This Session ...

- Genotype Imputation in Families
- Genotype Imputation and Haplotyping with Unrelated Samples
 Exercise with Mach and Minimac

In Silico Genotyping For Genome-Wide Association Studies

Gonçalo Abecasis Center for Statistical Genetics University of Michigan

In Silico Genotyping For Family Samples

Family members will share large segments of chromosomes

If we genotype many related individuals, we will effectively be genotyping a few chromosomes many times

In fact, we can:

- Genotype a few markers on all individuals
- Find shared haplotype segments
- Use high-density panel to genotype a few individuals
- Infer shared segments and then estimate the missing genotypes

Genotype Inference Part 1 – Observed Genotype Data

Genotype Inference Part 2 – Inferring Allele Sharing

Genotype Inference Part 3 – Imputing Missing Genotypes

Our Approach

- > Consider full set of observed genotypes G
- Evaluate pedigree likelihood L for each possible value of each missing genotype g_{ij}

Posterior probability for each missing genotype

$$P(g_{ij} = x | G) = \frac{L(G, g_{ij} = x)}{L(G)}$$

Implemented both using Elston-Stewart (1972) and Lander-Green (1987) algorithms

Standard Linear Model for Genetic Association

Model association using a model such as:

$$E(y_i) = \mu + \beta_g g + \beta_c c + \dots$$

> y_i is the phenotype for individual *i*

- > g_i is the genotype for individual *i*
 - Simplest coding is to set g_i = number of copies of allele '1'
- \succ c_i is a covariate for individual *i*
 - Covariates could be estimated ancestry, environmental factors...

β coefficients are estimated covariate, genotype effects
 Model is fitted in variance component framework

Model With Inferred Genotypes

> Replace genotype score g with its expected value:

$$E(y_i) = \mu + \beta_g \overline{g} + \beta_c c + \dots$$

> Where

$$\overline{g}_i = 2P(g_i = 2 | G) + P(g_i = 1 | G)$$

Association test can then be implemented as a score test or as a likelihood ratio test

Alternatives would be to

- (a) impute genotypes with large posterior probabilities; or
- (b) integrate joint distribution of unobserved genotypes in family

Power in Sibships of Size 6 Without Parental Genotype Data

Analyze Observed Data Impute when Posterior >.99

Using Expected Genotype Score

T is the number of genotyped offspring. QTL explains 5% of variance, polygenes explain 35%, 250 sibships, $\alpha = 0.001$.

Application: Gene Expression Data

Cheung et al (2005) carried out a genome wide association with 27 expression levels as traits

Measured in grandparents and parents of CEPH pedigrees and took advantage of HapMap I genotypes

TSC genotypes also available for ~6000 SNPs in the offspring of each CEPH family

Example: Gene Expression Data

- Panels show GWA scan with CTBP1 expression as outcome
 - Gene is at start of chromosome 4
- Using observed genotypes, most significant association maps in *cis* for 15/27 traits
 - 12 of these reach $p < 5 * 10^{-8}$
- Using inferred genotypes, most significant association maps in *cis* for 19/27 traits
 - 15 of these reach p < 5 * 10⁻⁸

Data from Cheung et al. (2005)

Quantitative Trait GWAS in Sardinia

> 6,148 Sardinians from 4 towns in Ogliastra

Measured 98 aging related quantitative traits

Genotyping:

10,000 SNPs measured in ~4,500 individuals

500,000 SNPs measured in ~1,400 individuals

An Example Where We Know The Answer

FTO and Obesity Related Traits

Scuteri et al, PLoS Genetics, 2007

- Inferring unobserved genotypes
- Estimate genotypes for relatives of individuals in genome-wide association scan
 - Increase power
- Tests for association in families where only a few individuals are genotyped in detail
 - Limited genotypes may be available for their relatives

Coming Up

More in silico genotyping!

 Estimate genotypes for untyped markers, by combining study sample with Hapmap
 Facilitate comparisons across studies

Evaluating quality of the inferred genotypes

Relatedness in The Context of GWAS

When analyzing family samples ...

- FOR INDIVIDUALS WITH KNOWN RELATIONSHIPS
 - Impute genotypes in relatives, who may be completely untyped
 - Imputation works through long shared stretches of chromosome
- But the majority of GWAS that use "unrelated" individuals...
- FOR INDIVIDUALS WITH UNKNOWN RELATIONSHIPS
 - Impute observed genotypes in relatives
 - Imputation works through short shared stretches of chromosome

In Silico Genotyping For Case Control Samples

In families, we expected relatively long stretches of shared chromosome

In unrelated individuals, these stretches will typically be much shorter

The plan is still to identify stretches of shared chromosome between individuals...

we then infer intervening genotypes by contrasting study samples with densely typed HapMap samples

