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broadly consistent with the real data results and averaged
the variance explained implied by these consistent models.
In the another interesting study by Yang et al. [2010], the
authors made use of GWAS data set on height to estimate
the total variance explained by all the SNPs on the GWAS
panel. A linear model was fit to the data and the total
variance explained was computed by a restricted maxi-
mum likelihood (REML) approach. It was shown that the
approach could be implemented by another model that
measures the genomic relationship between individuals
using genotyped SNPs.

In this study, we propose a simple analytic framework to
estimate the total variance in liability explained (Vg) by all
risk alleles in GWAS. Our approach only requires summary
statistics instead of raw data and is free of distributional
assumptions. Both binary and quantitative traits can be
handled by the proposed framework. As in the ISC study,
we work on a pruned set of markers that are approximately
independent, as this prevents inflation of the sum of Vg
by redundant association signals arising from LD. The
estimated total Vg from the pruned markers (Vpruned) will
actually be smaller than the total Vg from the entire GWAS
panel (Vgwas), due to attenuation of LD between the marker
and the causal alleles (assuming that the pruning is
adequate). Similarly, Vgwas is smaller than the total additive
genetic variance (Vall) derived from the corresponding
causal alleles that may be not be present on the GWAS
panel. In symbol, we have VprunedrVgwasrVall.

As GWAS panels are mainly designed to capture
common variants (MAF45% or 1%), it is likely that Vall

also mainly reflect the contribution of common variants.
As in the ISC study, the proposed methodology directly
estimates Vpruned, but also serves as a conservative estimator
of the variance explained by all true susceptibility variants
in a GWAS (Vgwas) or more broadly, the variance explained
by corresponding causal variants in the genome (Vall).

It is clear that many true risk variants will not be detected
in a GWAS since the power is not adequate to pick them
out. In addition, the significance threshold in GWAS is
usually set to be very stringent to guard against multiple
testing, making the detection of significant variants even
more difficult. As a result, the SNPs declared as significant
in GWAS only represent the tip of the iceberg. The proposed
approaches essentially recover the total ‘‘hidden’’ herit-
ability in GWAS. It should be noted that we only capture
the total additive variance and interactions are not
considered. Our approach is tested by simulations and
applied to quantitative and binary disease traits.

METHODS

We formulated the problem as recovering the ‘‘true’’
z-statistic (i.e. the z-statistic one would obtain if there were
no random noise; reflecting the actual effect size) from
a set of observed z-statistics. The z-statistics can then
be converted to variance explained. A straightforward
approach to obtain unbiased z-statistics without winner’s
curse is to consider the replication effect sizes alone. For
instance, in a recent study by Park et al. [2010], the authors
considered the effect sizes of the genome-wide significant
SNPs from replication studies and estimated the total
heritability explained if we can discover all loci within the
range of effect sizes observed in current GWAS. The main
drawback of this approach is that we have to discard the

contribution of the majority of variants having smaller
effect sizes. Therefore, we have considered an alternative
strategy to tackle the problem.

Essentially, our methodology is based on assessing empiri-
cally how much the observed distribution of z-statistics
differs from what is expected when all SNPs are null.
Figure 1 shows the histogram of the z-statistics of 83,088
SNPs obtained after pruning from Crohn’s disease data set.
A similar figure was shown in Efron [2009]. The blue line
represents the theoretical null distribution N(0,1). The centre
of the histogram is fitted reasonably well by the theoretical
null, but the heavy tails suggest the presence of some nonnull
SNPs that are associated with the disease. Our aim is to find
out the total variance explained by all the nonnull SNPs.

It is useful to consider the following model for our
problem. Denoting the observed z-statistic by z, we have

zjd ! Nðd; 1Þ;

where d5 0 for null variants and is nonzero (can be
positive or negative) for the truly associated variants.
Suppose d has a prior density of g(d), the marginal density
of z can be expressed by

fðzÞ ¼
Z 1

%1
fðzjdÞgðdÞdd ¼

Z 1

%1
jðz% dÞgðdÞdd;

where jðzÞ ¼ ð1=
ffiffiffiffiffiffi
2p
p
Þexpð%z2=2Þ is the standard normal

density.
Define

cðzÞ ¼ log
fðzÞ
jðzÞ

" #
:

