Genome-wide complex trait analysis
and extensions

Matthew Keller
Teresa de Candia

University of Colorado at Boulder



Outline

Overview of GCTA (Keller)

m how it works

m what it tells us

Practical — using GCTA to get "SNP heritability"
for three traits

Issues and extensions of GCTA (de Candia)

m  Assumptions
m  SNP data quality control
m  Additional topics



Outline

m  Overview of GCTA (Keller)

m how it works

m what it tells us



Missing heritability

'y s
£, ,
L / )
a P
J o
j I

The case of the missing heritability

m  The sum of R? of significantly associated SNPs

typically < 5%. Why?

m  One possibility: large number of small-effect
SNPs (the 'Infinitesimal model'; Fisher, 1918) that
failed to reach genome-wide significance (many
type-II errors)

m GCTA! designed to test this

Yang et al, 2010, Nature Genetics



GCTA

m  Dectermine extent to which genetic similarity at
SNPs 1s related to phenotypic similarity

m By treating genetic effects as random effects, a
mixed linear model derives unbiased estimate of
V , captured by measured (common) SNPs

m  Need to remove 'close' relatives, like 2"-cousins, to minimize
any confounding of shared environment with pi-hat

m  Need to control for 'ethnic PCs' to minimize confounding of
ethnicity (and cultural factors) with pi-hat



Similarity bw GCTA & twin studies

product of centered scores
(here, z-scores)
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Genetic Relationship Matrix (GRM)

m Rather than n/2 twin pairs, we fit this model to
n(n+1)/2 genetic pairwise relationships

m FEach element of this GRM matrix is:
Z (X, —2p, )(\ _2}7A)
Y 2p(=py)

where X is the k' SNP (k=1...N) of the i person,
taking the value of 0, 1, or 2 if 1t 1s AA, Aa, aa.

m  GCTA estimates V , using REML rather than least
squares regression




GRM example, 3 individuals, 1 SNP
7 _LZ (x]n' _2pk)(x](j _2p/r) *
CONTE L 2pd-py)

For one SNP (N=1), say that P(a) = .45, P(A)=.55.
Person 1 is AA, 2 is aa, and 3 Aa:

AA aa Aa

O 2 1 x]{,'

0 AA

2 aa

1 Aa

*Note: GCTA uses a slightly modified formula when i=j
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GRM example, 3 individuals, 1 SNP
7 _LZ (x]n' _2pk)(x](j _2p/r)
CONTE L 2pd=py)

For one SNP (N=1), say that P(a) = .45, P(A)=.55.
Person 1 is AA, 2 is aa, and 3 Aa:

AA aa Aa

O 2 1 x]{,'

SXEER ) AA

) ( 0 — .9)(1 - 9) -2.0 2.44 0.22 2 aa
T, 5 = | |
3 2 > 45 % 55 \ -0.18 0.22 0.02 1 Aa




GRM, 3 individuals 1000 SNPs
—2p,)( —2p)
..:—Z

2pk(l_ /;,)




Mixed linear effect model in GCTA

. A2 A2
var(y) = Ao, + 10,



Mixed linear effect model in GCTA

est. add. genetic est. environmental
variance (scalar) variance (scalar)

R \ \
var(y) = Ad‘j + 1(3'5

implied n x n var- nxnmatrix nxn ldentity

covar matrix of y's of pi-hats matrix
(GRM)



Mixed linear effect model in GCTA

Goal of REML is to change 6. and &’ in order to get
the observed and implied var-covar matrices to be as
similar as possible.

/N
var(y) - var(y)

/ \

observed n x n var- implied n x n var-
covar matrix of y's covar matrix of y's



Mixed linear effect model in GCTA

var(y) © A6’ + [0~

- / \

-97 .59 -1.36

1.57 -97

223 -136 3.16

-1.25 | % |1.25 .77 -1.77
0.77 \ (i.e., outer product of the y vector of
-1.77 centered scores for each individual)




What GCTA tells us

Estimate of V, captured by common SNPs

Gives 1dea of the aggregate importance of common causal
variants (bc rare ones poorly tagged by common SNPs)

Upper bound of how much V, GWAS can detect

By not using relatives who also share environmental
effects:

(a) V, estimate 1s 'uncontaminated' by V-

(b) does not rely on assumption that r(MZ) > r(DZ) for
purely genetic reasons

m  Allows investigation into several heretofore difficult/
1impossible-to-study questions



Outline

m Practical — using GCTA to get "SNP heritability"
for three traits



GCTA software

» Several options:
— Data management (similar to PLINK)
— Estimation of GRM from genome wide SNPs

— Estimation variance explained via REML from
GRM

— PCA, Estimation LD structure, Simulation....



Input Files

* Binary PLINK files
— Fam file (. fam)
—Bimfile (.bim)

— Bed file (.bed)



Data management

* Inclusion criteria
--keep mylist.txt, --remove mylist.txt
--extract mysnps.txt, --exclude mysnps.txt
--chr 6, --autosome

* Using phenotypes files
— --pheno

* Using covariate files
— ==Covalr, --gqcovar



Genetic Relationship Matrix (GRM)

 GRM:
gcta -bfile simd

-—-make-grm --out simd.gcta
* Generates:
—simd.gcta.grm.gz

—simd.gcta.grm.1id



Genetic Relationship Matrix (GRM)

snpdat.gcta.grm.id snpdat.gcta.grm.gz

10 01 1 1 273588 0.99629
10 02 2 1 273566 0.47804
17 01

28 01 2 2 273600 0.99192
33 01 3 1 269152 0.00656
33 02

37 50 3 2 269164 0.00215
38 01 3 3 269192 0.99075
45 50 4 1 273582 0.00004
46 01 )

gcta —--bfile simd —--make-grm —--out simd.gcta --thread-num 2



Estimate SNP h? in GCTA

= Estimate proportion of phenotypic variance
explained by genome wide SNPs for trait1

gcta —--grm simd.gcta —-pheno
simd.pheno —--mpheno XXX —--reml -out

simd.results /////

"XXX" will be 1 for phenotype data in 3" column,

2 for phenotype data in 4", and 3 for phenotype
data in 5. Run it on all 3 phenotypes




