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Human evolution

Humans are related to other species

[c]

w
ith

available
resources

on
capillary

m
achines.T

w
enty

genom
es

are
first

reported
here,

and
nine

w
ere

previously
described

(see
Sup-

plem
entary

Inform
ation).

T
hepow

erto
detectconstrained

elem
entsdependslargely

on
thetotal

branch
length

of
the

phylogenetic
tree

connecting
the

species
9.

T
he

29
m

am
m

als
correspond

to
a

total
effective

branch
length

of
,

4.5

substitutions
per

site,
com

pared
to

,
0.68

for
the

hum
an–m

ouse–
rat–dog

com
parison

(H
M

R
D

),and
thus

should
offer

greater
pow

er
to

detect
evolutionary

constraint:
the

probability
that

a
genom

ic
sequence

not
under

purifying
selection

w
ill

rem
ain

fixed
across

all
29

species
is

P
1 ,

0.02
for

single
bases

and
P

12 ,
10

2
25

for
12-nucleotide

sequences,com
pared

to
P

1 ,
0.50

and
P

12 ,
10

2
3

for
H

M
R

D
.

For
m

am
m

als
for

w
hich

w
e

generated
23

coverage,our
assisted

assem
bly

approach
10

resulted
in

a
typicalcontig

size
N

50
C

of
2.8

kb
and

a
typical

scaffold
size

N
50

S
of

51.8
kb

(Supplem
entary

T
ext

2
and

Supplem
entary

T
able

1)
and

high
sequence

accuracy
(96%

of
bases

had
quality

score
Q

20,corresponding
to

a
,

1%
error

rate)
11.

C
om

pared
to

high-quality
sequenceacrossthe30

M
b

oftheEN
C

O
D

E
pilotproject 12,w

e
estim

ated
average

errorratesof1–3
m

iscalled
bases

per
kilobase

11,w
hich

is
,

50-fold
low

er
than

the
typical

nucleotide
sequence

difference
betw

een
the

species,
enabling

high-confidence
detection

ofevolutionary
constraint(Supplem

entary
T

ext3).
W

e
based

our
analysis

on
w

hole-genom
e

alignm
ents

by
M

ultiZ
(Supplem

entary
T

ext4).T
he

average
num

ber
ofaligned

species
w

as
20.9

atprotein-coding
positionsin

the
hum

an
genom

e
and

23.9
atthe

top
5%

H
M

R
D

-conserved
non-coding

positions,
w

ith
an

average
branch

length
of

4.3
substitutions

per
base

in
these

regions
(Sup-

plem
entary

Figs
1

and
2).In

contrast,w
hole-genom

e
average

align-
m

ent
depth

is
only

17.1
species

w
ith

2.9
substitutions

per
site,

probably
due

to
large

deletionsin
non-functionalregions

4.T
he

depth
at

ancestralrepeats
is

11.4
(Supplem

entary
Fig.1a),consistent

w
ith

repeats
being

largely
non-functional 2,4.

D
etection

ofconstrained
sequence

O
ur

analysis
did

notsubstantially
change

the
estim

ate
ofthe

propor-
tion

ofgenom
e

under
selection.By

com
paring

genom
e-w

ide
conser-

vation
to

thatofancestralrepeats,w
e

estim
ated

the
overallfraction

of
thegenom

eunderevolutionary
constraintto

be5.36%
at50-bp

w
indow

s
(5.44%

at
12-bp

w
indow

s),using
the

SiPhy-v
statistic

13,a
m

easure
of

overallsubstitution
rate(Supplem

entary
Fig.3),consistentw

ith
previous

sim
ilar

estim
ates

2,4,14.
H

ow
ever,

alternative
m

ethods
15,16

and
different

w
ays

of
correcting

for
the

varying
alignm

ent
depths

give
higher

esti-
m

ates
(see

Supplem
entary

T
ext5

for
details).

T
he

additionalspecieshad
a

m
arked

effecton
ourability

to
identify

thespecificelem
entsunderconstraint.W

ith
29

m
am

m
als,w

epinpoint
3.6

m
illion

elem
entsspanning

4.2%
ofthegenom

e,ata
finerresolution

of
12

bp
(Fig.1b

and
Supplem

entary
T

ext
6,Supplem

entary
Fig.4,

Supplem
entary

T
ables

2
and

3),com
pared

to
,

0.1%
of

the
genom

e
for

H
M

R
D

12-bp
elem

ents
and

2.0%
for

H
M

R
D

50-bp
elem

ents
4.

Elem
ents

previously
detected

using
five

vertebrates
17

also
detect

a
larger

fraction
of

the
genom

e
(,

4.1%
),but

only
cover

45%
of

the
m

am
m

alian
elem

ents
detected

here,suggesting
that

a
large

fraction
of

our
elem

ents
are

m
am

m
alian

specific.
T

he
m

ean
elem

ent
size

(36
bp)

is
considerably

shorter
than

both
previously

detected
H

M
R

D
elem

ents
(123

bp)
and

five-vertebrate
elem

ents
(104

bp)
17.

