This Session ...

> Genotype Imputation in Families

> Genotype Imputation and Haplotyping with Unrelated Samples
« EXxercise with Mach and Minimac
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In Silico Genotyping For
Family Samples

> Family members will share large segments of
chromosomes

> If we genotype many related individuals, we will effectively
be genotyping a few chromosomes many times

> In fact, we can:
o Genotype a few markers on all individuals
o Find shared haplotype segments
o Use high-density panel to genotype a few individuals
o Infer shared segments and then estimate the missing genotypes



Genotype Inference
Part 1 — Observed Genotype Data




Genotype Inference
Part 2 — Inferring Allele Sharing




Genotype Inference
Part 3 — Imputing Missing Genotypes




Our Approach

Consider full set of observed genotypes G

Evaluate pedigree likelihood L for each possible value of
each missing genotype g;

Posterior probability for each missing genotype

L(G’gij = X)

P(gij :XlG): L(G)

Implemented both using Elston-Stewart (1972) and
Lander-Green (1987) algorithms



>

Standard Linear Model for
Genetic Assoclation

Model association using a model such as:

E(y)) = i+ B, 9+ fiC+.

y; IS the phenotype for individual i

g; IS the genotype for individual |
« Simplest coding is to set g; = number of copies of allele 7’

C; IS a covariate for individual |
o Covariates could be estimated ancestry, environmental factors...

[ coefficients are estimated covariate, genotype effects
Model Is fitted In variance compoenent framework



Model With Inferred Genotypes

> Replace genotype score g with its expected value:
E(Y,) =+ B,G+B,C+..

> Where
g; =2P(g9; =2|G)+P(g; =1|G)

> Association test can then be implemented as a score test
or as a likelihood ratio test

> Alternatives would be to
o (@) Impute genotypes with large posterior probabilities; or
o (b)integrate joint distribution oft unebserved genotypes in family.



Power In Sibships of Size 6
Without Parental Genotype Data

Analyze Observed Impute when Using Expected
Data Posterior >.99 Genotype Score

T is the number of genotyped offspring.
QTL explains 5% of variance, polygenes explain 35%,
250 sibships, a = 0.001.



Application: Gene Expression Data

> Cheung et al (2005) carried out a genome wide
association with 27 expression levels as traits

> Measured in grandparents and parents of CEPH
pedigrees and took advantage of HapMap |
genotypes

> ISC genotypes also available for ~6000 SNPs in
the offspring of each CEPH family



Example: Gene Expression Data

A) Genome Scan Using Unrelated Individuals Only > Panels ShOW GWA Scan Wlth
CTBP1 expression as outcome
Pore e sstse e e « Gene Is at start of chromosome 4

B) Genome Scan Using All Observed Genotypes

> Using observed genotypes, most
significant association maps in cis
for 15/27 traits

o 12 ofthesereachp<5*10?%

2 3 4 5 6 7 8 910 12 14 16 18 21

C) Genome Scan Using Expected Genotypes Scores

uwmmum%-
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> Using Inferred genotypes, most
significant association maps in cis
B aosarit for 19/27 traits

o 15 of these reach p<5* 10?°

D) @-Q Plot
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e oot > Data from Cheung et al. (2005)
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Quantitative Trait GWAS
INn Sardinia

> 6,148 Sardinians from 4 towns in Ogliastra

> Measured 98 aging related guantitative
traits

> Genotyping:
e 10,000 SNPs measured in ~4,500 individuals
e 500,000 SNPs measured in ~1,400 individuals



An Example Where We Know The Answer

Linkage
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So Far ...

> Inferring unobserved genotypes

> Estimate genotypes for relatives of individuals in
genome-wide associlation scan

o INCrease power

> Tests for association in families where only a few
iIndividuals are genotyped in detall

o Limited genotypes may be available for their relatives



Coming Up

> More In silico genotyping!

> Estimate genotypes for untyped markers,
by combining study sample with Hapmap
o Facilitate comparisons across studies

> Evaluating quality of the inferred genotypes



Relatedness in The Context of GWAS

> When analyzing family samples ...

> FOR INDIVIDUALS WITH KNOWN RELATIONSHIPS

o Impute genotypes In relatives, who may be completely untyped
o Imputation works through long shared stretches of chromosome

> But the majority of GWAS that use “unrelated” individuals...

> FOR INDIVIDUALS WITH UNKNOWN RELATIONSHIPS
o Impute observed genotypes In relatives
o Imputation works through short shared stretches of chromosome



In Silico Genotyping For
Case Control Samples

In families, we expected relatively long stretches of
shared chromosome

In unrelated individuals, these stretches will typically be
much shorter

The plan is still to identify stretches of shared
chromosome between individuals...

