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Measurement

• Latent Trait Models

• Measurement Invariance

• Factor Scores

• Mixture Distributions

• Latent Class Models

• Heterogeneity & Age
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Simple Single Factor Model
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Multiple Factor Model
Beware Rotation
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3 Genetic and Environmental Factors:
Common Pathway Model
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3 Genetic and Environmental Factors:
Independent Pathway Model
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Estimating Factor Scores
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ML Estimation of Factor 
Scores
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Application

• Used genetic factor scores to select 
extreme groups

• Found significant association

ORIGINAL ARTICLE

Association between glutamic acid decarboxylase genes
and anxiety disorders, major depression, and neuroticism
JM Hettema, SS An, MC Neale, J Bukszar, EJCG van den Oord, KS Kendler and X Chen

Department of Psychiatry, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University,
Richmond, VA, USA

Abnormalities in the gamma-aminobutyric acid (GABA) neurotransmitter system have been
noted in subjects with mood and anxiety disorders. Glutamic acid decarboxylase (GAD)
enzymes synthesize GABA from glutamate, and, thus, are reasonable candidate susceptibility
genes for these conditions. In this study, we examined the GAD1 and GAD2 genes for their
association with genetic risk across a range of internalizing disorders. We used multivariate
structural equation modeling to identify common genetic risk factors for major depression,
generalized anxiety disorder, panic disorder, agoraphobia, social phobia and neuroticism (N)
in a sample of 9270 adult subjects from the population-based Virginia Adult Twin Study of
Psychiatric and Substance Use Disorders. One member from each twin pair for whom DNA was
available was selected as a case or control based on scoring at the extremes of the genetic
factor extracted from the analysis. The resulting sample of 589 cases and 539 controls was
entered into a two-stage association study in which candidate loci were screened in stage 1,
the positive results of which were tested for replication in stage 2. Several of the six single-
nucleotide polymorphisms tested in the GAD1 region demonstrated significant association in
both stages, and a combined analysis in all 1128 subjects indicated that they formed a
common high-risk haplotype that was significantly over-represented in cases (P=0.003) with
effect size OR=1.23. Out of 14 GAD2 markers screened in stage 1, only one met the threshold
criteria for follow-up in stage 2. This marker, plus three others that formed significant
haplotype combinations in stage 1, did not replicate their association with the phenotype in
stage 2. Subject to confirmation in an independent sample, our study suggests that variations
in the GAD1 gene may contribute to individual differences in N and impact susceptibility
across a range of anxiety disorders and major depression.
Molecular Psychiatry (2006) 11, 752–762. doi:10.1038/sj.mp.4001845; published online 23 May 2006

Keywords: glutamic acid decarboxylase; depression; anxiety; neuroticism; association study;
genetics

Introduction

Major depression and the anxiety disorders have high
lifetime prevalence and carry significant disability.
Family and twin studies suggest moderate familial
aggregation due primarily to genetic risk factors for
these conditions.1,2 They co-occur much more often
than predicted by chance,3 and this is likely due to
shared genetic risk.4 In addition, studies have consis-
tently demonstrated associations between high levels
of the personality trait neuroticism (N) in individuals
and increased likelihood that they suffer from one or
more of these syndromes. Twin studies suggest an

overlap between the genes for N and genetic risk for
depressive and anxiety symptoms and disorders.5–7

Many, but not all, linkage studies for these condi-
tions have focused on one individual psychiatric trait
or disorder at a time. However, acknowledging the
difficulties inherent in identifying susceptibility
genes for complex disorders like major depression
and anxiety disorders and with the knowledge
gleaned from advanced multivariate genetic epide-
miological methods applied to large population-based
twin samples, several leading research groups have
begun to expand their phenotypic definitions beyond
these disorder-based classifications created for clini-
cal use.8–10 We have previously demonstrated that one
can identify latent genetic risk factors that indicate
shared genetic susceptibility across a range of pheno-
types.11–13 Selecting subjects from the extremes of this
underlying genetic risk factor should provide a
powerful method for detecting genes of small effect
expected to contribute to complex genetic phenotypes
like major depression, anxiety disorders, and person-
ality traits such as N.14–16

Received 21 November 2005; revised 18 April 2006; accepted 28
April 2006; published online 23 May 2006

Preliminary results from this study were presented at the XIIIth
World Congress on Psychiatric Genetics, October 14–18, 2005 in
Boston, MA, USA.

