From Sequence to Ancestry...

Rare Variant Meta-Analysis...

Gonçalo Abecasis University of Michigan School of Public Health

Estimates of Genetic Ancestry from Tiny Bits of Sequence Data

Age Related Macular Degeneration

- One of the first diseases with successful GWAS
 - Robustly associated loci
 - Insights into disease biology
- Largest studies now include 17,000 cases and 60,000 controls

Common AMD Risk Alleles

- Common alleles in 19 loci
- Pathways include excess of genes involved in:
 - Complement pathway
 - Angiogenesis
 - Lipid metabolism (HDL)
- 15-65% of genetic variance

Age Related Macular Degeneration: Close-Up of Specific Region

Our First Detailed Look at CFH

Mingyao Li

Anand Swaroop

- Li et al (2006) Nature Genetics 38:1049-1054.
- Examined 84 genetic variants near CFH.
- Found:
 - 2 common risk haplotypes (one without Y402H)
 - 2 common protective haplotypes
 - Rare haplotypes associated with disease risk

Rare Variants in CFH

- Raychauduri et al (2011) Nature Genetics 43:1232-36
- Sequenced representatives of each haplotype
- Focused on carriers of a rare, high-risk haplotype
 - Frequency ~0.0004 in controls, ~ 0.007 in cases
- Showed R1210C variant strongly associated with AMD
 - Present in 40 of 2,423 cases
 - Present in 1 of 1,123 controls
 - Variant compromises CFH's C-terminal ligand binding

Targeted Sequencing of AMD Risk Loci

- Re-sequence GWAS loci
 - Search for additional high-risk variants that provide information about function
- Sequenced 2,348 AMD cases and 789 controls
 - Sequencing at Washington University Genome Center
 - R1210C variant seen in 23 cases, 0 controls (good!)
 - P-value is about .008 (middling!)
 - Variant present 2 of 12,000+ sequenced exomes (amazing!)
- Studying rare variants, requires very large sample sizes!

Expanding Our Experiment

- Can we identify additional well matched controls to augment our sequencing?
- Plan:
 - Place AMD samples in ancestry map of the world
 - Place other sequenced samples in the same map
 - Identify matched controls for each case ...

Principal Component Ancestry Map of Europe

Dataset includes: 1,385 individuals of known ancestry 318,682 genetic markers passing filters

Novembre et al. (2008) Nature

Targeted sequencing data

What Happens When We Apply PCA Analysis to Targeted Sequence Data?

On-target genotypes don't contain enough information to estimate the ancestry of a sample. The illustration is based on >80x deep whole exome data.

How to place individuals on world wide ancestry map with very little sequence data?

Xiaowei Zhan

Chaolong Wang

Sebastian Zöllner

Step 1: Create Reference Map

Generate a reference map by applying PCA to SNP data for *N* reference individuals. (Map 0)

Step 2: Adjust Reference to Each Sample

Define C_{ii} as the coverage for sample *i* locus *j*

Simulate sequencing data for all reference individuals with coverage at each locus j equal to C_{ij} .

$$P(\text{drawing a read } A) = \begin{cases} 1 - e & \text{if } g_{ij} = AA \\ 0.5 & \text{if } g_{ij} = AB \\ e & \text{if } g_{ij} = BB \end{cases}$$

Ref 1:	$\stackrel{AB}{=} \stackrel{AA}{=} \stackrel{BB}{\equiv} \stackrel{BB}{\equiv} \stackrel{AB}{\equiv}$
Ref 2:	$\stackrel{BB}{=} \stackrel{AB}{=} \stackrel{AA}{\equiv} \stackrel{AA}{\equiv} \stackrel{BB}{\equiv}$

Step 2: Adjust Reference to Each Sample

Ref 1:	$\begin{vmatrix} AB \\ - \end{vmatrix}$	BB	AB
Ref 2:		ĀA	BB

Step 3: Count Variant Bases at Each Locus

Step 4: Construct Sample Specific Map

Perform PCA on combined sequencing data of sample i and N reference individuals. (Map i)

Step 5: Translate Between Map *i* and 0

Procrustes analysis: transform Map *i* to optimize the similarity to Map 0 based on the reference samples.

