
Ordinal data Analysis:
Liability Threshold 

Models

Frühling Rijsdijk 

SGDP Centre, Institute of Psychiatry, 
King’s College London



Ordinal data
• Measuring instrument discriminates 

between two or a few ordered categories 
e.g.:
– Absence (0) or presence (1) of a disorder
– Score on a single Q item e.g. : 0 - 1, 0 - 4

• In such cases the data take the form of
counts, i.e. the number of individuals within
each category of response



Analysis of categorical 
(ordinal) variables

• The session aims to show how we can 
estimate correlations from simple count data 
(with the ultimate goal to estimate h2, c2, e2)

• For this we need to introduce the concept of 
‘Liability’ or ‘liability threshold models’

• Explain the mathematics of the model
• Illustrate application in practical session



Liability
Liability is a theoretical construct. It’s the assumption
we make about the distribution of a variable which 
we were only able to measure in terms of a few ordered
categories  

Assumptions: 

(1)Categories reflect an imprecise measurement of     
an underlying normal distribution of liability 

(2)The liability distribution has 1 or more thresholds 
(cut-offs) to discriminate between the categories



The risk or liability to a disorder is normally distributed, only 
when a certain threshold is exceeded will someone have the 
disorder. Prevalence: proportion of affected individuals. 

For disorders: 

Affected
individuals

For a single questionnaire item score e.g: 

0 1 2

0 = not at all
1 = sometimes
2 = always

Does not make sense to talk about prevalence: we simply count 
the endorsements of each response category 



The Standard Normal Distribution
Liability is a latent variable, the scale is arbitrary, distribution is
assumed to be a Standard Normal Distribution (SND) or
z-distribution:
• Mathematically described by the SN Probability Density 

function ( =phi), a bell-shaped curve with:
– mean = 0 and SD = 1
– z-values are the number of SD away from the mean

• Convenience: area under curve =1, translates directly to 
probabilities
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Mathematically the area under the curve can be worked out 
by integral calculus

Φ is the Standard Normal probability density function (Phi),
L1 is the liability, with means 0, and Var = 1, T1 is threshold 
(z-value) on L1
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Standard Normal Cumulative Probability in right-hand tail
(For negative z values, areas are found by symmetry)

ZT Area

0 .50 50%
.2 .42 42%
.4 .35 35%
.6 .27 27%
.8 .21 21%
1 .16 16%
1.2 .12 12%
1.4 .08 8%
1.6 .06 6%
1.8 .036 3.6%
2 .023 2.3%
2.2 .014 1.4%
2.4 .008 .8%
2.6 .005 .5%
2.8 .003 .3%
2.9 .002 .2%
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We can find the area between any two thresholds

Z0 Area to the right
.6 .27 (27   %)
1.8 .036 (  3.6 %) -

27-3.6 = 23.4 %

Area=P(.6  z  1.8)

Ability to work out the areas under the curve (proportions) 
enables the reverse operation, e.g. find the z-value
to describe proportion of affected individuals in a sample
or proportion scoring e.g 0, 1, 2 on item.   
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How to find Z-values 
– Standard Normal Cumulative probability 

Tables 
– Excel

• =NORMSINV()

-3 31.40-1.4
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Two ordinal traits: Data from twins

> Contingency Table with 4 observed cells:

cell a: pairs concordant for unaffected
cell d: pairs concordant for affected
cell b/c: pairs discordant for the disorder

Twin1
Twin2 0 1

0 a b

1 c d
0 = unaffected
1 = affected



Joint Liability Model for twin pairs 

• Assumed to follow a bivariate normal distribution, where
both traits have a mean of 0 and standard deviation of 1, but
the correlation between them is variable.

• The shape of a bivariate normal distribution is determined by
the correlation between the traits

r =.00 r =.90



Bivariate Normal (R=0.6) partitioned at threshold 1.4 (z-value) on both liabilities



Liab 2
Liab 1 0 1

0 .87 .05

1 .05 .03

Expected Proportions of the BN, for R=0.6, Th1=1.4, Th2=1.4



How are expected proportions 
calculated?

