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In Silico Genotyping For 

Family Samples
 Family members will share large segments of 

chromosomes

 If we genotype many related individuals, we will effectively 
be genotyping a few chromosomes many times

 In fact, we can:
 Genotype a few markers on all individuals

 Find shared haplotype segments

 Use high-density panel to genotype a few individuals

 Infer shared segments and then estimate the missing genotypes



Genotype Inference

Part 1 – Observed Genotype Data
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Genotype Inference

Part 2 – Inferring Allele Sharing
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Genotype Inference

Part 3 – Imputing Missing Genotypes
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Our Approach

 Consider full set of observed genotypes G

 Evaluate pedigree likelihood L for each possible value of 

each missing genotype gij

 Posterior probability for each missing genotype

 Implemented both using Elston-Stewart (1972) and 

Lander-Green (1987) algorithms
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Standard Linear Model for 

Genetic Association
 Model association using a model such as:

 yi is the phenotype for individual i

 gi is the genotype for individual i 
 Simplest coding is to set gi = number of copies of allele ‘1’

 ci is a covariate for individual i
 Covariates could be estimated ancestry, environmental factors…

 β coefficients are estimated covariate, genotype effects

 Model is fitted in variance component framework
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Model With Inferred Genotypes

 Replace genotype score g with its expected value:

 Where

 Association test can then be implemented as a score test 
or as a likelihood ratio test

 Alternatives would be to 
 (a) impute genotypes with large posterior probabilities; or 

 (b) integrate joint distribution of unobserved genotypes in family
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Power in Sibships of Size 6
Without Parental Genotype Data

 

Analyze Observed

Data

Impute when

Posterior >.99

Using Expected

Genotype Score

T is the number of genotyped offspring. 

QTL explains 5% of variance, polygenes explain 35%, 

250 sibships, α = 0.001.



Application: Gene Expression Data

 Cheung et al (2005) carried out a genome wide 

association with 27 expression levels as traits

 Measured in grandparents and parents of CEPH 

pedigrees and took advantage of HapMap I 

genotypes

 TSC genotypes also available for ~6000 SNPs in 

the offspring of each CEPH family



Example: Gene Expression Data

 Panels show GWA scan with 
CTBP1 expression as outcome 

 Gene is at start of chromosome 4

 Using observed genotypes, most 
significant association maps in cis
for 15/27 traits

 12 of these reach p < 5 * 10-8

 Using inferred genotypes, most 
significant association maps in cis
for 19/27 traits

 15 of these reach p < 5 * 10-8

 Data from Cheung et al. (2005)



Quantitative Trait GWAS

in Sardinia

 6,148 Sardinians from 4 towns in Ogliastra

 Measured 98 aging related quantitative 

traits

 Genotyping:

 10,000 SNPs measured in ~4,500 individuals 

 500,000 SNPs measured in ~1,400 individuals
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An Example Where We Know The Answer



FTO and Obesity Related Traits

Scuteri et al, PLoS Genetics, 2007

FTO



So Far …

 Inferring unobserved genotypes

 Estimate genotypes for relatives of individuals in 

genome-wide association scan

 Increase power

 Tests for association in families where only a few 

individuals are genotyped in detail

 Limited genotypes may be available for their relatives



Coming Up

 More in silico genotyping!

 Estimate genotypes for untyped markers, 

by combining study sample with Hapmap

 Facilitate comparisons across studies

 Evaluating quality of the inferred genotypes



Relatedness in The Context of GWAS

 When analyzing family samples …

 FOR INDIVIDUALS WITH KNOWN RELATIONSHIPS
 Impute genotypes in relatives, who may be completely untyped

 Imputation works through long shared stretches of chromosome

 But the majority of GWAS that use “unrelated” individuals…

 FOR INDIVIDUALS WITH UNKNOWN RELATIONSHIPS
 Impute observed genotypes in relatives

 Imputation works through short shared stretches of chromosome



In Silico Genotyping For 

Case Control Samples
 In families, we expected relatively long stretches of 

shared chromosome

 In unrelated individuals, these stretches will typically be 
much shorter

 The plan is still to identify stretches of shared 
chromosome between individuals…

 … we then infer intervening genotypes by contrasting 
study samples with densely typed HapMap samples



Observed Genotypes

Observed Genotypes
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Identify Match Among Reference

Observed Genotypes
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Phase Chromosome, 

Impute Missing Genotypes

Observed Genotypes
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Implementation

 Markov model is used to model each haplotype, 
conditional on all others

 Gibbs sampler is used to estimate parameters 
and update haplotypes
 Each individual is updated conditional on all others

 In parallel to updating haplotypes, estimate “error 
rates” and “crossover” probabilities

 In theory, this should be very close to the Li and 
Stephens (2003) model



Does This Really Work?