By the properties of exponential families, Efron [2009]
showed that

Efdjzg ¼ c0ðzÞ:

As noted by Efron [2009], an equivalent formula was
established by Brown [1971]:

Efdjzg ¼ z1
f 0ðzÞ
fðzÞ

:

Fig. 1. Histogram of the z-statistics of 83,088 SNPs obtained
after pruning from the Crohn’s disease data set. The blue line
represents the theoretical null distribution N(0,1).
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broadly consistent with the real data results and averaged
the variance explained implied by these consistent models.
In the another interesting study by Yang et al. [2010], the
authors made use of GWAS data set on height to estimate
the total variance explained by all the SNPs on the GWAS
panel. A linear model was fit to the data and the total
variance explained was computed by a restricted maxi-
mum likelihood (REML) approach. It was shown that the
approach could be implemented by another model that
measures the genomic relationship between individuals
using genotyped SNPs.

In this study, we propose a simple analytic framework to
estimate the total variance in liability explained (Vg) by all
risk alleles in GWAS. Our approach only requires summary
statistics instead of raw data and is free of distributional
assumptions. Both binary and quantitative traits can be
handled by the proposed framework. As in the ISC study,
we work on a pruned set of markers that are approximately
independent, as this prevents inflation of the sum of Vg
by redundant association signals arising from LD. The
estimated total Vg from the pruned markers (Vpruned) will
actually be smaller than the total Vg from the entire GWAS
panel (Vgwas), due to attenuation of LD between the marker
and the causal alleles (assuming that the pruning is
adequate). Similarly, Vgwas is smaller than the total additive
genetic variance (Vall) derived from the corresponding
causal alleles that may be not be present on the GWAS
panel. In symbol, we have VprunedrVgwasrVall.
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As in the ISC study, the proposed methodology directly
estimates Vpruned, but also serves as a conservative estimator
of the variance explained by all true susceptibility variants
in a GWAS (Vgwas) or more broadly, the variance explained
by corresponding causal variants in the genome (Vall).

It is clear that many true risk variants will not be detected
in a GWAS since the power is not adequate to pick them
out. In addition, the significance threshold in GWAS is
usually set to be very stringent to guard against multiple
testing, making the detection of significant variants even
more difficult. As a result, the SNPs declared as significant
in GWAS only represent the tip of the iceberg. The proposed
approaches essentially recover the total ‘‘hidden’’ herit-
ability in GWAS. It should be noted that we only capture
the total additive variance and interactions are not
considered. Our approach is tested by simulations and
applied to quantitative and binary disease traits.

METHODS

We formulated the problem as recovering the ‘‘true’’
z-statistic (i.e. the z-statistic one would obtain if there were
no random noise; reflecting the actual effect size) from
a set of observed z-statistics. The z-statistics can then
be converted to variance explained. A straightforward
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considered the effect sizes of the genome-wide significant
SNPs from replication studies and estimated the total
heritability explained if we can discover all loci within the
range of effect sizes observed in current GWAS. The main
drawback of this approach is that we have to discard the

contribution of the majority of variants having smaller
effect sizes. Therefore, we have considered an alternative
strategy to tackle the problem.

Essentially, our methodology is based on assessing empiri-
cally how much the observed distribution of z-statistics
differs from what is expected when all SNPs are null.
Figure 1 shows the histogram of the z-statistics of 83,088
SNPs obtained after pruning from Crohn’s disease data set.
A similar figure was shown in Efron [2009]. The blue line
represents the theoretical null distribution N(0,1). The centre
of the histogram is fitted reasonably well by the theoretical
null, but the heavy tails suggest the presence of some nonnull
SNPs that are associated with the disease. Our aim is to find
out the total variance explained by all the nonnull SNPs.