... We then infer intervening genotypes by contrasting
study samples with densely typed HapMap samples



Study
Sample
HapMap
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CGAGATCTCCCGACCTCATGSG
CCAAGCTCTTTTCTTCTGT®GZC
CGAAGCTCTTTTCTTCTGTGC
CGAGACTCTCCGACCTTATGC
TGGGATCTCCCGACCTCATGG
CGAGATCTCCCGACCTTGTGC
CGAGACTCTTTTCTTTTGTAZC
CGAGACTCTCCGACCTCGTGC
CGAAGCTCTTTTCTTCTGTGC

Observed Genotypes
Reference Haplotypes

Observed Genotypes
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Genotypes

Phase Chromosome
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Implementation

> Markov model Is used to model each haplotype,
conditional on all others

> Gibbs sampler Is used to estimate parameters
and update haplotypes
o Each individual is updated conditional on all others

o In parallel to updating haplotypes, estimate “error
rates” and “crossover’ probabilities

> In theory, this should be very close to the Li and
Stephens (2003) model



Does This Really Work?
Preliminary Results

> Used 11 tag SNPs to Comparison of Test Statistics,
predict 84 SNPs in CFH Truth vs. Imputed

Chi-Square Test Statistic for Disease-Marker Association

> Predicted genotypes differ
from original ~1.8% of the
time

> Reasonably similar results

possible using methods, N %
such as, PHASE and
fastPHASE



Does This Really Work?

> Used about ~300,000 SNPs from lllumina HumanHap300
to Impute 2.1M HapMap SNPs in 2500 individuals from a
study of type Il diabetes (Scott et al, Science, 2007)

> Compared Imputed genotypes with actual experimental
genotypes in a candidate region on chromosome 14
o 1190 individuals, 521 markers not on lllumina chip

> Results of comparison
o Average r? with true genotypes 0.92 (median 0.97)
o 1.4% of imputed alleles mismatch original
o 2.8% of Imputed genotypes mismatch
o Most errors concentrated on worst 3% of SNPs



Does this really, really work?

90 GAIN psoriasis study samples were re-genotyped for
906,600 SNPs using the Affymetrix 6.0 chip.

Comparison of 15,844,334 genotypes for 218,039 SNPs that
overlap between the Perlegen and Affymetrix chips resulted in
discrepancy rate of 0.25% per genotype (0.12% per allele).

Comparison of 57,747,244 imputed and experimentally
derived genotypes for 661,881 non-Perlegen SNPs present in
the Affymetrix 6.0 array resulted in a discrepancy rate of
1.80% per genotype (0.91% per allele).

Overall, the average r? between imputed genotypes and their
experimental counterparts was 0.93. This statistic exceeded
0.80 for >90% of SNPs.



Back to Sardinia G6PD Activity Example ...

+ imputed

|+ genotyped v pbden00 Afte_:r imputing HapMap SNPs a
region on chromosome 1 becomes
top hit after G6PD and HBB

The new hit is upstream of 6PGD

—logyg pvalue

6-phosphogluconate dehydrogenase
Is an enzyme that is known to
metabolize some of the same
substrates as G6PD

9800000 10200000 10600000 11000000

—logg p-value

Genomic Position




LDLR and LDL example

LDLR locus and LDL cholesterol
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Does Imputation Improve Power?

Power

Disease Multi-
SNP MAF tagSNPs marker tag Imputation
2.5% 24.4% 25.0% 56.2%

5% 55.8% 56.4% 73.8%
10% 77.4% 78.4% 87.2%
20% 85.6% 86.2% 92.0%
50% 93.0% 93.6% 96.0%

Power for Simulated Case Control Studies

Simulated studies used a tag SNP panel that captures
80% of common variants with pairwise r? > 0.80.



Choices for Analysis of
Imputed Genotypes

Reference
Haplotypes
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Mixture:
Best-guess: Dosage: C/C for 75%
o i 1.75 CIT for 25%




Choices for Analysis

Scenario N H?2 Power: Power: Power:
Best Guess |Dosage Mixture

Large sample, small effect
1000 3% 63.5% 66.0%

Small sample, large effect
50 60% 70.1% 75.5%

> When effect sizes are small, difference between
dosage and mixture models becomes even smaller

> 3% of variance explained would now be considered
a large effect for most traits.

Zheng et al, Genetic Epidemiology, 2011



Choices for Analysis

best guess/ 1 df
best guess/ 2 df
dosage/ 1 df
dosage/ 2 df
mixture/ 1 df
mixture/ 2 df
true/ 1 df

true/ 2 df

0.4 0.6

Imputation accuracy

Zheng et al, Genetic Epidemiology, 2011



Combined Lipid Scans

SardiNIA (Schlessinger, Uda, et al.)
o ~4,300 individuals, cohort

FUSION (Mohlke, Boehnke, Collins, et al.)
o ~2,500 individuals

DGI (Kathiresan, Altshuler, Orho-Mellander, et al.)
o ~3,000 individuals

Individually, 1-3 hits/scan, mostly known loci

Analysis:
o Impute genotypes so that all scans are analyzed at the same “SNPs”
o Carry out meta-analysis of results across scans



Combined Lipid Scan Results

HDL Cholesterol
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New HDL Locus

HDL Cholesterol
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New HDL Signal For An Old Locus

Association with HDL-C
P-value




SNPs typed
by all 3 groups
(44,998)

11.0

Affy panel
SNPs
(320,681)

Imputed SNPs
(~ 2.25 million)




What happens when we
contrast results with
related traits?



