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Genomewide Association Studies

• Survey 500,000 SNPs in a large sample

• An effective way to skim the genome and …
• … find common variants associated with a trait of interest

• Rapid increase in number of known complex disease loci
• For example, ~50 genes now identified for type 2 diabetes.

• Techniques for genetic analysis are changing rapidly
• What are some of the potential benefits and challenges for 

replacing genotyping with sequencing in complex trait studies?



Questions that Might Be Answered With 
Complete Sequence Data…

• What is the contribution of each identified locus to a trait?
• Likely that multiple variants, common and rare, will contribute

• What is the mechanism? What happens when we knockout a 
gene?

• Most often, the causal variant will not have been examined directly
• Rare coding variants will provide important insights into mechanisms

• What is the contribution of structural variation to disease?
• These are hard to interrogate using current genotyping arrays.

• Are there additional susceptibility loci to be found?
• Only subset of functional elements include common variants …
• Rare variants are more numerous and thus will point to additional loci



Shotgun Sequence Reads

• Typical short read might be <25-100 bp long and not very informative on its 
own

• Reads must be arranged (aligned) relative to each other to reconstruct 
longer sequences

• Sequencing errors are much more common than true variation



Base Qualities

• Each base is typically associated with a quality value

• Measured on a “Phred” scale, which was introduced by Phil 
Green for his Phred sequence analysis tool
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Read Alignment

• The first step in analysis of human short read data is to align each 
read to genome, typically using a hash table based indexing 
procedure

• This process now takes no more than a few hours per million reads …

• Analyzing these data without a reference human genome would 
require much longer reads or result in very fragmented assemblies

5’-ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG-3’

Reference Genome (3,000,000,000 bp)

GCTAGCTGATAGCTAGCTAGCTGATGAGCCCGA
Short Read (30-100 bp)



Read Alignment – Food for Thought

• Typically, all the words present in the genome are indexed to facilitate 
read mapping …

• What are the benefits of using short words?
• What are the benefits of using long words?

• How matches do you expect, on average, for a 10-base word?
• Do you expect large deviations from this average?



Mapping Quality

• Measures the confidence in an alignment, which depends on:
• Size and repeat structure of the genome
• Sequence content and quality of the read
• Number of alternate alignments with few mismatches

• The mapping quality is usually also measured on a “Phred” scale

• Idea introduced by Li, Ruan and Durbin (2008) Genome Research 
18:1851-1858



Mapping Quality Definition
• Given a particular alignment A, we can calculate
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• In practice, summing over all possible alignments is too costly and this quantity is 
approximated (for example, by summing over the most likely alignments).



Refinements to Mapping Quality

• In their simplest form, mapping qualities apply to the entire read

• However, in gapped alignments, uncertainty in alignment can differ 
for different portions of the read

• For example, it has been noted that many wrong variant calls are supported 
by bases near the edges of a read

• Per base alignment qualities were introduced to summarize local 
uncertainty in the alignment



Per Base Alignment Qualities

Heng Li

5’-AGCTGATAGCTAGCTAGCTGATGAGCCCGATC-3’
GATAGCTAGCTAGCTGATGA GCCG

Reference Genome

Short Read



Per Base Alignment Qualities

Heng Li

5’-AGCTGATAGCTAGCTAGCTGATGAGCCCGATC-3’
GATAGCTAGCTAGCTGATGAGCC-G

Reference Genome

Short Read

Should we insert a gap?



Per Base Alignment Qualities

Heng Li

5’-AGCTGATAGCTAGCTAGCTGATGAGCCCGATC-3’
GATAGCTAGCTAGCTGATGAGCCG

Reference Genome

Short Read

Compensate for Alignment Uncertainty
With Lower Base Quality



Shotgun Sequence Data

5’-ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG-3’
Reference Genome

GCTAGCTGATAGCTAGCTAGCTGATGAGCCCGA

AGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTG
ATGCTAGCTGATAGCTAGCTAGCTGATGAGCC

ATAGCTAGATAGCTGATGAGCCCGATCGCTGCTAGCTC
TAGCTGATAGCTAGATAGCTGATGAGCCCGAT

Sequence Reads

Predicted GenotypeA/C



Shotgun Sequence Data

5’-ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG-3’
Reference Genome

Sequence Reads

Possible Genotypes

P(reads|A/A, read mapped)= 1.0

P(reads|A/C, read mapped)= 1.0

P(reads|C/C, read mapped)= 1.0



Shotgun Sequence Data

5’-ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG-3’
Reference Genome

GCTAGCTGATAGCTAGCTAGCTGATGAGCCCGA
Sequence Reads

Possible Genotypes

P(reads|A/A, read mapped)= P(C observed|A/A, read mapped) 