For
exam

ple,it
is

now
possible

to
detect

individualbinding
sites

for
the

neuron-restrictive
silencer

factor
(N

R
SF)

in
the

prom
oter

ofthe
N

PA
S4

gene,w
hich

are
beyond

detection
pow

er
in

previous
data

sets
(Fig.2

and
Supplem

entary
Fig.5).W

e
found

a
sim

ilarregionaldistri-
bution

of
12-bp

elem
ents

(including
the

2.6
m

illion
new

ly
detected

constrained
elem

ents)
to

previously
detected

H
M

R
D

elem
ents

(r
5

0.94,Supplem
entary

Fig.6).Sim
ilar

results
w

ere
obtained

w
ith

the
PhastC

ons
17statistic

(see
Supplem

entary
T

ext6).
U

sing
a

new
m

ethod,SiPhy-p,sensitive
notjustto

the
substitution

rate
butalso

to
biases

in
the

substitution
pattern

(for
exam

ple,posi-
tionsfree

to
m

utate
betw

een
G

and
T

only,Supplem
entary

Fig.7),w
e

detected
an

additional
1.3%

of
the

hum
an

genom
e

in
constrained

elem
ents

(see
Supplem

entary
T

ables
2

and
3).

M
ost

of
the

new
ly

detected
constrained

nucleotides
extend

elem
ents

found
by

rate-
based

m
ethods,but22%

ofnucleotides
lie

in
new

elem
ents

(average
length

17
bp)

and
are

enriched
in

non-coding
regions.

H
um

an
C

him
panzee

R
hesus m

acaque
Tarsier

M
ouse lem

ur
B

ushbaby
Tree shrew

M
ouse
R

at
K

angaroo rat
G

uinea pig
S

quirrel
R

abbit
P

ika
A

lpaca
D

olphinC
ow

H
orseC

atD
og

Little brow
n bat

Fruit bat
H

edgehog
C

om
m

on shrew
Elephant

R
ock hyrax

Tenrec
A

rm
adillo

S
loth

715

11

23
1

1

4
813

19
810

2320
27

16

10
1221

2
1

2

1

2

2

2
712

11
4

1
11

910
5

919
56

3281211

31 27
12 17

3

5

2Constrained bases (%)

4035302520151050

A
nnotation

Coding
5v UTR
3v UTR

Pseudogene

RNA genes

Intronic
Intergenic

Core
promoterExtended
promoter

C
oding genes

ab

Figure
1

|P
hylogeny

and
constrained

elem
ents

from
the

29
eutherian

m
am

m
alian

genom
e

sequences.
a,A

phylogenetic
tree

ofall29
m

am
m

als
used

in
this

analysis
based

on
the

substitution
rates

in
the

M
ultiZ

alignm
ents.

O
rganism

s
w

ith
finished

genom
e

sequences
are

indicated
in

blue,high
quality

drafts
in

green
and

23
assem

blies
in

black.Substitutions
per

100
bp

are
given

for
each

branch;branches
w

ith
$

10
substitutions

are
coloured

red,blue
indicates

,
10

substitutions.b,A
t10%

FD
R

,3.6
m

illion
constrained

elem
ents

can
be

detected
encom

passing
4.2%

ofthe
genom

e,including
a

substantial
fraction

ofnew
ly

detected
bases(blue)com

pared
to

theunion
oftheH

M
R

D
50-

bp
1

Siepelvertebrateelem
ents

17(see
Supplem

entary
Fig.4b

forcom
parison

to
H

M
R

D
elem

entsonly).T
he

largestfraction
ofconstraintcan

be
seen

in
coding

exons,introns
and

intergenic
regions.For

unique
counts,the

analysis
w

as
perform

ed
hierarchically:coding

exons,59U
T

R
s,39U

T
R

s,prom
oters,

pseudogenes,non-coding
R

N
A

s,introns,intergenic.T
he

constrained
basesare

particularly
enriched

in
coding

transcripts
and

their
prom

oters
(Supplem

entary
Fig.4c).
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Human evolution

The history of human populations

recently diverged subgroups are also found 
in central and West Africa, including in 40% 
of Yoruba HapMap samples42.

If the scenario of a divergence within 
Africa 100,000–120,000 years ago is cor-
rect, then L3 could have arisen within the 
intermediate population in East Africa 
(which is subsequently the source for the 
colonization of Eurasia), and the presence 
of L3 subgroups in West Africa must be 
due to later gene flow across the continent 
coupled with drift or selection to a higher 
frequency in the Yoruba at the mtDNA 
locus. As noted above, such phenomena are 
not uncommon at individual genetic loci, 
and episodes of continental-scale migra-
tion are a known feature of African demo-
graphic history43. Additionally, we note that 
a TMRCA of 60,000–80,000 years ago for L3, 
which is quite recent within the intermediate 
population period of 60,000–120,000 years 
ago, is consistent with the small Ne that 
was inferred for that population before the 
Eurasian expansion.