It is useful to consider the following model for our
problem. Denoting the observed z-statistic by z, we have

zjd ! Nðd; 1Þ;

where d5 0 for null variants and is nonzero (can be
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Suppose d has a prior density of g(d), the marginal density
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established by Brown [1971]:

Efdjzg ¼ z1
f 0ðzÞ
fðzÞ

:

Fig. 1. Histogram of the z-statistics of 83,088 SNPs obtained
after pruning from the Crohn’s disease data set. The blue line
represents the theoretical null distribution N(0,1).
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This formula corrects the observed effect size to the
true effect size. Large effect sizes are usually shrunken
by the formula, for example see Efron [2009]. In the
supplementary methods we explained why these two
formulas are equivalent. Denoting the function for
converting z to Vg by x, the final expected sum of Vg
may be calculated by

Total Vg ¼
X

i

xfc0ðziÞg: ð1Þ

For continuous traits, every z-value could be converted
to Vg given the sample size using a simple formula as
derived from the ANOVA table of regression. The
corrected variance explained can be estimated by

Vg ¼
½EðdjzÞ%2

n& 21½EðdjzÞ%2
:

Note that the above applies only in the absence of
covariates and will change if additional covariates are
included. For binary outcomes, the z-values can also be
converted to Vg. Note that z 5 b/SE, assuming SE is
known (can be directly derived from OR and z- or
P-values), the corrected b can be estimated by E(d|z)
multiplied by the SE. The corrected b can be converted to
OR by exp(b), and together with the risk allele frequency
we can obtain the corrected Vg. The method of deriving
Vg from allele frequency, odds ratio and prevalence is
described elsewhere [So et al., 2011]. Briefly, we assume the
liability threshold model and for a locus each genotype
will have a different mean liability but the same threshold.
Genotypes conferring higher disease risk have higher
mean liabilities. The variance in liability explained is then
evaluated. If SE is unknown, since similar levels of E(d|z)
correspond to similar levels of Vg regardless of the risk
allele frequency (see Table S1 for examples), E(d|z) can be
converted to Vg assuming a fixed allele frequency (set at
0.5 in this study).

We mainly consider the use of z-statistics in this paper.
Efron [2009] suggests transformation of t-statistics to a
normal scale first. However, GWAS usually involve
thousands of subjects and the t distribution for a large
sample size should be very close to normal. Hence, we
have not performed this transformation in our real data
examples.

ESTIMATION OF f(z)

We tried two approaches for the estimation of f(z).
One is the kernel density estimate. Consider a sample of
observations X1;X2 . . .Xn whose density is to be estimated.
The kernel density estimate with kernel K is given by

f̂ðxÞ ¼
1

nh

Xn

i¼1

K
x& Xi

h

! "
;

where h is the bandwidth or smoothing parameter.
A Gaussian kernel was used. The procedure was performed
using the R function ‘‘density,’’ with the default settings.
The bandwidth was chosen by h ¼ 0:9 An&

1
5 where

A 5 min(standard deviation, interquartile range/1.34)
The other is a density estimate based on Poisson

regression of binned z-value counts, as implemented in
the R program locfdr. This approach to density estimation
was described in detail in previous works by Efron and
Tibshirani [Efron, 2004; Efron and Tibshirani, 1996]. Briefly,

the z-values were divided into K equal intervals. Suppose
the kth interval has mid-point xk and the number of
z-values falling into this interval is sk. The expectation of
the counts sk, denoted by lk, is nearly proportional to the
density estimate f(xk)

lk / fðxkÞ:

If the z-values are independent, the counts can be regarded
as independent Poisson variates,

sk ' PoiðlkÞ:

One can model log(lk) as a jth degree polynomial function
of xk (the mid-point z-values), yielding a Poisson regres-
sion model

fðxkÞ ¼ exp
X

j

bjx
j
k

0

@

1

A:

Other types of functions other than the polynomial can
also be used. The default of locfdr uses a natural spline
function for regression modeling and we employed this
default in this study.

ALTERNATIVE APPROACH BY EVALUATING
THE EXPECTED EFFECT SIZE CONDITIONED
ON H1

Another approach is to consider each SNP in two
separate scenarios: under the null hypothesis (H0) and the
alternative (H1). Efron [2009] showed that the expected
effect size given H1 (i.e. d6¼0) is

Eðdjz;H1Þ ¼ E1ðdjzÞ ¼
EðdjzÞ
PrðH1Þ

¼
EðdjzÞ

1& fdrðzÞ
;

where fdr is the local false discovery rate [Efron et al., 2001].
The expected Vg for each SNP is the weighted average
of the Vg under the null and alternative hypotheses,
PrðH0Þ ( 01 PrðH1Þ ( xfE1ðdjzÞg, where x is a function for
conversion of z-statistics to Vg. The total Vg is hence