By numerical integration of the bivariate normal 
over two dimensions: the liabilities for twin1 and twin2 
e.g. the probability that both twins are affected : 

Φ is the bivariate normal probability density function,
L1 and L2 are the liabilities of twin1 and twin2, with means 0,
and  is the correlation matrix of the two liabilities
T1 is threshold (z-value) on L1, T2 is threshold (z-value) on L2
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Liab 2
Liab 1 0 1

0 00 01

1 10 11

How is this used to estimate correlations between two 
observed ordinal traits? 

Ability to work out the expected proportions given any correlation
(shape of the BND) and set of thresholds on the liabilities, enables 
the reverse operation i.e. the sample proportions in the 4 cells 
of the CT (i.e. number of 00, 01,10 and 11 scoring pairs) indicate
the best correlation between liabilities and the thresholds



• Estimate correlation in liabilities separately for
MZ and DZ pairs from their Count data

• Variance decomposition (A, C, E) can be applied
to the liability of the trait

• Estimate of the heritability of the liability

Twin Models



Summary
• To estimate correlations for ordinal traits 

(counts) we make assumptions about the joint 
distribution of the data (Bivariate Normal)

• The relative proportions of observations in the 
cells of the Contingency Table are translated 
into proportions under the BN

• The most likely thresholds and correlations are 
estimated from those proportions

• Genetic/Environmental variance components 
are estimated based on these correlations 
derived from MZ and DZ data



ACE Liability Model

11

Twin 1

C EA

L

C AE

L

Twin 2

Unaf ¯Aff Unaf ¯Aff

1

1/.5

Threshold
model

Variance
constraint



For a 2x2 CT with 1 estimated TH on each 
liability, the 2 statistic is always 0, 3 
observed statistics, 3 param, df=0 (it is always 
possible to find a correlation and 2 TH to perfectly explain 
the proportions in each cell). No goodness of fit of the
normal distribution assumption.

This problem is resolved if the CT is at least
2x3 (i.e. more than 2 categories on at least one liability)
A significant 2 reflects departure 
from normality.

0 1 2

0 O1 O2 O3

1 O4 O5 O6

0 1

0 O1 O2

1 O3 O4

Test of BN assumption



• The likelihood for a vector of observed ordinal 
responses is computed by the expected proportion in 
the corresponding cell of the MV distribution

• The likelihood of the model is the sum of the 
likelihoods of all vectors of observation

• This is a value that depends on the number of 
observations and isn’t very interpretable (as with 
continuous raw data analysis)

• So we compare it with the LL of other models, or a 
saturated (correlation) model to get a 2 model-fit 
index

Fit function Raw Ordinal Data

(Equations given in Mx manual, pg 89-90)



Power issues
• Ordinal data / Liability Threshold Model: less 

power than analyses on continuous data
Neale, Eaves & Kendler 1994

• Solutions:
1. Bigger samples
2. Use more categories

Sub-clinical 
group

cases cases



Model-fitting to Raw 
Ordinal Data

Practical 



Sample and Measures

• TEDS data collected at age 8

• Parent report

• Childhood Asperger Syndrome Test 
(CAST) (Scott et al., 2002)

• twin pairs: 1221 MZ  2198 DZ 

• Includes children with autism

spectrum conditions



The CAST score dichotomized at 98% (i.e. 
Scores of >16), is the official cut-off point for 
children at risk for Autism Spectrum Disorder

This resulted in only 16 concordant affected 
pairs (0 in some groups).

Numbers improved using a cut-off point of 
90% (however, clinically less interesting)



Practical Exercise
CAST score dichotomized (0,1) at 90% > 
threshold (z-value) of around 1.28
Prevalence of boys (14%)

Observed counts:
MZM DZM
0 1 0    1 

0 483  17  0 435 53
1 29  44  1 54  29

File: cast90m.dat 
R Script: UnivSat&ACE_Bin.R



Cast90m.dat

1          0          0  
2          0          0  
1          0          0  
1          0          1  
2          0          0  
2          0          .  
2          0          0  
1          0          0  
2          0          0  
2          0          0  
2          1          0  