Alternatively, if L3 is more generally 
representative of Yoruba ancestry, then infer-
ences from nuclear data of an older split 
between Yoruba and non-Africans must 
be incorrect. In this case, it may be that the 
latter studies are misled by more complex 
demographic factors, such as long-term 
population structure or admixture between 
the ancestors of the Yoruba and other older 
populations in West Africa.

European and Asian split. The most recent 
split considered here, between European 
and Asian populations, is difficult to date 
owing to the low number of mutations 
involved44. Nevertheless, when scaled with 
the revised rate, the estimates of this split 
range from 40,000–80,000 years ago and 
accord better with palaeoanthropological 
evidence than as originally reported, where 
they range from 20,000–40,000 years ago 
and thus postdate the earliest accepted  
fossil and archaeological evidence for  
modern humans in Europe and Asia 
40,000–45,000 years ago31–34,45–51.

Comparable estimates from mtDNA are 
obtained by dating the roots of haplogroups 
M and N, which are predominantly found 
outside Africa and comprise parent clades 
of all other non-African haplogroups. A 
recent study inferred TMRCAs of 46,000–
53,000 years ago and 54,000–64,000 years 
ago for M and N, respectively24, which is 
consistent with revised nuclear genomic 
estimates for the European–Asian split.

The oldest fossil evidence for modern 
human migration into Europe dates to 

approximately 45,000 years ago45–47,51 (FIG. 3). 
However, there are indications that mod-
ern humans may have begun to expand 
eastwards into Asia at an earlier date and 
in more than one wave. From genetic data, 
there is the suggestion of a separate initial 
dispersal to Australia before a dispersal to 
East Asia, as inferred from differing pro-
portions of Denisovan admixture52, and 
a separation of 62,000–75,000 years ago 
between Aboriginal Australians and other 
Eurasians on the basis of sequencing an 
Aboriginal Australian genome53. Examples 
of palaeoanthropological evidence are the 
aforementioned attribution to modern 
humans of stone artefacts at Jwalapuram, 
India, 74,000 years ago34 and the dating 
before 68,000 years ago of modern human 
remains at Liujiang, China50. Such findings 
are tentative or disputed at present, but they 
seem to be less improbable in the context of 
an earlier genetic separation from modern 
West Africans and an established presence in 
the Middle East during this period.

Conclusion
Mutation rates derived from phylogenetic 
analyses have been widely used to date 

events in recent human evolution, but 
doubts have also been raised about the valid-
ity of extrapolating such rate estimates over 
millions of years54. The de novo mutation 
rate measurements reviewed here allow us to 
consider the human evolutionary timescale 
from a different starting point. Assuming 
a generation time of around 25 years, they 
imply a yearly mutation rate that is half 
that obtained from phylogenetic analysis, 
and thus even if they are subject to further 
refinement, changes are required in our 
interpretation of genetic data.

In this brief Perspective, we have explored 
a possible reinterpretation of genetic and  
palaeontological evidence for key demo-
graphic events. Although the revised  
mutation rate increases many genetic dating 
estimates by approximately twofold, it seems 
possible to accommodate these older dates 
into a picture of evolution over the past 
million years that in most aspects is no less 
consistent with palaeoanthropological  
evidence than the previous consensus and  
in some aspects more so. The four key 
points may be summarized as follows. First, 
the divergence between modern humans 
and both Neanderthals and Denisovans, 

Figure 4 | Populations and timescales involved in the origin of modern humans according to 
our revised model. Shaded regions show possible distributions of Neanderthal (green; Europe), 
Denisovan (blue–green; Asia) and putative ancestral modern human populations. Arrows indicate 
some major human migrations into Eurasia and Australia (routes are figurative); palaeoanthropo-
logical sites are represented with symbols (diamonds are fossil sites, circles are archaeological sites, 
and open symbols represent uncertain dating or attribution). All numbers refer to dates in thousands 
of years ago. Within Africa, the dashed line running north to south represents the divergence 
between populations ancestral to Khoe–San (purple; South Africa) and other African populations; 
the dashed line running east to west represents divergence between populations ancestral to 
Yoruba (red; West Africa) and present-day non-Africans (orange; East Africa and the Middle East).
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Genetic variation & linkage disequilibrium

Genetic diversity

The two processes which increase genetic diversity in a population are
mutation, which introduces novel variants into the population, and
recombination, which re-shuffles the existing patterns of variation
(haplotypes).

The fate of new mutations is affected by drift, selection, and population
history. Understanding the patterns left behind in genetic variation
because of these forces is key to designing disease studies.
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Genetic variation & linkage disequilibrium

Weak selection pervades disease geneticsw
ith

available
resources

on
capillary

m
achines.T

w
enty

genom
es

are
first

reported
here,

and
nine

w
ere

previously
described

(see
Sup-

plem
entary

Inform
ation).

T
hepow

erto
detectconstrained

elem
entsdependslargely

on
thetotal

branch
length

of
the

phylogenetic
tree

connecting
the

species
9.