Total Vg ¼
X

i

PrðH1ÞxfE1ðdjziÞg: ð2Þ

Estimates of Pr(H0) and Pr(H1) can be obtained from the
local fdr of each SNP. In practice, some of the local fdr
estimates are very close to 1, and hence 1-fdr will be very
close to 0. These very low estimates of 1-fdr in the
denominator will result in very large estimates of E1(d|z).
These large estimates might not be justified because the
fdr estimates are subject to variability, particularly under
modest sample sizes. To avoid the influences of unstable
estimates of E1(d|z), we set an fdr threshold and only
consider SNPs with fdro0.95. In addition, as recom-
mended by Efron [2004], we used the ‘‘empirical null’’
(instead of the theoretical null) when computing the fdr.
The empirical null was estimated by the central matching
method (as we found the method produced smaller SD
than the alternative maximum likelihood fitting approach
from the program output).

All the methods we used to estimate f(z) allow the
empirical distribution to be nonsymmetrical. However,
the results may be more stable by assuming symmetry.
To achieve this effect, we simply re-assign the z-statistics
to be positive or negative randomly and repeat the
procedure for 100 times. The resulting estimates of the
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broadly consistent with the real data results and averaged
the variance explained implied by these consistent models.
In the another interesting study by Yang et al. [2010], the
authors made use of GWAS data set on height to estimate
the total variance explained by all the SNPs on the GWAS
panel. A linear model was fit to the data and the total
variance explained was computed by a restricted maxi-
mum likelihood (REML) approach. It was shown that the
approach could be implemented by another model that
measures the genomic relationship between individuals
using genotyped SNPs.

In this study, we propose a simple analytic framework to
estimate the total variance in liability explained (Vg) by all
risk alleles in GWAS. Our approach only requires summary
statistics instead of raw data and is free of distributional
assumptions. Both binary and quantitative traits can be
handled by the proposed framework. As in the ISC study,
we work on a pruned set of markers that are approximately
independent, as this prevents inflation of the sum of Vg
by redundant association signals arising from LD. The
estimated total Vg from the pruned markers (Vpruned) will
actually be smaller than the total Vg from the entire GWAS
panel (Vgwas), due to attenuation of LD between the marker
and the causal alleles (assuming that the pruning is
adequate). Similarly, Vgwas is smaller than the total additive
genetic variance (Vall) derived from the corresponding
causal alleles that may be not be present on the GWAS
panel. In symbol, we have VprunedrVgwasrVall.

As GWAS panels are mainly designed to capture
common variants (MAF45% or 1%), it is likely that Vall

also mainly reflect the contribution of common variants.
As in the ISC study, the proposed methodology directly
estimates Vpruned, but also serves as a conservative estimator
of the variance explained by all true susceptibility variants
in a GWAS (Vgwas) or more broadly, the variance explained
by corresponding causal variants in the genome (Vall).

It is clear that many true risk variants will not be detected
in a GWAS since the power is not adequate to pick them
out. In addition, the significance threshold in GWAS is
usually set to be very stringent to guard against multiple
testing, making the detection of significant variants even
more difficult. As a result, the SNPs declared as significant
in GWAS only represent the tip of the iceberg. The proposed
approaches essentially recover the total ‘‘hidden’’ herit-
ability in GWAS. It should be noted that we only capture
the total additive variance and interactions are not
considered. Our approach is tested by simulations and
applied to quantitative and binary disease traits.

METHODS

We formulated the problem as recovering the ‘‘true’’
z-statistic (i.e. the z-statistic one would obtain if there were
no random noise; reflecting the actual effect size) from
a set of observed z-statistics. The z-statistics can then
be converted to variance explained. A straightforward
approach to obtain unbiased z-statistics without winner’s
curse is to consider the replication effect sizes alone. For
instance, in a recent study by Park et al. [2010], the authors
considered the effect sizes of the genome-wide significant
SNPs from replication studies and estimated the total
heritability explained if we can discover all loci within the
range of effect sizes observed in current GWAS. The main
drawback of this approach is that we have to discard the

contribution of the majority of variants having smaller
effect sizes. Therefore, we have considered an alternative
strategy to tackle the problem.