Correspondence: Dr JM Hettema, Department of Psychiatry,
Virginia Institute for Psychiatric and Behavioral Genetics,
Virginia Commonwealth University (VCU), PO Box 980126,
Richmond, VA 23298-0126, USA. E-mail: jhettema@hsc.vcu.edu

Molecular Psychiatry (2006) 11, 752–762
& 2006 Nature Publishing Group All rights reserved 1359-4184/06 $30.00
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Notes
• Factor scores do not all have same error 

variance

• Factor scores of A, C & E components may 
correlate highly

• Latent trait may be non-normal (Schmitt et al 
2006 Multiv Behav Res

• Factor loadings may vary across the distribution

• Variation may be discrete not continuous
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Measurement InvarianceMeasurement invariance 29 

Table 1 

Equality constraints imposed across groups in steps towards strict factorial invariance 

No. Description factor loadings residual variances intercepts factor means 

1 Configural invariance free  free  free fixed at 0 

2 Metric/weak invariance invariant free  free fixed at 0 

3 Equal residual variances invariant invariant  free fixed at 0 

4 Strict factorial invariance invariant  invariant  invariant free
1
  

Note: Each step is nested under the previous one; Underlined restrictions are tested in each 

step; free: freely estimated within each group; invariant: parameters estimated equally across 

groups; Factor (co)variances are freely estimated throughout. 
1
Modeled as between-group 

differences in factor means by restricting factor means in one arbitrary group to equal zero.  

 

 

Dolan, C. V., Oort, F. J., Stoel, R. D., and Wicherts, J. M. (2009). 
Testing Measurement Invariance in the Target Rotated Multigroup 
Exploratory Factor Model. Structural Equation Modeling, 16(2):
295–314.
Wicherts J & Dolan CV (In Press) Educational Measurement: Issues 
and Practice
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Strict Factorial Invariance
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Failure of Configural Invariance
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Failure of Metric Invariance
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Failure of Residual Invariance
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Medland, S. E. and Neale, M. C. (2010). An integrated phenomic approach to multivariate allelic 
association. Eur J Hum Genet, 18(2):233–9.
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Stimulants Tranquilizers Marijuana
Stimulants 1

Tranquilizers 0.74 1
Marijuana 0.63 0.66 1

Factor 
Loadings 0.84 0.87 0.75

Correlations across 
Substances
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• Univariate association
• Stimulants:      χ2=3.88, β= -.18, p < .05

• Tranquilizers:  χ2=1.65, β= .13, NS

• Marijuana:       χ2=2.60, β= .11, NS

• Factor level association

• χ2=0.65, kF= .06, NS

• Multivariate association
• χ2=13.91 (3df; p < 0.005)  

– kStimulants    = -0.19

– kTranquilizers= 0.14 

– βMarijuana     = 0.11 
0%

15%

30%

45%

60%

A1/A1 A1/A2 A2/A2

Stimulants
Tranquilizers
Marijuana

DRD2 Association Results
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Detecting 1% GV at 80% Power

Phenotypic 
Complexity, 
Measurement Bias, and 
Poor Phenotypic 
Resolution Contribute 
to the Missing 
Heritability Problem in 
Genetic Association 
Studies

Van der Sluis,  Verhage, 
Posthuma & Dolan
Plos One 2010
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Three methods of scoring

• Sum score

• Simple & Practical

• Widely Used

• Maximum likelihood factor score

• More complex (need computer)

• Less widely used

• Can test assumptions

• Neither - use SEM framework for testing
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Non-Invariance Effects
                                                                 Sum Scores vs. ML Factor Scores      26    

 

Friday, March 8, 13



What if  Variation is 
Discrete?

• Latent Class and Latent Profile Models

• Factor Mixture Models

• Latent Growth Curve Mixture Models

• Regime Switching
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Mixture Distributions

• Skewness in a set of measurements of 
the ratio of forehead to body length 
of crabs

• Two species or one?

Pearson, K. (1894). Contributions to the mathematical theory of 
evolution. II. skew variation in homogeneous material. Philosophical 
Transactions of the Royal Society of London A, 186, 343-414.
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Data & Model
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Fit Mixture Distribution
#
# Analysis of Pearson crab ratio data
# Mixture distribution, 2 normal components
#
# Load libraries & data
require(OpenMx)
load(”pearson.Rda”)
data(pearson)
summary(pearson)
head(pearson)
pearson[pearson$ratio==Inf,1]<-NA

# Set number of variables & classes
nvar <- 1
nClass <-2 
selVars<-c("ratio")

g1Model <-  mxModel("group1",
                mxMatrix("Symm", nvar, nvar, values=1, name="expCov", lbound=1.E-10, free=T),
                mxMatrix("Full", 1, nvar, free=T, name="expMean"),
                mxData(pearson, type="raw"), 
                mxFIMLObjective("expCov", "expMean", dimnames="ratio", vector=TRUE)
                )
g2Model <-  mxModel(g1Model, name="group2", 
                mxMatrix("Full", 1, nvar, values=.5, free=T, name="expMean")
                )
# can repeat above “duplication” step for more classes, in a loop if needed, and stick them in a list[]
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Fit Mixture Distribution
# Put the two distributions together in one model, add proportion parameter (standardize it to p)
# and set up the objective function as a weighted (freq) mixture distribution

mixtureModel <- mxModel("mixture", g1Model, g2Model,
                    mxMatrix(type="Full", nrow=nClass, ncol=1, values=runif(nClass), 
                        free=c(rep(T,nClass-1),F), lbound=1.E-1, name="praw"),
                    mxAlgebra(praw %x% (1/sum(praw)), name="p"),
                    mxMatrix(type="Full", nrow=dim(pearson)[1], ncol=1, 
                        values=as.matrix(pearson$freq), name="freq"),
                    mxAlgebra( -2*sum (freq * (log(cbind(group1.objective, group2.objective) %*% p ))), 
                        name="min2LL"), 
                    mxAlgebraObjective("min2LL")
                )

summary(mixtureModelFit <- mxRun(mixtureModel, unsafe=T))