Wang et al. (2010) Stat. Appl. Genet. Mol. Biol.

Step 6: Apply Translations

Apply the transformation to place sample *i* on the reference PCA map.

Step 7: Repeat!

Repeat steps 2-6 for all sequenced samples.

PC2

Human Genome Diversity Panel

938 individuals, 632,958 markers Li et al (Science, 2008)

- 🔺 Adygei Africa × Balochi Europe Middle East C/S Asia Basque East Asia Bedouin Oceania Biaka Pygmy • Brahui America
- Cambodian

Burusho

- A Bantu (Kenya) + Dai
- △ Bantu (S. Africa) Druze

- Colombian
- Daur
- + French
- Han
 - × Han (N. China) △ Hazara
- ▼ Mbuti Pyqmy Hezhen × Italian • Melanesian ♦ Japanese Miao Kalash △ Mongola • Karitiana Mozabite
- 🔷 Lahu • Naxi Makrani Orcadian

♦ Mandenka

△ Maya

- 🕺 Orogen
 - Palestinian
- 🖽 Tu Papuan ▼ Pathan * Tujia ▼ Pima ▼ Tuscan + Uygur △ Russian 🔼 Xibo Sardinian ∇ Yakut 🗆 Yi

San

🛛 She

Sindhi

Surui

- O Yoruba

Worldwide Principal Component Ancestry Map

Placing Individuals on a Worldwide Ancestry Map

24

Principal Component Ancestry Map of Europe

Novembre et al. (2008) Nature

Simulation Results European Ancestry Map

		Sequence- vs. SNP-based		
Simulated		coordinates		
coverage	Loci with	Pearson	Pearson	
λ	≥ 1 reads	correlation	correlation	
		of PC1	of PC2	
0.40	105,063	0.9927	0.9528	
0.35	94,111	0.9933	0.9458	
0.30	82,597	0.9906	0.9341	
0.25	70,492	0.9898	0.9241	
0.20	57,767	0.9868	0.8929	
0.15	44,390	0.9825	0.8811	
0.10	30,327	0.9752	0.8153	
0.05	15,542	0.9408	0.5016	
0.01	3,171	0.7541	0.1041	

Matching Results

 Searched 6,800+ ESP samples for matches

particularly interesting

Ref 200 AMD ESP Control Case Built matched set 9 • 2,268 AMD cases • 2,268 controls • Focused on sites with high depth 0 S S • Excluded sites near indels -100 • R1210C variant now has p<10⁻⁶ • 23 cases 1 control -200 • New rare variant signals under investigation, variant in C3 -200 -1000 100 200 -300

PC1

AMD Risk Variants in CFH and C3

- CFH R1210, OR ~10
- C3 R102G, OR ~1.3
- C3 K155Q, OR ~3.0
- Variants appear to map in the region where C3 and CFH interact
- CFH inactivates C3 to downregulate alternate complement pathway

With Even Higher Depths, Possible To Estimate Local Ancestry

in individual with mixed European and African ancestry

Youna Hu

Genotyping Arrays for Rare Variant Association Studies

Benjamin Neale Gonçalo Abecasis

Further Expanding Rare Variant Analysis

- There are many interesting rare variants, but achieving large sample sizes is a challenge
- Consider CFH ...
 - 4 stop variants in AMD cases, none in controls
 - If premature stops occur in 1,000 cases; no controls...
- To get to 10⁻⁶ significance might need to sequence...
 - ~21,000 cases and ~21,000 controls, or
 - ~7,000 cases and ~56,000 controls, or
 - Fewer cases if very large numbers of controls available

Motivation for an Exome Array

- Current sequencing studies are well powered to discover exome variants that contribute to disease (MAF > 0.1%)
- Sequencing studies may be underpowered to establish association of those variants to phenotype
 - Larger numbers of individuals must be examined to establish the effect of a variant than to discover it
- Genotyping is less expensive that exome sequencing, allowing larger sample sizes and, perhaps, power