Essentially, our methodology is based on assessing empiri-
cally how much the observed distribution of z-statistics
differs from what is expected when all SNPs are null.
Figure 1 shows the histogram of the z-statistics of 83,088
SNPs obtained after pruning from Crohn’s disease data set.
A similar figure was shown in Efron [2009]. The blue line
represents the theoretical null distribution N(0,1). The centre
of the histogram is fitted reasonably well by the theoretical
null, but the heavy tails suggest the presence of some nonnull
SNPs that are associated with the disease. Our aim is to find
out the total variance explained by all the nonnull SNPs.

It is useful to consider the following model for our
problem. Denoting the observed z-statistic by z, we have

zjd ! Nðd; 1Þ;

where d5 0 for null variants and is nonzero (can be
positive or negative) for the truly associated variants.
Suppose d has a prior density of g(d), the marginal density
of z can be expressed by

fðzÞ ¼
Z 1

%1
fðzjdÞgðdÞdd ¼

Z 1

%1
jðz% dÞgðdÞdd;

where jðzÞ ¼ ð1=
ffiffiffiffiffiffi
2p
p
Þexpð%z2=2Þ is the standard normal

density.
Define

cðzÞ ¼ log
fðzÞ
jðzÞ

" #
:

By the properties of exponential families, Efron [2009]
showed that

Efdjzg ¼ c0ðzÞ:

As noted by Efron [2009], an equivalent formula was
established by Brown [1971]:

Efdjzg ¼ z1
f 0ðzÞ
fðzÞ

:

Fig. 1. Histogram of the z-statistics of 83,088 SNPs obtained
after pruning from the Crohn’s disease data set. The blue line
represents the theoretical null distribution N(0,1).
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This formula corrects the observed effect size to the
true effect size. Large effect sizes are usually shrunken
by the formula, for example see Efron [2009]. In the
supplementary methods we explained why these two
formulas are equivalent. Denoting the function for
converting z to Vg by x, the final expected sum of Vg
may be calculated by

Total Vg ¼
X

i

xfc0ðziÞg: ð1Þ

For continuous traits, every z-value could be converted
to Vg given the sample size using a simple formula as
derived from the ANOVA table of regression. The
corrected variance explained can be estimated by

Vg ¼
½EðdjzÞ%2

n& 21½EðdjzÞ%2
:

Note that the above applies only in the absence of
covariates and will change if additional covariates are
included. For binary outcomes, the z-values can also be
converted to Vg. Note that z 5 b/SE, assuming SE is
known (can be directly derived from OR and z- or
P-values), the corrected b can be estimated by E(d|z)
multiplied by the SE. The corrected b can be converted to
OR by exp(b), and together with the risk allele frequency
we can obtain the corrected Vg. The method of deriving
Vg from allele frequency, odds ratio and prevalence is
described elsewhere [So et al., 2011]. Briefly, we assume the
liability threshold model and for a locus each genotype
will have a different mean liability but the same threshold.
Genotypes conferring higher disease risk have higher
mean liabilities. The variance in liability explained is then
evaluated. If SE is unknown, since similar levels of E(d|z)
correspond to similar levels of Vg regardless of the risk
allele frequency (see Table S1 for examples), E(d|z) can be
converted to Vg assuming a fixed allele frequency (set at
0.5 in this study).

We mainly consider the use of z-statistics in this paper.
Efron [2009] suggests transformation of t-statistics to a
normal scale first. However, GWAS usually involve
thousands of subjects and the t distribution for a large
sample size should be very close to normal. Hence, we
have not performed this transformation in our real data
examples.

