4 6 8 10 12
1:ny
Unrotated

Chi2(42) = 111.9

rep(0, ny)

1.0

-0.5 0.0 0.5

-1.0

verbal Non-verbal

1:ny

Promax rotated (oblique)
Chi2(42) =111.9




CFA (two) factor model: impose a pattern of loadings based on theory,
define the common factors based on prior knowledge.
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T, = A ¥ A+ @

(ny X ny) (ny x ne)(ne x ne)(ne x ny) + (ny x ny)

In CFA, in contrast to EFA, you can impose all kinds of
constraints on the parameters

In CFA, in constrast to EFA, you can estimate off-diagonal
elements in the cov matrix of the residuals ®



Suppose 3 indicators at 2 time points
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Suppose 3 indicators at 2 time points
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Suppose 3 indicators at 2 time points
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Suppose 3 indicators at 2 time points

r




T1

Equality constraints are nothing new!

T2




The linear common factor model: “continuous” indicators (7
point Likert scale is “continuous”)

What about ordinal or binary indicators?

Linear regression model is key ingredient in the linear factor
model

Logistic or probit regression is a key ingredient in ordinal or
discrete factor analysis.



The model for the Y, = b0 + b1*X. + e,
E[Y|X=x"] =b0 + b1*x"

Logit:
E[Z|X=x"] = Prob(Z=0|X=x") = exp(b0 + b1*x") / {1 + exp(b0 + b1*x°)}

Probit:
E[Z|X=x"] = Prob(Z=0|X=x") = ®(b0 + b1*x’), ®@(.) cumulative st. normal distribution

Replace X, observed predictor, but 1, the common factor.




Do you like to go to parties? (y/n)
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The common f(actor Extraversion