T
he

29
m

am
m

als
correspond

to
a

total
effective

branch
length

of
,

4.5

substitutions
per

site,
com

pared
to

,
0.68

for
the

hum
an–m

ouse–
rat–dog

com
parison

(H
M

R
D

),and
thus

should
offer

greater
pow

er
to

detect
evolutionary

constraint:
the

probability
that

a
genom

ic
sequence

not
under

purifying
selection

w
ill

rem
ain

fixed
across

all
29

species
is

P
1 ,

0.02
for

single
bases

and
P

12 ,
10

2
25

for
12-nucleotide

sequences,com
pared

to
P

1 ,
0.50

and
P

12 ,
10

2
3

for
H

M
R

D
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C

of
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kb
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error

rate)
11.

C
om

pared
to

high-quality
sequenceacrossthe30

M
b

oftheEN
C

O
D

E
pilotproject 12,w

e
estim

ated
average

errorratesof1–3
m

iscalled
bases

per
kilobase

11,w
hich

is
,

50-fold
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detection
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ext3).
W

e
based

our
analysis

on
w
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-conserved
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Figs
1

and
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average

align-
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deletionsin
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Population history and diversity

recently diverged subgroups are also found 
in central and West Africa, including in 40% 
of Yoruba HapMap samples42.

If the scenario of a divergence within 
Africa 100,000–120,000 years ago is cor-
rect, then L3 could have arisen within the 
intermediate population in East Africa 
(which is subsequently the source for the 
colonization of Eurasia), and the presence 
of L3 subgroups in West Africa must be 
due to later gene flow across the continent 
coupled with drift or selection to a higher 
frequency in the Yoruba at the mtDNA 
locus. As noted above, such phenomena are 
not uncommon at individual genetic loci, 
and episodes of continental-scale migra-
tion are a known feature of African demo-
graphic history43. Additionally, we note that 
a TMRCA of 60,000–80,000 years ago for L3, 
which is quite recent within the intermediate 
population period of 60,000–120,000 years 
ago, is consistent with the small Ne that 
was inferred for that population before the 
Eurasian expansion.

Alternatively, if L3 is more generally 
representative of Yoruba ancestry, then infer-
ences from nuclear data of an older split 
between Yoruba and non-Africans must 
be incorrect. In this case, it may be that the 
latter studies are misled by more complex 
demographic factors, such as long-term 
population structure or admixture between 
the ancestors of the Yoruba and other older 
populations in West Africa.

European and Asian split. The most recent 
split considered here, between European 
and Asian populations, is difficult to date 
owing to the low number of mutations 
involved44. Nevertheless, when scaled with 
the revised rate, the estimates of this split 
range from 40,000–80,000 years ago and 
accord better with palaeoanthropological 
evidence than as originally reported, where 
they range from 20,000–40,000 years ago 
and thus postdate the earliest accepted  
fossil and archaeological evidence for  
modern humans in Europe and Asia 
40,000–45,000 years ago31–34,45–51.

Comparable estimates from mtDNA are 
obtained by dating the roots of haplogroups 
M and N, which are predominantly found 
outside Africa and comprise parent clades 
of all other non-African haplogroups. A 
recent study inferred TMRCAs of 46,000–
53,000 years ago and 54,000–64,000 years 
ago for M and N, respectively24, which is 
consistent with revised nuclear genomic 
estimates for the European–Asian split.

The oldest fossil evidence for modern 
human migration into Europe dates to 

approximately 45,000 years ago45–47,51 (FIG. 3). 
However, there are indications that mod-
ern humans may have begun to expand 
eastwards into Asia at an earlier date and 
in more than one wave. From genetic data, 
there is the suggestion of a separate initial 
dispersal to Australia before a dispersal to 
East Asia, as inferred from differing pro-
portions of Denisovan admixture52, and 
a separation of 62,000–75,000 years ago 
between Aboriginal Australians and other 
Eurasians on the basis of sequencing an 
Aboriginal Australian genome53. Examples 
of palaeoanthropological evidence are the 
aforementioned attribution to modern 
humans of stone artefacts at Jwalapuram, 
India, 74,000 years ago34 and the dating 
before 68,000 years ago of modern human 
remains at Liujiang, China50. Such findings 
are tentative or disputed at present, but they 
seem to be less improbable in the context of 
an earlier genetic separation from modern 
West Africans and an established presence in 
the Middle East during this period.

Conclusion
Mutation rates derived from phylogenetic 
analyses have been widely used to date 

events in recent human evolution, but 
doubts have also been raised about the valid-
ity of extrapolating such rate estimates over 
millions of years54. The de novo mutation 
rate measurements reviewed here allow us to 
consider the human evolutionary timescale 
from a different starting point. Assuming 
a generation time of around 25 years, they 
imply a yearly mutation rate that is half 
that obtained from phylogenetic analysis, 
and thus even if they are subject to further 
refinement, changes are required in our 
interpretation of genetic data.

