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Historical gene mapping
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The Majority of Heritability for Most
Diseases Is Yet to Be Explained

The case of the missing heritability

When scientists opened up the human genome, they expected to find the genetic components of
common traits and diseases. But they were nowhere to be seen. Brendan Mahershines a lighton

six places where the missing loot could be stashed away.
Maher (2009) Nature
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What Has Been The Point?

Understanding the underlying biology of disease

The identification of drug targets and the
development of new drugs/drug repositioning

Understanding the basis of individual differences
Genetic risk prediction?

Instruments to understand observational
epidemiological associations

REVIEW

Five Years of GWAS Discovery
Peter M. Visscher,1.2* Matthew A. Brown,! Mark I. McCarthy,3# and Jian Yang>

The American Journal of Human Genetics 90, 7-24, January 13, 2012
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Tests of Assoclation In
Unrelated Individuals



Genetic Case Control Study
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Allele-based tests

e Each individual contributes two
counts to 2x2 table.

e Test of association

Cases Controls Total

X? = Z Z (nij __E[ﬂ_ij])Z G N Ny, n,.

i=0,1j=A, U E|_nijJ T Noa Noy No.
where NN, Total A n.y n.
E[”ij =
n.
« X2 has y? distribution with 1 OR = USVULNY
degrees of freedom under null NiyNoa
hypothesis.

« Armitage trend test preferred
(1.e.GG=0;GT=1,TT =2)



Genotypic tests

« SNP marker data can be
represented in 2x3 table.

e Test of association

X2 — Z Z (nij_E[ﬂ_ij])2

i=0,1,2 j=A,U El_n ijJ

n.n;

E[nij]: n

« X2 has ¥ distribution with 2
degrees of freedom under null
hypothesis.

Cases Controls Total
GG Ny Ny n,.
GT Ny Ny n,.
TT Noa Nou No.
Total N.a n., n.




Dominance Model

e Each individual contributes two
counts to 2x2 table.

e Test of association

Cases Controls Total

—E[n, If GG/GT n n n,.

X2 _ (nlj ) '] 1A 1U 1

i;,lj—;,u E|_nijJ TT Noa Nou No.

where n.n. Total  n, Ny n.
E[nij]: ;1 -

« X2 has y? distribution with 1
degrees of freedom under null
hypothesis.



Logistic regression framework

« Model case/control status within a logistic regression framework.

 Let m; denote the probability that individual 1 is a case, given their
genotype G;.
 Logit link function

In(7, I(A—7)) = By + Bu i + BumZwmy,

where e __expnj]
n, =Priiscase|G,,p)= T expln]
5, null model
7 =1 By + Bul oy additive model
By + BunZumyi + BumZomayi - 9€NOLype-based model




Indicator variables

» Represent genotypes of each individual by
Indicator variables:

Additive Genotype model
model
Genotype Z i Z(Mm) Z )
mm 0 -1 0
Mm 1 0 1
MM 2 1 0




Likelithood calculations

 Log-likelihood of case-control data given
marker genotypes

é(y\G,ﬁ): ZYi In:ni]+(1_yi)|n[1_ni]

where y; = 1 if individual 1 1s a case, and y; =0
If individual 1 1s a control.

« Maximise log-likelihood over p parameters,
denoted (s, 3}

» Models fitted using PLINK.

 Additive model equivalent to Armitage test for
trend



Model comparison

« Compare models via deviance, having a y?
distribution with degrees of freedom given

by the difference in the number of model

parameters.
Models Deviance df
Additive vs null 21y[G B B )- z(y\e,fso)_

Genotype vs null

2

/ly

A

G’ﬁMM’ﬁMmﬁo)_f(y

G, B,

)




Covariates

* Itis straightforward to incorporate covariates in the
logistic regression model:
* age, gender, and other environmental risk factors.

* Need to be careful
 Generalisation of link function, e.g. for additive
model:

=Bo +Bulmyi + Z-ijij

where X Is the response of individual I to the jth
covarlate and v: 1s the corresponding covariate

regressmn coefficient.



Simple Additive Regression Model of
Assoclation (Unrelated individuals)

Yi= o+ PX; + ¢
where
Y, = trait value for individual |
X:= number of ‘A’ alleles an individual has

Association test is whether > 0



Linear Regression Including Dominance

Yi=a+ BX+B,Z1+¢

where
Y, = trait value for individual |
X,= 1l ifindividual 1 has genotype ‘AA> Z= 0 for ‘AA’
0 if individual 1 has genotype ‘Aa’ 1 for ‘Aa’
-1 if individual 1 has genotype ‘aa‘ 0 for ‘aa’




Further extensions

« Can model haplotypes

« Can model imputed genotypes

 Can model interactions



Population Stratification



DEFINITIONS: STRATIFICATION AND ADMIXTURE

1. Stratification / Sub-structure

Refers to the situation where a sample of individuals consists of
several discrete subgroups which do not interbreed as a single
randomly mating unit

2. Admixture

Implies that subgroups also interbreed. Therefore individuals may be
a mixture of different ancestries.