P(reads|A/C, read mapped)= P(C observed|A/C, read mapped) 

P(reads|C/C, read mapped)= P(C observed|C/C, read mapped) 



Shotgun Sequence Data

5’-ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG-3’
Reference Genome

GCTAGCTGATAGCTAGCTAGCTGATGAGCCCGA
Sequence Reads

Possible Genotypes

P(reads|A/A, read mapped)= 0.01

P(reads|A/C, read mapped)= 0.50

P(reads|C/C, read mapped)= 0.99



Shotgun Sequence Data

5’-ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG-3’
Reference Genome

GCTAGCTGATAGCTAGCTAGCTGATGAGCCCGA

AGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTG

Sequence Reads

Possible Genotypes

P(reads|A/A, read mapped)= 0.0001

P(reads|A/C , read mapped)= 0.25

P(reads|C/C , read mapped)= 0.98



Shotgun Sequence Data

5’-ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG-3’
Reference Genome

GCTAGCTGATAGCTAGCTAGCTGATGAGCCCGA

AGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTG
ATGCTAGCTGATAGCTAGCTAGCTGATGAGCC

Sequence Reads

Possible Genotypes

P(reads|A/A , read mapped)= 0.000001

P(reads|A/C , read mapped)= 0.125

P(reads|C/C , read mapped)= 0.97



Shotgun Sequence Data

5’-ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG-3’
Reference Genome

GCTAGCTGATAGCTAGCTAGCTGATGAGCCCGA

AGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTG
ATGCTAGCTGATAGCTAGCTAGCTGATGAGCC

ATAGCTAGATAGCTGATGAGCCCGATCGCTGCTAGCTC

Sequence Reads

Possible Genotypes

P(reads|A/A , read mapped)= 0.00000099

P(reads|A/C , read mapped)= 0.0625

P(reads|C/C , read mapped)= 0.0097



Shotgun Sequence Data

5’-ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG-3’
Reference Genome

GCTAGCTGATAGCTAGCTAGCTGATGAGCCCGA

AGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTG
ATGCTAGCTGATAGCTAGCTAGCTGATGAGCC

ATAGCTAGATAGCTGATGAGCCCGATCGCTGCTAGCTC
TAGCTGATAGCTAGATAGCTGATGAGCCCGAT

Sequence Reads

Possible Genotypes

P(reads|A/A , read mapped)= 0.00000098

P(reads|A/C , read mapped)= 0.03125

P(reads|C/C , read mapped)= 0.000097



Shotgun Sequence Data

5’-ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG-3’
Reference Genome

GCTAGCTGATAGCTAGCTAGCTGATGAGCCCGA

AGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTG
ATGCTAGCTGATAGCTAGCTAGCTGATGAGCC

ATAGCTAGATAGCTGATGAGCCCGATCGCTGCTAGCTC
TAGCTGATAGCTAGATAGCTGATGAGCCCGAT

Sequence Reads

Combine these likelihoods with a prior information to assign a genotype.

P(reads|A/A, read mapped)= 0.00000098

P(reads|A/C, read mapped)= 0.03125

P(reads|C/C, read mapped)= 0.000097



Ingredients That Go Into Prior
• Most sites don’t vary

• P(non-reference base) ~ 0.001

• When a site does vary, it is usually heterozygous
• P(non-reference heterozygote) ~ 0.001 * 2/3
• P(non-reference homozygote) ~ 0.001 * 1/3

• Mutation model
• Transitions account for most variants (C↔T or A↔G)
• Transversions account for minority of variants



From Sequence to Genotype:
Individual Based Prior

5’-ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG-3’
Reference Genome

GCTAGCTGATAGCTAGCTAGCTGATGAGCCCGA

AGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTG
ATGCTAGCTGATAGCTAGCTAGCTGATGAGCC

ATAGCTAGATAGCTGATGAGCCCGATCGCTGCTAGCTC
TAGCTGATAGCTAGATAGCTGATGAGCCCGAT

Sequence Reads

Individual Based Prior: Every site has 1/1000 probability of varying.