In this brief Perspective, we have explored 
a possible reinterpretation of genetic and  
palaeontological evidence for key demo-
graphic events. Although the revised  
mutation rate increases many genetic dating 
estimates by approximately twofold, it seems 
possible to accommodate these older dates 
into a picture of evolution over the past 
million years that in most aspects is no less 
consistent with palaeoanthropological  
evidence than the previous consensus and  
in some aspects more so. The four key 
points may be summarized as follows. First, 
the divergence between modern humans 
and both Neanderthals and Denisovans, 

Figure 4 | Populations and timescales involved in the origin of modern humans according to 
our revised model. Shaded regions show possible distributions of Neanderthal (green; Europe), 
Denisovan (blue–green; Asia) and putative ancestral modern human populations. Arrows indicate 
some major human migrations into Eurasia and Australia (routes are figurative); palaeoanthropo-
logical sites are represented with symbols (diamonds are fossil sites, circles are archaeological sites, 
and open symbols represent uncertain dating or attribution). All numbers refer to dates in thousands 
of years ago. Within Africa, the dashed line running north to south represents the divergence 
between populations ancestral to Khoe–San (purple; South Africa) and other African populations; 
the dashed line running east to west represents divergence between populations ancestral to 
Yoruba (red; West Africa) and present-day non-Africans (orange; East Africa and the Middle East).
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Genetic variation & linkage disequilibrium

Consequences of mutation and recombination

I Genetic variants are correlated because they occur on a particular
haplotype background, and segregate in populations on that
background.

I In the absence of recombination this correlation (called linkage
disequilibrium or LD)would never be broken down and would extend a
great distance along chromosomes.

I Recombination breaks down this correlation over many successive
generations, leaving a narrower and narrower window of correlation.

I Under certain assumptions (neutral evolution, random mating,
homogenous recombination), we can model exactly how far this
correlation should extend.
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Genetic variation & linkage disequilibrium

Theoretical vs. empirical patterns of LD
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Heterogeneous recombination drives observed LD patterns
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Quantifying LD
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D ′ for common SNPs in a region of 100kb
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r 2 for common SNPs in a region of 100kb
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D ′ and r 2 in a haplotypic context
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A haplotype map of the human genome
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HapMap & tag SNPs

Project details (Phase I/II)

Samples:

I 90 Yoruba (30 parent-parent-offspring trios) from Ibadan, Nigeria
(YRI)

I 90 CEPH samples (30 trios) of European descent from Utah (CEU)

I 45 Han Chinese from Beijing (CHB)

I 45 Japanese from Tokyo (JPT)

SNPs: Original goal was 1 SNP every 5kb, but as genotyping costs
dropped, eventual catalogue included approximately 4 million polymorphic
SNPs scattered across the genome.

Panel % r2 > 0.8 mean max r2

YRI 81 0.90
CEU 94 0.97

CHB+JPT 94 0.97
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How can we use HapMap knowledge for disease studies?
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Gain efficiency by removing redundant SNPs
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Haplotypes can yield additional gains in efficiency
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HapMap & tag SNPs

Cheap genotyping arrays allowed this idea to be
implemented genome-wide

Evaluating coverage of genome-wide association studies
Jeffrey C Barrett & Lon R Cardon

Genome-wide association studies involving hundreds of
thousands of SNPs in thousands of cases and controls are now
underway. The first of many analytical challenges in these
studies involves the choice of SNPs to genotype. It is not
practical to construct a different panel of tag SNPs for each
study, so the first generation of genome-wide scans will use
predefined, commercially available marker panels, which will in
part dictate their success or failure. We compare different
approaches in use today, and show that although many of them
provide substantial coverage of common variation in non-
African populations, the precise extent is strongly dependent on
the frequencies of alleles of interest and on specific conside-
rations of study design. Overall, despite substantial differences
in genotyping technologies, marker selection strategies and
number of markers assayed, the first-generation high-throughput
platforms all offer similar levels of genome coverage.

Falling genotype costs and the recent completion of the International
HapMap Project1,2 have made genome-wide association studies
(GWAS) of complex diseases imminent3–5. Such studies have the
potential to assay 100,000–500,000 genetic markers from the 44
million validated genetic variants now available. Although genotyping
most or all of the genetic variants would be desirable in many settings,
present economic and experimental conditions render it necessary, in
practice, to reduce the complete set of genetic
variants down to a tractable but maximally
informative subset.
There are a number of potential approaches

to this problem that have resulted both from
individual investigators’ interests and from
broader questions such as the importance of
obtaining full coverage of the genome versus
focusing on potentially functional variants6,7.
Most of the ongoing or planned GWAS aim to
evaluate most of the common genetic variants
in the human genome, irrespective of their
genic location3,4. For such designs, an obvious
marker selection approach for any particular
study is to pick a theoretically ‘ideal’ set of
SNPs for the study and genotype them in
large samples. This method is appropriate for

studies of small regions or candidate genes, but it is impractical for
GWAS, as the cost of ordering a de novo SNP set for each new genome
scan is prohibitive. Instead, genome-wide studies must choose from
several commercially available alternatives. These pragmatic concerns
of what is currently available in a high-throughput capacity will be at
least as important as theory-driven marker selection for the first
generation of scans that are now underway or being planned.
The practical necessity of having a fixed set of GWAS markers has