Observed Genotypes

Observed Genotypes

	-		Α							Α	-				Α		
•	•	•	G		•	•	•	•	•	С		•	•	•	Α	•	

Reference Haplotypes

 C
 G
 A
 G
 T
 C
 T
 C
 T
 T
 C
 T
 G
 T
 G
 T
 G
 C
 C
 T
 G
 T
 G
 T
 G
 T
 G
 T
 G
 T
 G
 T
 G
 T
 G
 T
 G
 T
 G
 T
 G
 T
 G
 G
 G
 T
 G
 G
 G
 T
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G

Study Sample

НарМар

Identify Match Among Reference

Observed Genotypes

		Α				Α			Α		
		G				С			Α		

Reference Haplotypes

Phase Chromosome, Impute Missing Genotypes

Observed Genotypes

Reference Haplotypes

Implementation

Markov model is used to model each haplotype, conditional on all others

Gibbs sampler is used to estimate parameters and update haplotypes

Each individual is updated conditional on all others

 In parallel to updating haplotypes, estimate "error rates" and "crossover" probabilities

In theory, this should be very close to the Li and Stephens (2003) model

Does This Really Work? Preliminary Results

Used 11 tag SNPs to predict 84 SNPs in CFH

Comparison of Test Statistics, Truth vs. Imputed

- Predicted genotypes differ from original ~1.8% of the time
- Reasonably similar results possible using methods, such as, PHASE and fastPHASE

Does This Really Work?

- Used about ~300,000 SNPs from Illumina HumanHap300 to impute 2.1M HapMap SNPs in 2500 individuals from a study of type II diabetes (Scott et al, Science, 2007)
- Compared imputed genotypes with actual experimental genotypes in a candidate region on chromosome 14
 1190 individuals, 521 markers not on Illumina chip

Results of comparison

- Average r² with true genotypes 0.92 (median 0.97)
- 1.4% of imputed alleles mismatch original
- 2.8% of imputed genotypes mismatch
- Most errors concentrated on worst 3% of SNPs

Does this really, really work?

- 90 GAIN psoriasis study samples were re-genotyped for 906,600 SNPs using the Affymetrix 6.0 chip.
- Comparison of 15,844,334 genotypes for 218,039 SNPs that overlap between the Perlegen and Affymetrix chips resulted in discrepancy rate of 0.25% per genotype (0.12% per allele).
- Comparison of 57,747,244 imputed and experimentally derived genotypes for 661,881 non-Perlegen SNPs present in the Affymetrix 6.0 array resulted in a discrepancy rate of 1.80% per genotype (0.91% per allele).
- Overall, the average r² between imputed genotypes and their experimental counterparts was 0.93. This statistic exceeded 0.80 for >90% of SNPs.

Back to Sardinia G6PD Activity Example ...

LDLR and LDL example

Does Imputation Improve Power?

Disease		Multi-	
SNP MAF	tagSNPs	marker tag	Imputation
2.5%	24.4%	25.0%	56.2%
5%	55.8%	56.4%	73.8%
10%	77.4%	78.4%	87.2%
20%	85.6%	86.2%	92.0%
50%	93.0%	93.6%	96.0%

Power for Simulated Case Control Studies

Simulated studies used a tag SNP panel that captures 80% of common variants with pairwise $r^2 > 0.80$.

Choices for Analysis of Imputed Genotypes

Choices for Analysis

Scenario	N	H ²	Power: Best Guess	Power: Dosage	Power: Mixture						
Large sample, small effect											
	1000	3%	63.5%	66.0%	66.8%						
Small sample, large effect											
	50	60%	70.1%	75.5%	85.0%						

When effect sizes are small, difference between dosage and mixture models becomes even smaller

> 3% of variance explained would now be considered a large effect for most traits.

Zheng et al, Genetic Epidemiology, 2011

Choices for Analysis

Zheng et al, Genetic Epidemiology, 2011

Combined Lipid Scans

- SardiNIA (Schlessinger, Uda, et al.)
 - ~4,300 individuals, cohort
- FUSION (Mohlke, Boehnke, Collins, et al.)
 - ~2,500 individuals
- > DGI (Kathiresan, Altshuler, Orho-Mellander, et al.)
 - ~3,000 individuals
- Individually, 1-3 hits/scan, mostly known loci
- Analysis:
 - Impute genotypes so that all scans are analyzed at the same "SNPs"
 - Carry out meta-analysis of results across scans

Combined Lipid Scan Results

New HDL Locus

Willer et al, Nat Genet, 2008

New HDL Signal For An Old Locus

LDL-C association near LDLR

SNPs typed by all 3 groups (44,998)

Affy panel SNPs (320,681)

Imputed SNPs (~ 2.25 million)

What happens when we contrast results with related traits?