Approach to designing the array

- Collate sites and counts from a "coalition of the willing" with data from exome or genome sequencing
 - Site lists constitute preliminary analyses of unpublished data
- Cover as much variation as possible while avoiding private mutations and technical artifacts
 - Quality filters, HWE checks
 - Nonsynonymous variants \geq 3 times and in \geq 2 studies
 - Splice and stop variants seen ≥ 2 times and in ≥ 2 studies
 - Relaxed frequency filter for ancestries with few samples

Ben Neale

Coding Variants Ascertained By Sequencing 12,000+ Individuals

Gene Based Burden Tests

- Most coding variants are very rare
- Testing the effect of each variant may often be impossible
- Geneticists currently favor "gene burden tests"
- These tests evaluate the combined effect of rare variants in a gene
- Are there convenient ways to reach large sample sizes with these tests?

Rare Variant Analysis in Large Samples

• The insight ...

Shuang Feng Dajiang Liu

• Simple burden tests can be calculated as a linear function of single variant score statistics

$$T \propto \vec{w}^T \vec{U}$$

• More advanced burden tests (like SKAT) can be derived as quadratic function of single variant statistics

$$T \propto \vec{U}^T \mathbf{K} \vec{U}$$

The Solution

- For each study ...
- Calculate components of single variant association score statistics
- Calculate variance covariance matrix for score statistics
- If we share these two pieces of information (single variant statistics, disequilibrium matrix) ...
- ... we can conveniently calculate many gene level tests across large samples

In the absence of heterogeneity, meta-analysis and pooled statistics match

Pooled Data Results

Rare Variant Meta-Analysis Example LDL cholesterol, 15,000 individuals

Rare Variant Meta-Analysis Example LDL cholesterol, 15,000 individuals

Gene	Burden-5	SKAT-5	Variable Threshold	VT cut-off
PCSK9	3×10 ⁻⁷	7×10 ⁻²⁵	2×10 ⁻¹²	.015
АРОВ	3×10 ⁻³	2×10 ⁻¹⁴	.046	.041
LDLR	.071	9×10 ⁻³	2×10 ⁻⁵	.00074

Analysis with Gina Peloso and Sekar Kathiresan

Results shown for Mendelian hypercholesterolemia genes with gene level pvalue < .001 in 15,000 individuals (12 genes tested, 3 tests)

PCSK9: Marker-by-Marker

APOB: Marker-by-Marker

LDLR: Marker-by-Marker

State of Play

- Genomewide associations very effective at identifying disease susceptibility loci
 - Translating the subtle effects of these loci to function is challenging
- Sequencing studies can examine rare variants, including many with clear function
 - Achieving the sample sizes required to establish association is challenging
- There is a promising family of designs that are combine sequencing to discover rare variants and genotyping to reach very large sample sizes

Rare-Metal and Rare-Metal-Worker

- Tools for facilitating meta-analysis of rare variants
- Rare-Metal-Worker calculates per study summary statistics
- Rare-Metal combines these to calculate burden statistics

Exercise: Input Files

• Get a copy into your home directory

mkdir Rare-Metal-Example

cp /faculty/goncaloa/2013/Rare-Metal-Example/* Rare-Metal-Example

• For each study, we start with a:

- Data File, listing traits and covariates
- Pedigree File, listing phenotypes for each person
- VCF File, listing genotypes for each person
- For the meta-analysis, we need:
 - A list of studies
 - A key for grouping variants into genes

Running RareMetalWorker ...

• This will analyze each study and generate summaries

- Useful additional options include:
 - --kinGeno
 - --inverseNormal
 - --useCovariates -makeResiduals

Running RareMetal

• This will combine studies to run a meta-analysis ...

raremetal --study sample.lst --group burden_groupings.txt --SKAT --VT

- Useful additional options include:
 - --burden --MB
 - --maf
 - --hwe
 - --callRate

Acknowledgements

Thank you to the National Institutes of Health (NHGRI, NEI, NHLBI) for supporting our work.