obvious advantages, such as the potential to combine data sets across
disease laboratories and the ability to design statistical methods for
commonly used panels, as done for linkage studies over the past decade.
This broad usage makes it important to appreciate the properties of
different marker selection strategies in terms of genomic coverage, allele
frequency representation and population diversity. Here we evaluate the
different strategies (Box 1) used in several commercially available
GWAS panels, including nonsynonymous SNP (nsSNP)-exclusive
sets8, linkage disequilibrium (LD)-based tagging panels9 and random
SNP collections across the genome10. In order to provide as compre-
hensive an evaluation as possible, we use the recently available HapMap
Phase II data1 (one SNP for every 1,250 bp across the entire genome) to
provide a framework for testing and comparison of common variation.
We examine coverage as measured by simple pairwise correlation

(r2) between a member of the tag set and a potentially captured
SNP11,12. This approach is attractive in that it makes few assumptions
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Figure 1 Genomic coverage by maximally efficient (pairwise) tag sets for three HapMap panels and three
r2 cutoffs. Evaluation of common SNPs is performed against the Phase II HapMap data, which provides
a near-complete catalog of common variation (minor allele frequency Z 0.05), including 5 million SNPs
in 270 individuals from populations in North America (CEU), Africa (YRI) and Asia (CHB+JPT)1. The
finished Phase II HapMap contains one common SNP every 1,250 bp in the CEU population and is
estimated to capture 94% of common variation in CEU and CHB+JPT and 81% in YRI1.

Received 3 January; accepted 13 April; published online 21 May 2006; doi:10.1038/ng1801
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Genome-wide association studies & QC

Two competing models to explain genetics of complex
traitsinsight review articles

848 NATURE | VOL 405 | 15 JUNE 2000 | www.nature.com

outcomes, show family recurrence patterns that are strongly sugges-
tive of interactions between genes or epistasis, implying the existence
of multiple, interacting loci.

Finding genes — a historical perspective
Before the early 1980s, genetic risk factors for a disease or trait could
be identified only through direct analysis of candidate genes, usually
through association studies. Starting soon after their discovery,
blood-group systems such as ABO, MN and Rh were tested directly
against an array of human diseases, typically with little replicability.
However, after the study of tens of thousands of subjects, it seems that
ABO shows consistent, but weak, association with a number of traits
involving the gastrointestinal tract1. 
Case–control studies
The approach often used for such studies is the case–control design,
in which a difference in allele frequency is sought between affected
individuals and unrelated unaffected controls. From an epidemio-
logical perspective, a major limitation in this approach is the 
potential for confounding (that is, spurious association resulting

from correlation with the true risk factor) leading to artefactual as
opposed to causal associations. In this case, the most likely source of
confounding is ethnicity, whereby allele frequencies vary by ethnicity
and cases and controls are not adequately matched in terms of 
ethnicity. Although most investigators would at least attempt coarse
matching by major demographic groupings (such as race), substrati-
fication within racial groups can still lead to bias. This drawback of
traditional case–control designs was recognized early on by Lionel
Penrose, who recommended the use of unaffected sibs as controls2.
This paradigm, originally applied to ABO and duodenal ulcer3, has
seen a resurgence in the past few years4–8. The disadvantage of this
design is that sib controls are over-matched to the index cases, leading
to a loss of power compared with a well-designed study involving
unrelated controls7.

Conventional case–control gene-association studies have a long
track record of false-positive results. The high false-positive rate has
often been attributed to confounding due to stratification, although
this has never been proven. It is more likely that the high false-
positive rate results from a low prior probability that the few gene
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Figure 1 Examples of mendelian and non-mendelian inheritance using a gaussian
model. Both loci have the same heritability HL = 12%. a, Dominant mendelian locus
with allele frequency p = 0.00275 and displacement t = 5 s.d. Disease occurs above
the threshold of 3 s.d. Disease risk for heterozygotes (Aa) is 98% and for homozygotes
(aa) it is 0.13%. The population prevalence K = 0.67%. b, Non-mendelian additive
locus with allele frequency p = 0.40 and displacement t = 0.5 s.d. for each A allele (or
total displacement t = 1). Disease occurs above the threshold of 2.5 s.d. Disease risk
for high-risk homozygotes (AA) is 6.7%, for heterozygotes (Aa) it is 2.3% and for low-
risk homozygotes (aa) it is 0.62%. The population disease prevalence K = 2.4%. Even
though the locus is additive on the liability scale, the disease risks are non-additive.
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Figure 2 Examples of two-locus genetic models. a, Genetic heterogeneity with two
rare dominant mendelian alleles (A and B) each with a frequency p = 0.01. The
displacement t for each A and B allele is 5 s.d. Disease risk for each heterozygote is
98% whereas for normal homozygotes it is 0.13%. Other genotypes are extremely
rare. Population disease prevalence K = 4%. b, Additive non-mendelian model. The A
and B allele each have frequency p = 0.10. Displacement is 1 s.d. for each A or B
allele, or total displacement t = 2 for each locus. Disease occurs above a threshold of
2.5 s.d. Disease risk for genotype aabb is 0.62%; for genotypes Aabb and aaBb it is
6.7%; for genotypes AaBb, AAbb, aaBB it is 31%; and for genotypes AABb, AaBB
(rare, not shown) it is 69%. Population disease prevalence K = 4%. Although the two
loci are additive on the liability scale, the disease risks are non-additive and show both
dominance and epistasis effects.
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tive of interactions between genes or epistasis, implying the existence
of multiple, interacting loci.