New LDL Locus, Previously Associated with CAD

Comparison with Related Traits: Coronary Artery Disease and LDL-C Alleles

Gene	LDL-C p-value	Frequency CAD cases	Frequency CAD ctrls	CAD p-value	OR
APOE/C1/C4	3.0x10 ⁻⁴³	.209	.184	1.0x10 -4	1.17 (1.08-1.28)
APOE/C1/C4	1.2 x10 ⁻⁹	.339	.319	.0068	1.10 (1.02-1.18)
SORT1	6.1x10 ⁻³³	.808	.778	1.3 x10 ⁻⁵	1.20 (1.10-1.31)
LDLR	4.2x10 ⁻²⁶	.902	.890	6.7x10 ⁻⁴	1.29 (1.10-1.52)
APOB	5.6x10 ⁻²²	.830	.824	.18	1.04 (0.95-1.14)
APOB	8.3x10 ⁻¹²	.353	.332	.0042	1.10 (1.03-1.18)
APOB	3.1x10 ⁻⁹	.536	.520	.028	1.07 (1.00-1.14)
PCSK9	3.5x10 ⁻¹¹	.825	.807	.0042	1.13 (1.03-1.23)
NCAN/CILP2	2.7x10 ⁻⁹	.922	.915	.055	1.11 (0.98-1.26)
B3GALT4	5.1x10 ⁻⁸	.399	.385	.039	1.07 (0.99-1.14)
B4GALT4	1.0x10 -6	.874	.865	.051	1.09 (0.98-1.20)

Data from WTCCC

MTNR1B influences glucose levels in non-diabetics and is a T2D locus

Association with glucose, 36,000 non-diabetics

Association with diabetes, 18,000 cases vs. 64,000 controls

Prokopenko et al, Nature Genetics, in press

Does This Work Across Populations?

Conrad et al. (2006) dataset

> 52 regions, each ~330 kb

Human Genome Diversity Panel
 ~927 individuals, 52 populations

> 1864 SNPs

- Grid of 872 SNPs used as tags
- Predicted genotypes for the other 992 SNPs
- Compared predictions to actual genotypes

Tag SNP Portability

Percentage of Alleles Imputed Incorrectly

(Evaluation Using ~1 SNP per 10kb in 52 x 300kb regions For Imputation)

Imputation Improves with Reference Panel Size

	Accuracy B	ccuracy By Minor Allele Frequency				
Panel	# SNPs	MAF 1-3%	MAF 3-5%	MAF >5%		
Pilot (60 EUR)	15M	0.69	0.77	0.91		
Interim Freeze (283 EUR)	25M	0.73	0.78	0.92		
Phase I Freeze (563 EUR)	39M	0.83	0.85	0.94		

- As more individuals are sequenced...
 - Reference panel becomes more complete
 - Imputation quality improves, particularly for rare SNPs

... But Becomes Computationally Challenging

Reference Panel	Samples	Markers	Time per Sample (in minutes)
HapMap 2 CEU	60	2.5 million	14
1000 Genomes Pilot CEU	60	7.3 million	41
1000 Genomes Interim EUR	283	11.6 million	1287
1000 Genomes Phase I EUR	381	18.7 million	3900

Computational cost for original imputation methods scales ...

- Linearly with number of markers
- Linearly with number of individuals being imputed
- Quadratically with reference panel size

... Unless New Methods Used

Bryan Howie Christian Fuchsberger

Reference Panel	Samples	Markers	Time per Sample (in minutes, Standard method)	Time per Sample (in minutes, new method)
HapMap 2 CEU	60	2.5 million	14	1
1000 Genomes Pilot CEU	60	7.3 million	41	1
1000 Genomes Interim EUR	283	11.6 million	1287	6
1000 Genomes Phase I EUR	381	18.7 million	3900	12

Improved methods scale linearly with reference panel size

• This makes computational cost manageable

Speeding Up Imputation: Pre-Phasing

MaCH and Minimac Haplotyping and Imputation

- www.sph.umich.edu/csg/abecasis/Mach
- www.sph.umich.edu/csg/abecasis/Mach/tour
 - We will look at estimating and inferring haplotypes with Mach 1.0
- genome.sph.umich.edu/wiki/minimac
- genome.sph.umich.edu/wiki/minimac:_Tutorial
 - We will look at a simple analysis with minimac

Acknowledgements

Sardinia Collaborators, led by:

- David Schlessinger, Antonio Cao, Manuela Uda, Ed Lakatta, Paul Costa
- Analysis by Serena Sanna, Paul Scheet, Weimin Chen

FUSION Investigators, led by:

- Mike Boehnke, Francis Collins, Karen Mohlke, Jaakko Tuomilehto, Richard Bergman
- Analysis by Cristen Willer and Yun Li

DGI Investigators:

 Sekar Kathiresan, Marju Orho-Melander, David Altshuler and colleagues

MaCH/minimac Development

Yun Li, Paul Scheet, Jun Ding, Christian Fuchsberger

References

> References:

- Chen and Abecasis, AJHG, 2007
- Scuteri et al, PLoS Genetics, 2007
- Willer et al, Nature Genetics, 2008
- Li et al, Ann Rev of Genomics and Hum Genet, 2009
- Li et al, Genetic Epidemiology, 2010
- Howie et al, Nature Genetics, 2012

goncalo@umic.edu