New LDL Locus,
Previously Associated with CAD

LDL Cholesterol
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Comparison with Related Traits:
Coronary Artery Disease and LDL-C

Alleles
Gene LDL-C Frequency  Frequency CAD OR
p-value CAD cases CAD ctrls p-value

APOE/C1/C4 3.0x1043 209 184 1.0x10-4 1.17 (1.08-1.28)
APOE/C1/C4 1.2x107° 339 319 .0068 1.10 (1.02-1.18)
SORT1 6.1x10-33 .808 778 1.3x10° 1.20 (1.10-1.31)
LDLR 4.2x10726 902 .890 6.7x10-4 1.29 (1.10-1.52)
APOB 5.6x10-%2 .830 .824 18 1.04 (0.95-1.14)
APOB 8.3x1012 353 332 .0042 1.10 (1.03-1.18)
APOB 3.1x10° 536 520 .028 1.07 (1.00-1.14)
PCSK9 3.5x10-1 825 .807 .0042 1.13 (1.03-1.23)
NCAN/CILP2 2.7x10-° 922 915 .055 1.11 (0.98-1.26)
B3GALT4 5.1x108 .399 .385 .039 1.07 (0.99-1.14)
B4GALT4 1.0x10-6 874 .865 .051 1.09 (0.98-1.20)

Data from WTCCC



MTNRI1B influences glucose levels
In non-diabetics and Is a T2D locus

L. : Assoclation with diabetes,
Association with glucose, 18.000 cases vs. 64,000

36,000 non-diabetics controls

MTNR1B

Study ID or {95% CI) Weight

DGl : 1.12 (0.96, 1.30) 461

FUSION —E—.—) 1.20 (1.03, 1.39) 489
)

WTCCC 1.07 (0.95, 1.20) 8.03

.
deCODE . 114(1.03,127) 958
;

KORA - 1.00 (0.84, 1.19) 3.53
Rotterdam i 147 (1.04, 1.30) 875
Cccc i 1.07 (0.88, 1.31) 269
ADDITION/ELY i 1.16 (1.02, 1.33) 6.04
Morfolk : 1.00 (0.90, 1.10) 10.56
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Overall (l-squared = 26.6%. p = 0.176) 1.09(1.05,1.12) 100.00

Chromosome 11 position (kb)

Meta-analysis Pvalue = 3.3 x 107

Prokopenko et al, Nature Genetics, in
press



Does This Work Across Populations?

Tag SNP Portability
> Conrad et al. (2006) dataset

T

> 52 regions, each ~330 kb

7t71
1]
]

> Human Genome Diversity Panel
o —~927 Individuals, 52 populations

> 1864 SNPs
o Grid of 872 SNPs used as tags
o Predicted genotypes for the other 992 SNPs
o« Compared predictions to actual genotypes




Percentage of Alleles Imputed Incorrectly
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Imputation Improves with Reference Panel Size

Accuracy By Minor Allele Frequency

Panel # SNPs | MAF 1-3% | MAF 3-5% | MAF >5%
Pilot (60 EUR)

Interim Freeze (283 EUR)
Phase | Freeze (563 EUR)

* As more individuals are sequenced...
— Reference panel becomes more complete
— Imputation quality improves, particularly for rare SNPs



... But Becomes Computationally Challenging

Time per Sample
Reference Panel Samples Markers (in minutes)

HapMap 2 CEU 2.5 million
1000 Genomes Pilot CEU 7.3 million

1000 Genomes Interim EUR 11.6 million
1000 Genomes Phase | EUR 18.7 million

> Computational cost for original imputation
methods scales ...
o Linearly with number of markers
o Linearly with number of individuals being imputed
o Quadratically with reference panel size



... Unless New Methods Used r"
i«’/ ]
Bryan Christian
Howie  Fuchsberger

Time per Sample | Time per Sample
(in minutes, (in minutes,
Reference Panel Samples Markers Standard method) new method)

HapMap 2 CEU 60 2.5 million
1000 Genomes Pilot CEU 60 7.3 million

1000 Genomes Interim EUR 283 11.6 million
1000 Genomes Phase | EUR 381 18.7 million

> Improved methods scale linearly with reference panel size
o [I'his makes computational cost manageable



Speeding Up Imputation:
Pre-Phasing

Traditional imputation Pre-phasing imputation

haplotypes

genotypes genotypes




MaCH and Minimac
Haplotyping and Imputation

> WWW.Sph.umich.edu/csg/abecasis/Mach
> WWW.Sph.umich.edu/csg/abecasis/Mach/tour

o We will look at estimating and inferring
haplotypes with Mach 1.0

> genome.sph.umich.edu/wiki/minimac
> genome.sph.umich.edu/wiki/minimac: Tutorial
o We will look at a simple analysis with minimac



http://www.sph.umich.edu/csg/abecasis/Mach
http://www.sph.umich.edu/csg/abecasis/Mach/tour
http://www.genome.sph.umich.edu/wiki/minimac
http://genome.sph.umich.edu/wiki/minimac:_Tutorial
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