My Samples

Sample 1 Americans

= p=1
Use of Chopsticks
A Yes No Total
A, 320 320 640
A, 80 80 160
Total 400 400 800




My Samples

Sample 2 Chinese

x= p=1
Use of Chopsticks
A Yes No Total
A, 320 20 340
A, 320 20 340

Total 640 40 680




My Samples

Sample 3 Americans + Chinese

v?=34.2 p=4.9x10-9
Use of Chopsticks
A Yes No Total
A, 640 340 980
A, 400 100 500

Total 1040 440 1480




Population structure

Population 1 Cases Population 2

I ]
- —

Controls

Genotype [laalllaa [lAA

Marchini, Nat Genet (2004)



ADMIXTURE: (DIABETES IN AMERICAN INDIANS)

Full heritage American Indian
Population
+ -

Gm3:51314 100 990

(NIDDM Prevalence ~ 40%)

\
\
\
\
\

Caucasian Population

+

GM3213.14 ge0p ~3406

22

Study without knowledge of genetic background:

Gm>>134 Cases | Controls
haplotype

+ 7.8%

- 92.2%

OR=0.27

95%Cl1 =0.18 - 0.40



ADMIXTURE: (DIABETES IN AMERICAN INDIANS)

Index of Indian Gm?3:5.13,14
Heritage
+ -
0 17.8% 19.9%
4 28.3% 28.8%
8 35.9% 39.3%

Gm haplotype serves as a marker for Caucasian admixture



QQ plots

-
Box 2 | Visualization of genome-wide association data
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Solutions

Family-based Analysis

Stratified Analysis

— Analyze Chinese and American samples separately then
combine statistically

Model the confounder

— Include a term for Chinese or American ancestry in a
logistic regression model

— Principal Components
Genomic Control
Linear Mixed Models



Family based Tests of
Assoclation



Transmission Disequilibrium Test

AC

AA

O
@

AC

Rationale: Related
Individuals have to be
from the same population

Compare number of
times heterozygous
parents transmit “A” vs “C”
allele to affected offspring

Many variations



DT

Table 2

Combinations of Transmitted and Nontransmitted Marker
Alleles M, and M, among 2n Parents of n Affected Children

NONTRANSMITTED
ALLELE
TRANSMITTED
ALLELE M, M, TOTAL
M1 ................. a b atb
Ml ttttttttttttttttt ﬂ d c+ d
Total ............ atc b+d 2n

Spielman et al 1993 AJHG



AC

TDT Advantages

AA

AC

Robust to stratification

eldentification of
Mendelian Inconsistencies

Parent of Origin Effects

More accurate
haplotyping



AC

TDT Disadvantages

AA

AC

*Difficu
*Difficu

t to gather families

t to get parents for

late onset / psychiatric
conditions

*Genotyping error
produces bias

*Inefficient for genotyping
(particularly GWA)



Case-control versus TDT
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Genomic control

. No stratification

I sisssssnninininigs &)

Test locus Unlinked ‘null’ markers

2

| ITTTTTT L1 T

Stratification — adjust test statistic




Genomic control

> “N” is Genome-wide inflation factor

A =median{ y2, y2,..., 2}/ 0.456

> Test statistic is distributed under the null:

TN//1~X21

> Problems...




Principal Components Analysis

Principal Components Analysis Is applied to genotype data
to infer continuous axes of genetic variation

Each axis explains as much of the genetic variance in the
data as possible with the constraint that each component is
orthogonal to the preceding components

The top principal Components tend to describe population
ancestry

Include principal components in regression analysis =>
correct for the effects of stratification

EIGENSTRAT, SHELLFISH



| Component Two
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Novembre et al, Nature (2008)
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Wellcome Trust Case Control
Consortium

THE ¥
INDEPENDENT

Tracey Emin

Exclusive: How I created the show of my life i
PLUS YOUR CHANCE TO OWN A LIMITED-EDITION ARTWORK IN EXTRHE

Bipolar disorder , Coronary heart disease
Also known as manic depression, Lo The most frequent cause of death in Britain,
it affects 100 million people - with 100,000 victims every year. By 2020, it
around the world will be the biggest killer in the world

Hypertension ) »
Hehbloodprasmweatlects Co- 2 3 Rheumatoid arthritis
million people in Britain. Can lead to )\ Nearly 400,000 people in Britain
stroke, heart disease and kidney failure ‘ : p \ ' are afflicted with this auto-immune

disease of the joints

Type 1diabetes
Diabetic condition in which

sufferers have to inject insulin. . s .
Affects 350,000 people in UK Crohn’s disease