P(reads|A/A)= 0.00000098 Prior(A/A) = 0.00034 Posterior(A/A) = <.001

P(reads|A/C)= 0.03125 Prior(A/C) = 0.00066 Posterior(A/C) = 0.175

P(reads|C/C)= 0.000097 Prior(C/C) = 0.99900 Posterior(C/C) = 0.825



From Sequence to Genotype:
Individual Based Prior

5’-ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG-3’
Reference Genome

GCTAGCTGATAGCTAGCTAGCTGATGAGCCCGA

AGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTG
ATGCTAGCTGATAGCTAGCTAGCTGATGAGCC

ATAGCTAGATAGCTGATGAGCCCGATCGCTGCTAGCTC
TAGCTGATAGCTAGATAGCTGATGAGCCCGAT

Sequence Reads

Individual Based Prior: Every site has 1/1000 probability of varying.

P(reads|A/A)= 0.00000098 Prior(A/A) = 0.00034 Posterior(A/A) = <.001

P(reads|A/C)= 0.03125 Prior(A/C) = 0.00066 Posterior(A/C) = 0.175

P(reads|C/C)= 0.000097 Prior(C/C) = 0.99900 Posterior(C/C) = 0.825



Shotgun Sequence Data
Haplotype Based Prior

5’-ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG-3’
Reference Genome

GCTAGCTGATAGCTAGCTAGCTGATGAGCCCGA

AGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTG
ATGCTAGCTGATAGCTAGCTAGCTGATGAGCC

ATAGCTAGATAGCTGATGAGCCCGATCGCTGCTAGCTC
TAGCTGATAGCTAGATAGCTGATGAGCCCGAT

Sequence Reads

Haplotype Based Prior: Examine other chromosomes that are similar at locus of interest.
In the example above, we estimated that 20% of similar chromosomes carry allele A.

P(reads|A/A)= 0.00000098 Prior(A/A) = 0.04 Posterior(A/A) = <.001

P(reads|A/C)= 0.03125 Prior(A/C) = 0.32 Posterior(A/C) = 0.999

P(reads|C/C)= 0.000097 Prior(C/C) = 0.64 Posterior(C/C) = <.001



Shotgun Sequence Data
Haplotype Based Prior

5’-ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG-3’
Reference Genome

GCTAGCTGATAGCTAGCTAGCTGATGAGCCCGA

AGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTG
ATGCTAGCTGATAGCTAGCTAGCTGATGAGCC

ATAGCTAGATAGCTGATGAGCCCGATCGCTGCTAGCTC
TAGCTGATAGCTAGATAGCTGATGAGCCCGAT

Sequence Reads

Haplotype Based Prior: Examine other chromosomes that are similar at locus of interest.
In the example above, we estimated that 20% of similar chromosomes carry allele A.

P(reads|A/A)= 0.00000098 Prior(A/A) = 0.04 Posterior(A/A) = <.001

P(reads|A/C)= 0.03125 Prior(A/C) = 0.32 Posterior(A/C) = 0.999

P(reads|C/C)= 0.000097 Prior(C/C) = 0.64 Posterior(C/C) = <.001



Sequence Based Genotype Calls
• Individual Based Prior

• Assumes all sites have an equal probability of showing polymorphism
• Specifically, assumption is that about 1/1000 bases differ from reference
• If reads where error free and sampling Poisson …
• … 14x coverage would allow for 99.8% genotype accuracy
• … 30x coverage of the genome needed to allow for errors and clustering

• Population Based Prior
• Uses frequency information obtained from examining other individuals
• Calling very rare polymorphisms still requires 20-30x coverage of the genome
• Calling common polymorphisms requires much less data

• Haplotype Based Prior or Imputation Based Analysis
• Compares individuals with similar flanking haplotypes
• Calling very rare polymorphisms still requires 20-30x coverage of the genome
• Can make accurate genotype calls with 2-4x coverage of the genome
• Accuracy improves as more individuals are sequenced



Paired End Sequencing

Population of DNA fragments of known size (mean + stdev)
Paired end sequences



Paired End Sequencing
Paired Reads

Initial alignment to the reference genome

Paired end resolution



Detecting Structural Variation
• Read depth

• Regions where depth is different from expected
• Expectation defined by comparing to rest of genome …
• … or, even better, by comparing to other individuals

• Split reads
• If reads are longer, it may be possible to find reads that span the 

structural variation

• Discrepant pairs
• If we find pairs of reads that appear to map significantly closer or further 

apart than expected, could indicate an insertion or deletion

• For this approach, “physical coverage” which is the sum of read length 
and insert size is key

• De Novo Assembly



How Much Variation is There?