Finding genes — a historical perspective
Before the early 1980s, genetic risk factors for a disease or trait could
be identified only through direct analysis of candidate genes, usually
through association studies. Starting soon after their discovery,
blood-group systems such as ABO, MN and Rh were tested directly
against an array of human diseases, typically with little replicability.
However, after the study of tens of thousands of subjects, it seems that
ABO shows consistent, but weak, association with a number of traits
involving the gastrointestinal tract1. 
Case–control studies
The approach often used for such studies is the case–control design,
in which a difference in allele frequency is sought between affected
individuals and unrelated unaffected controls. From an epidemio-
logical perspective, a major limitation in this approach is the 
potential for confounding (that is, spurious association resulting

from correlation with the true risk factor) leading to artefactual as
opposed to causal associations. In this case, the most likely source of
confounding is ethnicity, whereby allele frequencies vary by ethnicity
and cases and controls are not adequately matched in terms of 
ethnicity. Although most investigators would at least attempt coarse
matching by major demographic groupings (such as race), substrati-
fication within racial groups can still lead to bias. This drawback of
traditional case–control designs was recognized early on by Lionel
Penrose, who recommended the use of unaffected sibs as controls2.
This paradigm, originally applied to ABO and duodenal ulcer3, has
seen a resurgence in the past few years4–8. The disadvantage of this
design is that sib controls are over-matched to the index cases, leading
to a loss of power compared with a well-designed study involving
unrelated controls7.

Conventional case–control gene-association studies have a long
track record of false-positive results. The high false-positive rate has
often been attributed to confounding due to stratification, although
this has never been proven. It is more likely that the high false-
positive rate results from a low prior probability that the few gene

–4 –2 0 2 4 6 8

–4 –2–3 –1 0 1 2 3 4

aa

aa

Aa

Aa

AA

Standard deviations

Standard deviations

a

b

Figure 1 Examples of mendelian and non-mendelian inheritance using a gaussian
model. Both loci have the same heritability HL = 12%. a, Dominant mendelian locus
with allele frequency p = 0.00275 and displacement t = 5 s.d. Disease occurs above
the threshold of 3 s.d. Disease risk for heterozygotes (Aa) is 98% and for homozygotes
(aa) it is 0.13%. The population prevalence K = 0.67%. b, Non-mendelian additive
locus with allele frequency p = 0.40 and displacement t = 0.5 s.d. for each A allele (or
total displacement t = 1). Disease occurs above the threshold of 2.5 s.d. Disease risk
for high-risk homozygotes (AA) is 6.7%, for heterozygotes (Aa) it is 2.3% and for low-
risk homozygotes (aa) it is 0.62%. The population disease prevalence K = 2.4%. Even
though the locus is additive on the liability scale, the disease risks are non-additive.
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Figure 2 Examples of two-locus genetic models. a, Genetic heterogeneity with two
rare dominant mendelian alleles (A and B) each with a frequency p = 0.01. The
displacement t for each A and B allele is 5 s.d. Disease risk for each heterozygote is
98% whereas for normal homozygotes it is 0.13%. Other genotypes are extremely
rare. Population disease prevalence K = 4%. b, Additive non-mendelian model. The A
and B allele each have frequency p = 0.10. Displacement is 1 s.d. for each A or B
allele, or total displacement t = 2 for each locus. Disease occurs above a threshold of
2.5 s.d. Disease risk for genotype aabb is 0.62%; for genotypes Aabb and aaBb it is
6.7%; for genotypes AaBb, AAbb, aaBB it is 31%; and for genotypes AABb, AaBB
(rare, not shown) it is 69%. Population disease prevalence K = 4%. Although the two
loci are additive on the liability scale, the disease risks are non-additive and show both
dominance and epistasis effects.
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Expected challenges

Given that GWAS are feasible, what are the obstacles which stand in the
way of finding genes?

I Data quality control

I No common, single SNP main effects: all epistasis, or haplotypes, or
rare variation or. . .

I Population structure

I Multiple testing corrections will drown out signal

I Computational burden

I Sample sizes too small to detect the effects

I SNP chips don’t cover enough of the genome
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From intensity measurements to genotypes
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SNP quality control metrics

SNP QC for GWAS is straightforward, and generally similar to any other
genotyping experiment. Commonly used QC checks include:

I Hardy-Weinberg equilibrium (expected ratios of three possible
genotypes)

I Fraction of missing genotypes

I Allele frequency

I Frequency differences in separate control groups (if available)

...but the crucial difference to all previous experiments is scale! The
largest meta-analyses involve 100 billion genotypes.
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Sample quality control metrics

Collecting, processing and genotyping thousands of samples (often from
many different clinicians, hospitals, countries. . . ) is difficult.