ESTIMATION OF f(z)

We tried two approaches for the estimation of f(z).
One is the kernel density estimate. Consider a sample of
observations X1;X2 . . .Xn whose density is to be estimated.
The kernel density estimate with kernel K is given by

f̂ðxÞ ¼
1

nh

Xn

i¼1

K
x& Xi

h

! "
;

where h is the bandwidth or smoothing parameter.
A Gaussian kernel was used. The procedure was performed
using the R function ‘‘density,’’ with the default settings.
The bandwidth was chosen by h ¼ 0:9 An&

1
5 where

A 5 min(standard deviation, interquartile range/1.34)
The other is a density estimate based on Poisson

regression of binned z-value counts, as implemented in
the R program locfdr. This approach to density estimation
was described in detail in previous works by Efron and
Tibshirani [Efron, 2004; Efron and Tibshirani, 1996]. Briefly,

the z-values were divided into K equal intervals. Suppose
the kth interval has mid-point xk and the number of
z-values falling into this interval is sk. The expectation of
the counts sk, denoted by lk, is nearly proportional to the
density estimate f(xk)

lk / fðxkÞ:

If the z-values are independent, the counts can be regarded
as independent Poisson variates,

sk ' PoiðlkÞ:

One can model log(lk) as a jth degree polynomial function
of xk (the mid-point z-values), yielding a Poisson regres-
sion model

fðxkÞ ¼ exp
X

j

bjx
j
k
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Other types of functions other than the polynomial can
also be used. The default of locfdr uses a natural spline
function for regression modeling and we employed this
default in this study.

ALTERNATIVE APPROACH BY EVALUATING
THE EXPECTED EFFECT SIZE CONDITIONED
ON H1

Another approach is to consider each SNP in two
separate scenarios: under the null hypothesis (H0) and the
alternative (H1). Efron [2009] showed that the expected
effect size given H1 (i.e. d6¼0) is

Eðdjz;H1Þ ¼ E1ðdjzÞ ¼
EðdjzÞ
PrðH1Þ

¼
EðdjzÞ

1& fdrðzÞ
;

where fdr is the local false discovery rate [Efron et al., 2001].
The expected Vg for each SNP is the weighted average
of the Vg under the null and alternative hypotheses,
PrðH0Þ ( 01 PrðH1Þ ( xfE1ðdjzÞg, where x is a function for
conversion of z-statistics to Vg. The total Vg is hence

Total Vg ¼
X

i

PrðH1ÞxfE1ðdjziÞg: ð2Þ

Estimates of Pr(H0) and Pr(H1) can be obtained from the
local fdr of each SNP. In practice, some of the local fdr
estimates are very close to 1, and hence 1-fdr will be very
close to 0. These very low estimates of 1-fdr in the
denominator will result in very large estimates of E1(d|z).
These large estimates might not be justified because the
fdr estimates are subject to variability, particularly under
modest sample sizes. To avoid the influences of unstable
estimates of E1(d|z), we set an fdr threshold and only
consider SNPs with fdro0.95. In addition, as recom-
mended by Efron [2004], we used the ‘‘empirical null’’
(instead of the theoretical null) when computing the fdr.
The empirical null was estimated by the central matching
method (as we found the method produced smaller SD
than the alternative maximum likelihood fitting approach
from the program output).

All the methods we used to estimate f(z) allow the
empirical distribution to be nonsymmetrical. However,
the results may be more stable by assuming symmetry.
To achieve this effect, we simply re-assign the z-statistics
to be positive or negative randomly and repeat the
procedure for 100 times. The resulting estimates of the
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Variance	  explained	  by	  SNPs	  in	  GWAS	  
using	  summary	  sta#s#cs	  

	  	  



Overview	  

§  LD	  pruning	  to	  remove	  SNPs	  in	  high	  LD	  

§  Calculate	  the	  phenotypic	  variance	  explained	  
by	  SNPs	  for	  the	  3	  quan#ta#ve	  traits	  

§  Compare	  the	  es#mates	  with	  GCTA	  



R	  scripts	  

§  h]ps://sites.google.com/site/honcheongso/
so_ware/total-‐vg	  
§  Binary	  trait	  
§  Quan6ta6ve	  trait	  

§  So	  H.C.,	  Li	  MX	  and	  Sham	  P.C.	  (2011)	  
§  Uncovering	  the	  total	  heritability	  explained	  by	  all	  true	  

suscep#bility	  variants	  in	  a	  genome-‐wide	  associa#on	  study.	  
Gene#c	  Epidemiology.	  