#
# Fix proportion parameter to 1 and fix mean & variance parameters of group 2
#

# Copy Model
nonMixtureModel <- mixtureModel

# (could use omxSetParameters(nonMixtureModel,parameters) if they had been labeled)
nonMixtureModel$praw@free[]<-F
nonMixtureModel$praw@values[]<-c(1,0)

nonMixtureModel$group2.expCov@free[]<-F
nonMixtureModel$group2.expMean@free[]<-F

summary(nonMixtureModelFit <- mxRun(nonMixtureModel))

mxCompare(mixtureModelFit,nonMixtureModelFit)
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Latent Class (Subgroup) Model
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Conditionally
Independent?!

Expensive!

Searching For Valid Psychiatric Phenotypes: Discrete Latent
Variable Models

Jeannie-Marie S. Leoutsakos, PhD, MHS1, Peter P. Zandi, PhD, MHS2, Karen Bandeen-Roche,
PhD3, and Constantine G. Lyketsos, MD, MHS1,2
1Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine
2Department of Mental Health, Johns Hopkins Bloomberg School of Public Health
3Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health

Abstract
Introduction—A primary challenge in psychiatric genetics is the lack of a completely validated
system of classification for mental disorders. Appropriate statistical methods are needed to
empirically derive more homogenous disorder subtypes.

Methods—Using the framework of Robins & Guze’s (1970) five phases, latent variable models to
derive and validate diagnostic groups are described. A process of iterative validation is proposed
through which refined phenotypes would facilitate research on genetics, pathogenesis, and treatment,
which would in turn aid further refinement of disorder definitions.

Conclusions—Latent variable methods are useful tools for defining and validating psychiatric
phenotypes. Further methodological research should address sample size issues and application to
iterative validation.

Keywords
latent class analysis; phenotype; validation

Introduction
A primary challenge in psychiatric genetics is the lack of a completely validated system of
classification for mental disorders (Merikangas & Risch, 2003). Without a well-defined
phenotype, the establishment of a relationship between a gene and a disorder is difficult, since
heterogeneity in the sample with respect to underlying disease process may dilute any existing
effects. For example, if a gene were associated with a certain type of depression, the estimated
odds ratio for the association would be biased toward one if individuals without depression,
or with a different type of depression were misclassified as diseased. It is therefore not
surprising that relatively few genetic findings have been replicated (Burmeister, et al 2008).
This problem is not limited to genetics; heterogeneity within samples complicates most areas
of psychiatric research, including neuroimaging, pharmacological response, and studies of
patient outcomes.

Corresponding Author: Jeannie-Marie Leoutsakos, Johns Hopkins Bayview Medical Center, Alpha Commons Bldg - 4th Floor, 4940
Eastern Avenue, Baltimore, MD 21224, jeannie-marie@jhu.edu, Tel. 410-550-9884, Fax. 410-550-1407.
The authors have no competing interests.

NIH Public Access
Author Manuscript
Int J Methods Psychiatr Res. Author manuscript; available in PMC 2010 June 1.

Published in final edited form as:
Int J Methods Psychiatr Res. 2010 June ; 19(2): 63–73. doi:10.1002/mpr.301.
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Factor Mixture Model
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Growth Curve Mixture Model
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Regime Switching Model
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Regime Switching Model
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Genetic Heterogeneity

• Genetic factors change during development

• Height

• Neuroticism

• Detection
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Different age, different genes?
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Verhulst, Eaves & Neale

Cov = Acov * e-|Δage|*αa + Ccov * e-|Δage|*αc + Tcov
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Verhulst, Eaves & Neale
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Care with 
Ascertainment

• Factor Analysis in Cases

• Latent Class Analysis in Cases

• Selection for Case Status

• Selection of Controls
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Summary

• Measurement of complex traits is complex

• Measurement invariance desirable

• ML factor scores good start

• Mixture distribution models should be tested

• Choose your study participants carefully

• Analyze what you measure, and measure well 
what you analyze

Friday, March 8, 13



Summary

• Measurement of complex traits is complex

• Measurement invariance desirable

• ML factor scores good start

• Mixture distribution models should be 
tested

• Analyze what you measure, and measure 
well what you analyze

Friday, March 8, 13