• An average genome includes:
• 3.6M SNPs
• 350K indels
• 700 large deletions

• Numbers are probably underestimates …
• … some variants are hard to call with short reads

• 1000 Genomes Project (2012) Nature 491:56-65



How Much Variation is There?
SNPs Per Individual in Gene Regions 

European
Ancestry # SNP # HET # ALT # Singletons Ts/Tv

SILENT 10127 6174 3953 38.2 5.10
MISSENSE 8541 5184 3357 72.2 2.16
NONSENSE 86 57 29 2.1 1.70

African 
Ancestry # SNP # HET # ALT # Singletons Ts/Tv

SILENT 12028 8038 3990 53.2 5.19
MISSENSE 9870 6502 3367 94.2 2.16
NONSENSE 92 57 35 2.4 1.57

Primarily European Ancestry

Primarily African Ancestry

NHLBI Exome Sequencing Project



Lots of Rare Functional Variants to Discover

SET # SNPs Singletons Doubletons Tripletons >3 Occurrences

Synonymous 270,263 128,319
(47%)

29,340
(11%)

13,129
(5%)

99,475
(37%)

Nonsynonymous 410,956 234,633
(57%)

46,740
(11%)

19,274
(5%)

110,309
(27%)

Nonsense 8,913 6,196
(70%)

926
(10%)

326
(4%)

1,465
(16%)

Non-Syn / Syn
Ratio 1.8 to 1 1.6 to 1 1.4 to 1 1.1 to 1

There is  a very large reservoir of extremely rare, likely functional, coding variants.
(Results above correspond to approximately 5,000 individuals)

NHLBI Exome Sequencing Project



Allele Frequency Spectrum
(After Sequencing 12,000+ Individuals)
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Genome Scale Approaches
For Studying Rare Variation

• Deep whole genome sequencing
• Can only be applied to limited numbers of samples
• Most complete ascertainment of variation

• Exome capture and targeted sequencing
• Can be applied to moderate numbers of samples
• SNPs and indels in the most interesting 1% of the genome

• Low pass whole genome sequencing
• Can be applied to moderate numbers of samples
• SNPs and indels present in multiple individuals



Empirical Variant Discovery Power
1000 Genomes Project, 4x Low Pass Sequencing

1%0.5%0.1%

Allele Count

Fr
ac

tio
n 

D
is

co
ve

re
d

Fraction of variants discovered in low pass sequencing, estimated by comparison with
External data. 

Hyun Min Kang



Empirical Evaluation of Haplotype Callers
1000 Genomes Project, 4x Low Pass Sequencing

Homozygote Sites, Heterozygote Sites

Using Haplotype InformationWithout Haplotype Information



What Was the Optimal Model for Analysis of
1000 Genomes Pilot Data?

1000 Genomes Call Set
(CEU)

Homozygous
Reference

Error Heterozygote Error
Homozygous Non-

Reference Error

Broad 0.66 4.29 3.80

Michigan 0.68 3.26 3.06

Sanger 1.27 3.43 2.60

Majority Consensus 0.45 2.05 2.21

• Pilot analyzed with different haplotype sharing models
– Sanger (QCALL), Michigan (MaCH/Thunder), Broad (BEAGLE)
– Consensus of the three callers clearly bested single callers



Given Fixed Capacity,
Should We Sequence Deep or Shallow?

.5 – 1% 1 – 2% 2-5%

400 Deep Genomes (30x)

Discovery Rate 100% 100% 100%

Het. Accuracy 100% 100% 100%

Effective N 400 400 400

3000 Shallow Genomes (4x)

Discovery Rate 100% 100% 100%

Het. Accuracy 90.4% 97.3% 98.8%

Effective N 2406 2758 2873

Li et al, Genome Research, 2011



Design A Whole Genome 
Sequencing Study in Sardinia

Gonçalo Abecasis
David Schlessinger 
Francesco Cucca



SardiNIA Whole Genome Sequencing
• 6,148 Sardinians from 4 towns in the Lanusei Valley, 

Sardinia
• Recruited among population of ~9,841 individuals
• Sample includes >34,000 relative pairs

• Measured ~100 aging related quantitative traits

• Original plan:
• Sequence >1,000 individuals at 2x to obtain draft sequences
• Genotype all individuals, impute sequences into relatives



How Is Sequencing Progressing?
• NHGRI estimates of sequencing capacity and cost …

– Since 2006, for fixed cost …
– … ~4x increase in sequencing output per year

• In our own hands…
– Mapped high quality bases
– March 2010: ~5.0 Gb/lane
– May 2010: ~7.5 Gb/lane
– September 2010: ~8.6 Gb/lane
– January 2011: ~16 Gb/lane
– Summer 2011: ~45 Gb/lane