N Up to 60,000 people are affected by this
T\/ pe 2 d ia b("t(\g 2 debilitating bowel condition which can
v 7 R 4

ause distress and pain for a lifetime
Almost 2 million Britons are affected by o e
this late-onset disease, which is linked
with the growing obesity epidemic

I: FOR SEVEN OF THE MOST
'O MILLIONS OF SUFFERERS

FULL STORY, PAGE 2




Population structure - A

Genomic control - 7\,

genome-wide
Inflation of median
test statistic

Disease
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Disease collection center

Center No. of samples
1 524
2 271
3 439
4 465
5 301

Center3: A=1.77
All others: A = 1.09



Multi-dimensional Scaling
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WTCCC

Excluded samples
YRI
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CHB+JPT



Linear Mixed Models

The test of association is performed in the model for the
means

“Relatedness™ between individuals (due to both
population structure and cryptic relatedness) is captured
In the modelling of the covariance between individuals

Requires genome-wide data
Often more effective than other approaches

Variety of software packages (e.g. GEMMA)



Example

LETTER

doi:10.10 38/ nature 102 51

Genetic risk and a primary role for cell-mediated
immune mechanisms in multiple sclerosis

The Internarional Multiple Sclerosis Genetics Consortium* & the Wellcome Trust Case Control Consortinm 2%

Multiple sclerosis is a common disease of the cenfral nervous
system in which the interplay between inflimmatory and neuro-
degenerative processes typically results in intermittent neuro-
logical dslnrbance i)]luwcd by progressive acoumulation of
disabili i H"ﬂlﬂhwibuwnlhmgmwhdols
amprmmrily ible for the sut

of the disease seen in the relatives of affected individnals™, and
systematic attempts to identify linkage in multiplex families have
oonfirmed that variation within the major histocompatibility
a)lll])]n (MHC) s the grmlrsl individual effect on risk®.
studies (GWAS)™®

resulted in an unacceptably high genomic inflation: for example, the
genomiccontrol factor™ (2) was £ = 1.2. Wetriedto reduce the genomic
inflation by discarding the case samplesthat seemed least wel matched to
control sets. Removal of half the available cases in this fashion only
reduced A to L1 In another approach to handling structure, statistical
chistering algorithms were successful in identifying subgroups ofthe data
within which cases and controls seemed well matched for ancestry (see
Supplementary Fig. 17). However, tests within these subgroups com-
bined via ficed-effects meta-analyds also yidded unacceptably high
genomicinflation (4 =1 4) in an analysis with seven matched subgmups
of cases and controls. la_n]) we applied a novd variance components

have ennhlcd more ﬂnn 20 additional risk lod to be i
and have shown ﬂnlmn]nplevamm.ic(erlmg morlcilmrllvldml
effects have a key role in di B
archi underlying -pibili lol]u:dlarls: u-mmnsl.ob:
defined and is anticipated to require the analysis of sample sizes
that are beyond the numbers currently available to individual
research groups. In a collaborative GWAS involving 9772 cases
of Enropean drsccmculku.cdby 23 research groups working in 15
different ies, we have almost all of the previously
suggested associations and identified at least a further 29 novd
snsccplibility loci. Within the MHC we have refined the identity
of the HIA-DRBI risk alleles and confirmed that variation in the
HIA-A gene undedies the independent protective effect attri-
batable to the class 1 region. Immunologically relevant genes are
significantly overrepresented among those mapping close to the
ldemlﬁed loci and particularly implicate T-helper—cell differenti-
ation in the pathogenesis of multiple sderasis.

We performed a large GWAS as part of the Wellcome Trust Case
Control Consortium 2 (WTCCC2) project. Cases were recruited
through the International Multiple Sclerosis Genetics Consortium
(IMSGC) and compared with the WTCCC2 common contral set'™™
supplemented by data from the control arms of existing GWAS. We
introduced a number of novd quality control methods for processing
these data sets (see Supplementary Information), which ultimately
provided relisble information from 9772 cases and 17376 controls
(Fig. 1a). After single nudectide polymorphism (SNF)-based quality
ontrols, data from 465,434 autesomal SNPs, common toall internally
and externally generated data sets, were available for analysis,

The multi-population nature of our study (Fig. 1a, b) afforded an
opportunity to assess various published approaches for lling the
potential confounding effects ufpupu]auun structure, several ofwhich
(in the event) proved unhelpful (see Supplementary Information).
Although not common in primary GWAS undertaken to date, the
challenge of combining data across populations, in contexts where
not all case samples have controls avaiable from the same population
(thus preduding standard meta-analytical techniques), may become
mare routine as study sizes increase.