	  
	  



Prac6cal	  

§  Open	  terminal	  and	  make	  a	  new	  directory	  
§ mkdir	  ~/total-‐Vg	  
	  

§  Copy	  the	  data	  folder	  to	  your	  home	  total-‐Vg	  
directory	  
§  cp	  /faculty/clara/total-‐Vg/*	  	  ~/total-‐Vg/	  
	  

§  Go	  to	  your	  total-‐Vg	  directory	  
§  cd	  ~/total-‐Vg	  

	  



Associa#on	  analysis	  –	  linear	  regression	  

plink	  -‐-‐bfile	  example	  \	  
	  	  	  -‐-‐pheno	  example.pheno	  \	  
	  	  	  -‐-‐mpheno	  1	  \	  
	  	  	  -‐-‐linear	  \	  
	  	  	  -‐-‐out	  test.allSNPs.trait1	  

	  
	  

CHR	   SNP	   BP	   A1	   TEST	   NMISS	   BETA	   STAT	   P	  
15	   rs1896801	   82034088	   2	   ADD	   2000	   0.06995	   0.2875	   0.7737	  
15	   15-‐82054371	   82054371	   2	   ADD	   2000	   -‐0.3436	   -‐1.038	   0.2993	  
15	   rs17158780	   82057668	   2	   ADD	   2000	   -‐0.1449	   -‐0.5175	   0.6048	  
15	   15-‐82067637	   82067637	   2	   ADD	   2000	   -‐0.2329	   -‐0.513	   0.608	  
15	   15-‐82071784	   82071784	   2	   ADD	   2000	   -‐0.3721	   -‐0.906	   0.3651	  

test.allSNPs.trait1.assoc.linear	  



LD	  Pruning	  
§  Remove	  SNPs	  with	  r2	  >	  0.25	  using	  sliding	  window	  of	  
100	  SNPs	  

	  plink	  -‐-‐bfile	  example	  \	  
	  	  	  	  	  	  	  	  	  	  -‐-‐indep-‐pairwise	  100	  25	  0.25	  \	  
	  	  	  	  	  	  	  	  	  	  -‐-‐out	  test	  
	  
	  
R	  script	  remove-‐pruned-‐snp.R	  	  \	  
	  test.allSNPs.trait1.assoc.linear	  \	  
	  test.prune.in	  \	  
	  	  test.pruned.trait1.assoc.linear	  
	  

broadly consistent with the real data results and averaged
the variance explained implied by these consistent models.
In the another interesting study by Yang et al. [2010], the
authors made use of GWAS data set on height to estimate
the total variance explained by all the SNPs on the GWAS
panel. A linear model was fit to the data and the total
variance explained was computed by a restricted maxi-
mum likelihood (REML) approach. It was shown that the
approach could be implemented by another model that
measures the genomic relationship between individuals
using genotyped SNPs.

In this study, we propose a simple analytic framework to
estimate the total variance in liability explained (Vg) by all
risk alleles in GWAS. Our approach only requires summary
statistics instead of raw data and is free of distributional
assumptions. Both binary and quantitative traits can be
handled by the proposed framework. As in the ISC study,
we work on a pruned set of markers that are approximately
independent, as this prevents inflation of the sum of Vg
by redundant association signals arising from LD. The
estimated total Vg from the pruned markers (Vpruned) will
actually be smaller than the total Vg from the entire GWAS
panel (Vgwas), due to attenuation of LD between the marker
and the causal alleles (assuming that the pruning is
adequate). Similarly, Vgwas is smaller than the total additive
genetic variance (Vall) derived from the corresponding
causal alleles that may be not be present on the GWAS
panel. In symbol, we have VprunedrVgwasrVall.

As GWAS panels are mainly designed to capture
common variants (MAF45% or 1%), it is likely that Vall

also mainly reflect the contribution of common variants.
As in the ISC study, the proposed methodology directly
estimates Vpruned, but also serves as a conservative estimator
of the variance explained by all true susceptibility variants
in a GWAS (Vgwas) or more broadly, the variance explained
by corresponding causal variants in the genome (Vall).

It is clear that many true risk variants will not be detected
in a GWAS since the power is not adequate to pick them
out. In addition, the significance threshold in GWAS is
usually set to be very stringent to guard against multiple
testing, making the detection of significant variants even
more difficult. As a result, the SNPs declared as significant
in GWAS only represent the tip of the iceberg. The proposed
approaches essentially recover the total ‘‘hidden’’ herit-
ability in GWAS. It should be noted that we only capture
the total additive variance and interactions are not
considered. Our approach is tested by simulations and
applied to quantitative and binary disease traits.