• Other small improvements
– No PCR libraries increase genome coverage, reduce duplicate rates

Fabio Busonero, Andrea Maschio



As more samples are sequenced,
Accuracy increases

Heterozygous Mismatch Rate (in %)



Design
Sequence 1000 

individuals 
@ 2x  or greater

“Draft” Genomes
for 1000 Individuals

Genotype 6000 
individuals with 
700,000 SNPs

Haplotypes 
for 6000 Individuals

Whole Genome 
Information on 

6,000 individuals



Sardinian Haplotypes Are Great
For Imputation In Sardinia

Reference Panel SNP Imputation Accuracy (r2) IN SARDINIA

Population Size MAF 1-3% MAF 3-5% MAF >5%

1000G
(Worldwide) 563 0.75 0.88 0.94

Sardinia 508 0.90 0.95 0.97

Sardinia 831 0.92 0.97 0.98

Sardinia 1488 0.95 0.98 0.99

Data: Sardinia data set; chr20; Imputation-panel: Affy1M; Evaluation-panel: Metabochip 46



What Do We See Genomewide?
LDL Cholesterol
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Q39X in HBB

Genomic Position



LDL Genetics In Lanusei Valley, Sardinia,
Current Sequenced Based View

Locus Variants MAF Effect Size (SD) H2

HBB Q39X .04 0.90 8.0%??

APOE R176C, C130R .04, .07 0.56, 0.26 3.3%

PCSK9 R46L, rs2479415 .04, .41 0.38, 0.08 1.2%

LDLR rs73015013, V578R .14, .005 0.16, 0.62 1.2%

SORT1 rs583104 .18 0.15 0.6%

APOB rs547235 .19 0.19 0.5%

• Most of these variants  are important across Europe, extensively studied.
• Q39X variant in HBB is especially enriched in Sardinia.
• V578R in LDLR is a Sardinia specific variant, particularly common in Lanusei.



Tools for Sequence Analysis
Useful Pointers



MAQ and BWA

• Two popular read mappers developed by Heng Li and Richard Durbin at 
Sanger

• MAQ uses short sequences to build an index; it is relatively slow but very 
accurate

• BWA uses a special technique to index much longer sequences; it is much 
faster and nearly as accurate

• http://maq.sourceforge.net/index.shtml

http://maq.sourceforge.net/index.shtml


SAM/BAM format and SAMTOOLS

• Generic format for storing aligned reads
• Sequence, base quality, indels, mate information

• SAM is a plain text format, easy to generate
• BAM is an indexed binary format, compact and fast

• Very active mailing lists available

• Li et al, Bioinformatics, 25:2078–2079
• http://samtools.sourceforge.net
• http://samtools.sourceforge.net/SAM1.pdf

http://samtools.sourceforge.net/
http://samtools.sourceforge.net/SAM1.pdf


Picard & GATK

• Set of java tools for manipulating SAM/BAM
• Developed at the Broad

• Particularly useful for:
• Removing duplicate reads
• Recalibrating base quality scores
• Removing variant calls due to artifacts

• http://picard.sourceforge.net
• http://www.broadinstitute.org/gsa/wiki/index.php/The_Genome_Analysis

_Toolkit

http://picard.sourceforge.net/
http://www.broadinstitute.org/gsa/wiki/index.php/The_Genome_Analysis_Toolkit


VerifyBamID

• Identify contamined samples
• Contamination is surprisingly common in short read data
• Contamination, if ignored, will result in greatly degraded genotypes

• Contamination can be estimated by comparing sequence data to 
known genotypes or using only sequence data

• http://genome.sph.umich.edu/wiki/VerifyBamId

http://genome.sph.umich.edu/wiki/VerifyBamId


UMAKE / GotCloud

• Pipelines for processing sequence data

• Glue together a variety of steps and tools
• Mapping, scrubbing of alignments, variant calling and filtering, genotyping

• http://genome.sph.umich.edu/wiki/GotCloud
• http://genome.sph.umich.edu/wiki/UMAKE

http://genome.sph.umich.edu/wiki/GotCloud
http://genome.sph.umich.edu/wiki/UMAKE


LASER: 
Locating Ancestry from Sequence Reads
• Tool for estimating ancestry of a sequenced sample

• Uses reference set of genotyped samples to establish PCA coordinates

• Can handle targeted, exome or whole genome sequence data

• Available from:
http://genome.sph.umich.edu/wiki/LASER

http://genome.sph.umich.edu/wiki/LASER
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