Preliminary Results

 Used 11 tag SNPs to 

predict 84 SNPs in CFH

 Predicted genotypes differ 

from original ~1.8% of the 

time

 Reasonably similar results 

possible using methods, 

such as, PHASE and 

fastPHASE
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Does This Really Work?

 Used about ~300,000 SNPs from Illumina HumanHap300 
to impute 2.1M HapMap SNPs in 2500 individuals from a 
study of type II diabetes (Scott et al, Science, 2007)

 Compared imputed genotypes with actual experimental 
genotypes in a candidate region on chromosome 14
 1190 individuals, 521 markers not on Illumina chip

 Results of comparison
 Average r2 with true genotypes 0.92 (median 0.97)

 1.4% of imputed alleles mismatch original

 2.8% of imputed genotypes mismatch

 Most errors concentrated on worst 3% of SNPs



Does this really, really work?

 90 GAIN psoriasis study samples were re-genotyped for 
906,600 SNPs using the Affymetrix 6.0 chip. 

 Comparison of 15,844,334 genotypes for 218,039 SNPs that 
overlap between the Perlegen and Affymetrix chips resulted in 
discrepancy rate of 0.25% per genotype (0.12% per allele). 

 Comparison of 57,747,244 imputed and experimentally 
derived genotypes for 661,881 non-Perlegen SNPs present in 
the Affymetrix 6.0 array resulted in a discrepancy rate of 
1.80% per genotype (0.91% per allele). 

 Overall, the average r2 between imputed genotypes and their 
experimental counterparts was 0.93. This statistic exceeded 
0.80 for >90% of SNPs.



Genomic Position

Back to Sardinia G6PD Activity Example …

After imputing HapMap SNPs a 

region on chromosome 1 becomes 

top hit after G6PD and HBB

The new hit is upstream of 6PGD

6-phosphogluconate dehydrogenase 

is an enzyme that is known to 

metabolize some of the same 

substrates as G6PD



LDLR and LDL example



Does Imputation Improve Power?

tagSNPs

Multi-

marker tag Imputation

2.5% 24.4% 25.0% 56.2%

5% 55.8% 56.4% 73.8%

10% 77.4% 78.4% 87.2%

20% 85.6% 86.2% 92.0%

50% 93.0% 93.6% 96.0%

Disease 

SNP MAF 

Power

Power for Simulated Case Control Studies

Simulated studies used a tag SNP panel that captures 

80% of common variants with pairwise r2 > 0.80.



Choices for Analysis of 

Imputed Genotypes



Choices for Analysis

Scenario N H2 Power:

Best Guess

Power:

Dosage

Power:

Mixture

Large sample, small effect

1000 3% 63.5% 66.0% 66.8%

Small sample, large effect

50 60% 70.1% 75.5% 85.0%

 When effect sizes are small, difference between 
dosage and mixture models becomes even smaller

 3% of variance explained would now be considered 
a large effect for most traits.

Zheng et al, Genetic Epidemiology, 2011



Choices for Analysis

Zheng et al, Genetic Epidemiology, 2011



Combined Lipid Scans

 SardiNIA (Schlessinger, Uda, et al.)
 ~4,300 individuals, cohort

 FUSION (Mohlke, Boehnke, Collins, et al.)
 ~2,500 individuals

 DGI (Kathiresan, Altshuler, Orho-Mellander, et al.)
 ~3,000 individuals

 Individually, 1-3 hits/scan, mostly known loci

 Analysis:
 Impute genotypes so that all scans are analyzed at the same “SNPs”

 Carry out meta-analysis of results across scans



Combined Lipid Scan Results 



New HDL Locus

Willer et al, Nat Genet, 2008



New HDL Signal For An Old Locus 
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LDL-C association near LDLR

SNPs typed

by all 3 groups

(44,998)

Affy panel 

SNPs

(320,681)

Imputed SNPs

(~ 2.25 million)



What happens when we 

contrast results with 

related traits?