METHODS

We formulated the problem as recovering the ‘‘true’’
z-statistic (i.e. the z-statistic one would obtain if there were
no random noise; reflecting the actual effect size) from
a set of observed z-statistics. The z-statistics can then
be converted to variance explained. A straightforward
approach to obtain unbiased z-statistics without winner’s
curse is to consider the replication effect sizes alone. For
instance, in a recent study by Park et al. [2010], the authors
considered the effect sizes of the genome-wide significant
SNPs from replication studies and estimated the total
heritability explained if we can discover all loci within the
range of effect sizes observed in current GWAS. The main
drawback of this approach is that we have to discard the

contribution of the majority of variants having smaller
effect sizes. Therefore, we have considered an alternative
strategy to tackle the problem.

Essentially, our methodology is based on assessing empiri-
cally how much the observed distribution of z-statistics
differs from what is expected when all SNPs are null.
Figure 1 shows the histogram of the z-statistics of 83,088
SNPs obtained after pruning from Crohn’s disease data set.
A similar figure was shown in Efron [2009]. The blue line
represents the theoretical null distribution N(0,1). The centre
of the histogram is fitted reasonably well by the theoretical
null, but the heavy tails suggest the presence of some nonnull
SNPs that are associated with the disease. Our aim is to find
out the total variance explained by all the nonnull SNPs.

It is useful to consider the following model for our
problem. Denoting the observed z-statistic by z, we have

zjd ! Nðd; 1Þ;

where d5 0 for null variants and is nonzero (can be
positive or negative) for the truly associated variants.
Suppose d has a prior density of g(d), the marginal density
of z can be expressed by

fðzÞ ¼
Z 1

%1
fðzjdÞgðdÞdd ¼

Z 1

%1
jðz% dÞgðdÞdd;

where jðzÞ ¼ ð1=
ffiffiffiffiffiffi
2p
p
Þexpð%z2=2Þ is the standard normal

density.
Define

cðzÞ ¼ log
fðzÞ
jðzÞ

" #
:

By the properties of exponential families, Efron [2009]
showed that

Efdjzg ¼ c0ðzÞ:

As noted by Efron [2009], an equivalent formula was
established by Brown [1971]:

Efdjzg ¼ z1
f 0ðzÞ
fðzÞ

:

Fig. 1. Histogram of the z-statistics of 83,088 SNPs obtained
after pruning from the Crohn’s disease data set. The blue line
represents the theoretical null distribution N(0,1).

2 So et al.

Genet. Epidemiol.



total-‐Vg	  

•  Rscript	  total-‐vg.R	  test.allSNPs.trait1.assoc.linear	  2000	  
•  Rscript	  total-‐vg.R	  test.pruned.trait1.assoc.linear	  2000	  

V(g)/V(p)	   GCTA	   total-‐Vg	  
(pruned)	  

total-‐Vg	  
(unpruned)	  

Trait	  1	   0.054	  
(0.021)	  

0.063	   0.207	  



total-‐Vg	  

•  Repeat	  for	  the	  other	  2	  traits	  

V(g)/V(p)	   GCTA	   total-‐Vg	  (pruned)	  

Trait	  1	   0.054	  (0.021)	  

Trait	  2	   0.358	  (0.033)	  

Trait	  3	  	   0.582	  (0.027)	  



total-‐Vg	  

•  Repeat	  for	  the	  other	  2	  traits	  

V(g)/V(p)	   GCTA	   total-‐Vg	  (pruned)	  

Trait	  1	   0.054	  (0.021)	   0.063	  

Trait	  2	   0.358	  (0.033)	   0.227	  

Trait	  3	  	   0.582	  (0.027)	   0.605	  

Trait	  1:	  h2=.60,	  CV	  MAF 	  .0005-‐.002	  
Trait	  2:	  h2=.60,	  CV	  MAF	   	  .01-‐.05	  
Trait	  3:	  h2=.60,	  CV	  MAF	   	  .10-‐.50	  