Practical - overview

SNP and trait data are from simulated 20 Mb of
SNP data (about 3000 SNPs) on 2000 people

QC already done (simd.<bim/bed/fam>)
Use "GCTA.Practical.R” to do all this

First use GCTA to get GRM. Look at the pi-hat
distribution

Then use REML in GCTA to get SNP h?
estimate for your 3 phenotypes

Then use least squares regression to get same

« HELP: http://www.complextraitgenomics.com/software/gcta/



Practical - results

e Different h? between traits is due to MAF of
causal variants (CVs):

Trait 1: h2=.60, CV MAF .10-.50
Trait 2: h2=.60, CV MAF .01-.05
Trait 3: h2=.60, CV MAF .0005-.002

 GCTA works by taking advantage of LD
between SNPs and CVs



Outline

m Issues and extensions of GCTA (de Candia)
m LD
m  quality control

m additional topics



LD Caveats

— Datasets with fewer SNPs will give lower genetic
variance estimates

— Lower MAF CVs will give lower h? estimates
because poorly tagged by common SNPs

— Regions with higher LD get overrepresented, lower
LD underrepresented (Speed et al. 2012)
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D as a measure of LD

* D compares the observed frequency of a
haplotype (e.g., A,B,) to the expected when
alleles are in LE
- D =x4¢-p4q4 , Where

* X4¢ IS frequency of A;B,
* p, and q, are frequencies of A, and B,, respectively

* Note: requires phased data; iterative procedures can
estimate it with unphased data assuming random mating

— Its range depends on frequency of alleles



Normalized measures of LD
D =D/D,.,, where

— D, Is the theoretical maximum D between two alleles
— D" varies between -1 and 1

* r=D/sqrt(p4p,949,)

— Measure that we’re interested in since h? that we can infer is
function of variances in CVs tagged by measured SNPs

e D" and r are not the same
—WhenD =1,p,=.2,9,=.2,r=1.00
— WhenD =1,p,=.2,9,=.5,r=0.50



h2 estimates lower for traits
influenced by rarer CVs

« SNPs pick up most variance in CVs when they

are the same frequency as the CVs

— GWAS doesn’t include lowest MAF SNPs (especially if well cleaned) so
lowest MAF CVs unlikely to be tagged perfectly in GWA data



R2
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h2 estimates lower for traits

influenced by rarer CVs
 SNPs pick up most variance in CVs when they

are the same frequency as the CVs

GWAS doesn’t include lowest MAF SNPs (especially if well cleaned) so
lowest MAF CVs unlikely to be tagged perfectly in GWA data

 The more common the CV, the larger the range
of SNPs that will detect it
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QC Procedures

1. Reduce standard errors by including covariates
and reducing error variance in genotypes

2. Reduce bias in variance estimates by
eliminating possible confounds

y = fixed + random g + random e

var(y) = var(g) + var(e)

We assume cov(fixed,g)=0 and cov(g,e)=0

* Be especially careful with case control data
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QC Procedures to reduce st. error

* Clean data for
— Subjects missing > ~.02
— SNPs missing > ~.05
— HWE p < 10e-6
— MAF < ~.01

— Plate effects:

 Remove plates with extreme average inbreeding
coefficients or high average missingness



QC Procedures

2. Reduce bias in variance estimates by
eliminating possible confounds

y = fixed + random g + random e

var(y) = var(g) + var(e)

We assume cov(fixed,g)=0 and cov(g,e)=0

* Be especially careful with case control data



QC Procedures to reduce bias in h?

 Remove close relatives (e.g., --grm-cutoff 0.05)
— Correlation between pi-hats and shared
environment can inflate h? estimates
« Control for stratification (usually 5 or 10 PCs)
— Different prevalence rates (or ascertainments)
between populations can show up as h?
» Control for plates and other possible technical
artifacts

— With case-control data, be very careful if cases &
controls are not randomly placed on plates (can
create upward bias in h?)




Additional Topics - bivariate

» Bivariate analyses can be used to look at
genetic overlap between traits and datasets

gcta --grm snpdat.gcta —-pheno phenol —--reml-bivar 1 2 —--gcovar snpdat.eigenvec --
covar snpdat.covars —--reml-bivar-lrt-rg 0 --out results.phenol

— especially useful for examining overlap between rare
traits that are very unlikely to co-occur within families

— Iy < 1 between datasets can be due to artifactual
differences, or genetic/phenotypic differences between

populations



Additional Topics - binning

* Bins (i.e., --mgrm) are nice for looking at relevance
of functional classes (exonic vs intronic, CNS vs
other genes, etc.) and polygeneity

gcta —--mgrm snpdat.gcta.txt —--pheno phenol —--gcovar snpdat.eigenvec --covar
snpdat.covars —--out results.phenol
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Additional Topics - binning

* Bins (i.e., --mgrm) are nice for looking at relevance
of functional classes (exonic vs intronic, CNS vs
other genes, etc.) and polygeneity
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Additional Topics - GWAS

 GWAS by including random genetic effects
along with fixed effects (SNP 'covariate’).
— SNPs being tested can be included as fixed effects
— Pi-hats shouldn’t be calculated based on SNPs in
LD with SNPs of interest

« Can control for all factors that can inflate h?
estimates in GCTA - stratification, QC, etc.

« Can increase power by reducing phenotypic
variance by the estimated h?
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