New LDL Locus, 

Previously Associated with CAD



Comparison with Related Traits:

Coronary Artery Disease and LDL-C 

Alleles
Gene LDL-C 

p-value

Frequency

CAD cases

Frequency

CAD ctrls

CAD 

p-value

OR

APOE/C1/C4 3.0x10-43 .209 .184 1.0x10-4 1.17 (1.08-1.28)

APOE/C1/C4 1.2x10-9 .339 .319 .0068 1.10 (1.02-1.18)

SORT1 6.1x10-33 .808 .778 1.3x10-5 1.20 (1.10-1.31)

LDLR 4.2x10-26 .902 .890 6.7x10-4 1.29 (1.10-1.52)

APOB 5.6x10-22 .830 .824 .18 1.04 (0.95-1.14)

APOB 8.3x10-12 .353 .332 .0042 1.10 (1.03-1.18)

APOB 3.1x10-9 .536 .520 .028 1.07 (1.00-1.14)

PCSK9 3.5x10-11 .825 .807 .0042 1.13 (1.03-1.23)

NCAN/CILP2 2.7x10-9 .922 .915 .055 1.11 (0.98-1.26)

B3GALT4 5.1x10-8 .399 .385 .039 1.07 (0.99-1.14)

B4GALT4 1.0x10-6 .874 .865 .051 1.09 (0.98-1.20)

Data from WTCCC



MTNR1B influences glucose levels 

in non-diabetics and is a T2D locus

Association with glucose,

36,000 non-diabetics

Association with diabetes,

18,000 cases vs. 64,000 
controls

Prokopenko et al, Nature Genetics, in 

press



Does This Work Across Populations?

 Conrad et al. (2006) dataset

 52 regions, each ~330 kb

 Human Genome Diversity Panel

 ~927 individuals, 52 populations

 1864 SNPs
 Grid of 872 SNPs used as tags

 Predicted genotypes for the other 992 SNPs

 Compared predictions to actual genotypes

Tag SNP Portability



(Evaluation Using ~1 SNP per 10kb in 52 x 300kb regions For Imputation)



Imputation Improves with Reference Panel Size

Accuracy By Minor Allele Frequency

Panel # SNPs MAF 1-3% MAF 3-5% MAF >5%

Pilot (60 EUR) 15M 0.69 0.77 0.91

Interim Freeze (283 EUR) 25M 0.73 0.78 0.92

Phase I Freeze (563 EUR) 39M 0.83 0.85 0.94

• As more individuals are sequenced…

– Reference panel becomes more complete

– Imputation quality improves, particularly for rare SNPs



… But Becomes Computationally Challenging

Reference Panel Samples Markers

Time per Sample

(in minutes)

HapMap 2 CEU 60 2.5 million 14

1000 Genomes Pilot CEU 60 7.3 million 41

1000 Genomes Interim EUR 283 11.6 million 1287

1000 Genomes Phase I EUR 381 18.7 million 3900

 Computational cost for original imputation 

methods scales …

 Linearly with number of markers

 Linearly  with number of individuals being imputed

 Quadratically with reference panel size



… Unless New Methods Used

Reference Panel Samples Markers

Time per Sample

(in minutes,

Standard method)

Time per Sample

(in minutes, 

new method)

HapMap 2 CEU 60 2.5 million 14 1

1000 Genomes Pilot CEU 60 7.3 million 41 1

1000 Genomes Interim EUR 283 11.6 million 1287 6

1000 Genomes Phase I EUR 381 18.7 million 3900 12

 Improved methods scale linearly with reference panel size
 This makes computational cost manageable

Bryan

Howie
Christian

Fuchsberger



Speeding Up Imputation:

Pre-Phasing



MaCH and Minimac

Haplotyping and Imputation

 www.sph.umich.edu/csg/abecasis/Mach

 www.sph.umich.edu/csg/abecasis/Mach/tour

 We will look at estimating and inferring 

haplotypes with Mach 1.0

 genome.sph.umich.edu/wiki/minimac

 genome.sph.umich.edu/wiki/minimac:_Tutorial

 We will look at a simple analysis with minimac

http://www.sph.umich.edu/csg/abecasis/Mach
http://www.sph.umich.edu/csg/abecasis/Mach/tour
http://www.genome.sph.umich.edu/wiki/minimac
http://genome.sph.umich.edu/wiki/minimac:_Tutorial
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