I Duplicates

I Unexpected relatives

I Low quality DNA samples

I Sample mix-ups

I Samples with different ethnic ancestry

But the good news is that simple analyses of genome-wide data can be
very informative.
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Clean data matters!
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Clean data matters!

Flood risk fi xes

COMMENTARY

408
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LETTERS
edited by Jennifer Sills

LETTERS  I  BOOKS  I  POLICY FORUM  I  EDUCATION FORUM  I  PERSPECTIVES

Innovation, government, 
and the Chinese economy

406

Invasives: A Major 
Conservation Threat

A FLURRY OF RECENT ARTICLES CALL UPON THE 
conservation community to embrace invasive 
species. Davis and coauthors propose down-
sizing the struggle against invasives (1). In 
the News Focus story “Embracing invasives” 
(18 March, p. 1383), G. Vince suggests that 
the Galápagos “embrace the aliens.” In The 

New York Times (2), H. Raffl es accused envi-
ronmentalists, conservationists, and garden-
ers targeting invasive species of being unrea-
soningly dogmatic and xenophobic.

These articles imply that the concern with 
invasive species derives from the unreason-
able desire to maintain pristine ecosystems 
and exclude all alien species. In fact, con-
servationists recognize that species distribu-
tions are constantly changing, that commu-
nity structure is dynamic, that alien species 
enter and are introduced into natural commu-
nities, and that modifi ed (and even degraded) 
ecosystems have conservation value.  How-
ever, we also recognize an important dis-
tinction between alien species in general—
which are introduced outside their natural 
range by humans, but which in many cases 
are harmless—and invasive species, which 

Retraction 
AFTER ONLINE PUBLICATION OF OUR REPORT “GENETIC SIGNATURES OF EXCEPTIONAL LONGEV-
ity in humans” (1), we discovered that technical errors in the Illumina 610 array and an inad-
equate quality control protocol introduced false-positive single-nucleotide polymorphisms 
(SNPs) in our fi ndings. An independent laboratory subsequently performed stringent quality 
control measures, ambiguous SNPs were then removed, and resultant genotype data were vali-
dated using an independent platform. We then reanalyzed the reduced data set using the same 
methodology as in the published paper. We feel the main scientifi c fi ndings remain supported 
by the available data: (i) A model consisting of multiple specifi c SNPs accurately differentiates 
between centenarians and controls; (ii) genetic profi les cluster into specifi c signatures; and (iii) 
signatures are associated with ages of onset of specifi c age-related diseases and subjects with 
the oldest ages. However, the specifi c details of the new analysis change substantially from 
those originally published online to the point of becoming a new report. Therefore, we retract 
the original manuscript and will pursue alternative publication of the new fi ndings. 
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by defi nition not only are introduced outside 
their range but also cause substantial harm 
to biodiversity and human livelihood. Inva-
sive species, not alien species, are indeed a 
major cause of biodiversity loss, implicated 
in the majority of extinctions (3), and this 
trend continues. Thus, they deserve aggres-
sive intervention.

As leaders of conservation organizations 
with missions to protect biodiversity, we 
believe that the endorsement of invading spe-
cies—although potentially stimulating from 
an academic perspective—risks trivializing 
the global action that is needed to address one 
of the most severe and fastest growing threats 
to biological diversity. As recently noted by 
many leading scientists (4–8), as well as by the 
IUCN SSC Invasive Species Specialist Group 
(9), practitioners combating invasive species 
use a suite of strategies to prevent the arrival 
of invasives and to mitigate their impacts after 
arrival. Our organizations have promoted 
biosecurity programs, implemented dozens of 
campaigns for invasive species removal, and 
supported hundreds of the more than 1000 
eradications so far completed, recovering 
ecosystems and preventing many extinctions 
worldwide, especially on islands. These suc-
cesses demonstrate clearly that threats from 
invasive species can be mitigated and that 
biodiversity can be protected through these 
actions. Tackling invasives also addresses the 
economic damage they cause and the serious 
threats they pose to human communities, for 
example, through reducing access to food and 

Letters to the Editor
Letters (~300 words) discuss material published in 
Science in the past 3 months or matters of gen-
eral interest. Letters are not acknowledged upon 
receipt. Whether published in full or in part, Let-
ters are subject to editing for clarity and space. 
Letters submitted, published, or posted elsewhere, 
in print or online, will be disqualifi ed. To submit a 
Letter, go to www.submit2science.org.
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GWAS resources

PLINK: analysis toolset
http://pngu.mgh.harvard.edu/purcell/plink/

Worked example: Data quality in case-control association
studies, Anderson CA et al. Nature Protocols 5,
1564–1573 (2010).
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