Weattempted analyses of the non-United Kingdom (UK) data with
the now widespread technique of using principal components as
awariates to correct for structure. However, even use of all sven top
principal components that captured genome-wide effects in our data

method (similar ribed p ¥*),separatdy to the UK and
non-UK data sets, whl(hrxyjlutl} acmlmts for corrdations among the

OCENENEENEEEEEER
o

Cases.

Figure 1| f dcontrols a,b, Al cx d controls were
drawn from populstions with European ancestry; cases from 15 countries and
contrds fromB. a, Numbers of case (red) and control (Back) samples fromeach
country. b, The projection of samples anto the first two principal components
of genetic variation, with casesshown on the left and controls on the rght. The
axes are orientated (o ap proxinsate the geography, and samples are colour
coded as indicated in the legend NZ, New Zealind. We genotyped the cases
(9,772) and sorme Swedish controls (527) using the Mlumina Hu man 660-Ousd
platform, and the UK controls (5,175, the WTOCC2 common oontrol set'*)
using the Mumins 1IM platfonn. All other controls were genotyped extemally
using various Thumina genotyping systems (see Supplementary Information).

*4 12 o marivors and s 20 R  AaRes o4 e ol of e e ar of Dot ot 5 lster 1 Sun iemaniy efaematon

214 | NATURE | VOL 476 | 11 AUGUST 2011

©2011 Macmillan Publishers Limited. All rights reserved

Sawcer et al, Nature (2011)



Comparison of Approaches In
Sawcer et al.
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Practical



Assessing
“Significance” 1n
Genome-wide
Assoclation Studies



Asymptotic P values

“The probability of observing the test result or a more
extreme value than the test result under the null
hypothesis”

The p value is NOT the probability that the null hypothesis
IS true

The probability that the null/alternate hypothesis is true is a
function of the evidence contained in the data (p value), the
power of the test, and the prior probability that the
association is true/false

The p value is a fluid measure of the strength of evidence
against the null hypothesis that was designed to be
Interpreted in conjunction with other (pre-existing)
evidence



Interpreting p values

STRONGER WEAKER EVIDENCE
EVIDENCE
Genotyping error “Suspicious” SNP
unlikely
Stratification unlikely Stratification possible
Low p value Borderline p value
Powerful Study Weak Study
High MAF Low MAF
Candidate Gene Intergenic region
Previous Association NoO previous evidence




Multiple Testing

Multiple Testing Problem: The probability of observing a “significant” result
purely by chance increases with the number of statistical tests performed

For testing 500,000 SNPs
5,000 expected to be significant at a. < .01
500 expected to be significant at o < .001

0.05 expected to be significant at oo < 107

One solution is to maintain oqer = .05
Bonferroni correction for m tests
Set significance level to a = .05/m

“Effective number of statistical tests

“Genome-wide Significance” suggested at around o. = 5 x 10-8 for European
populations



Permutation Testing

 The distribution of the test statistic under the null
hypothesis can be derived by shuffling case-
control status relative to the genotypes, and
performing the test of association many times

« Permutation breaks down the relationship between
genotype and phenotype but maintains the pattern
of linkage disequilibrium in the data

» Appropriate for rare genotypes, small studies, non-
normal phenotypes etc.



Replication



Replication

» Replicating the genotype-phenotype association is
the “gold standard”™ for “proving” an association 1s
genuine

» Most loci underlying complex diseases will not be
of large effect

o [tis unlikely that a single study will unequivocally
establish an association without the need for
replication



Guidelines for Replication

Replication studies should be of The same SNP should be tested
sufficient size to demonstrate the
effect

The replicated signal should be
Replication studies should In the same direction
conducted in independent
datasets

Joint analysis should lead to a
Replication should involve the lower p value than the original
same phenotype report
Replication should be conducted Well designed negative studies

In a similar population are valuable



Characterization



Characterization

» Functional assays
— (Gene expression
— Mouse/animal models
— In vitro models

 Conditional analyses and fine mapping

* Phenotypic refinement



P(Eczema|Class)

Eczema (Latent Class Analysis

——O0——Class 1,10.7%
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Paternoster et al (in prep)



FLG

Late Onset
Early Onset - Transient

Persistant

OVOL1

Late Onset
Early Onset - Transient

Persistant

ACTL9

Late Onset
Early Onset - Transient

Persistant
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KIF3A

Late Onset
Early Onset - Transient

Persistant

C11orf30

Late Onset
Early Onset - Transient

Persistant

RTEL1

Late Onset
Early Onset - Transient

Persistant
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-log,,Pval

0 2 3 4
-log,,Pval

0 2 3 4
-log,,Pval

Paternoster et al (in prep)




Useful References
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