# Program: UnivSat&ACE_Bin.R
require(OpenMx)

# Reads data from REC ASCI text file (cast90m.dat) with '.' as mis val, space sep
# Variabels: zyg cast90_tw1 cast90_tw2 
# zyg: 1=mz, 2=dz (males only)

nv <- 1 # number of var per twin
ntv <- nv*2 # number of var per pair
nthresh1 <- 1 # number of thresholds

allVars<- c('zyg', 'cast90_tw1' , 'cast90_tw2')
Castdata <- read.table ('cast90m.dat', header=F, sep="", na.strings=".",
col.names=allVars)

Castdata[,c(2,3)] <- mxFactor(Castdata[,c(2,3)], c(0 : nthresh1))
summary(Castdata)
selVars <- c('cast90_tw1' , 'cast90_tw2')
mzData <- subset(Castdata, zyg==1, selVars)
dzData <- subset(Castdata, zyg==2, selVars)

# Print Descriptive Statistics
summary(mzData)
table(mzData$cast90_tw1, mzData$cast90_tw2 )



# PREPARE SATURATED MODEL

# Matrices for expected Means & Thresholds (on liabilities) in MZ & DZ twins
meanG <-mxMatrix( type="Zero", nrow=1, ncol=ntv, name="expMean" ) 

threMZ <-mxMatrix(type="Full", nrow=1, ncol=ntv, free=TRUE, values=thVals, 
labels=c("tMZ1","tMZ2"), name="expThreMZ" )

threDZ <-mxMatrix(type="Full", nrow=1, ncol=ntv, free=TRUE, values=thVals, 
labels=c("tDZ1","tDZ2"), name="expThreDZ" )

corMZ <-mxMatrix(type="Stand", nrow=ntv, ncol=ntv, free=T, values=corValsM, 
lbound=-.99, ubound=.99, labels=c("rMZ"), name="expCorMZ") 

corDZ <-mxMatrix(type="Stand", nrow=ntv, ncol=ntv, free=T, values=corValsD, 
lbound=-.99, ubound=.99, labels=c("rDZ"), name="expCorDZ") 

0,0

tMZ1,       tMZ2threMZ
cast90_tw1 cast90_tw2

z-values 1

L1        L2

L1
L2

1
rMZ

rMZ



# Data objects for Multiple Groups
dataMZ <- mxData(mzData, type="raw")
dataDZ <- mxData(dzData, type="raw")

# Objective objects for Multiple Groups
objMZ <- mxFIMLObjective( covariance="expCorMZ", means="expMean", 
dimnames=selVars, thresholds="expThreMZ" )

objDZ <- mxFIMLObjective( covariance="expCorDZ", means="expMean", 
dimnames=selVars, thresholds="expThreDZ" )

Objective functions are functions for which free parameter values are chosen 
such that the value of the objective function is minimized   

mxFIMLObjective : Objective functions is Full–Information maximum likelihood,
The preferred method for raw data. Ordinal data requires an additional
argument for the thresholds



# Combine Groups to create Models

groupMZ<-mxModel("MZ", corMZ, meanG, threMZ, dataMZ, objMZ )
groupDZ<-mxModel("DZ", corDZ, meanG, threDZ, dataDZ, objDZ )

minus2ll <-mxAlgebra( MZ.objective + DZ.objective, name="minus2sumloglikelihood" )
obj <-mxAlgebraObjective("minus2sumloglikelihood") 
ciCor <-mxCI(c('MZ.expCorMZ[2,1]', 'DZ.expCorDZ[2,1]'))
ciThre <-mxCI( c('MZ.expThreMZ','DZ.expThreDZ' ))

twinSatModel   <- mxModel( "twinSat", minus2ll, obj, groupMZ, groupDZ, ciCor, ciThre ) 

# -----------------------------------------------------------------------
#  RUN SATURATED MODEL (Tetrachoric correlations) 
# -----------------------------------------------------------------------
twinSatFit <- mxRun(twinSatModel, intervals=F)       # to run trough optimizer, return 
Values of the function in an object containing all free parameters assigned to their final values 

twinSatSumm <- summary(twinSatFit)  
round(twinSatFit@output$estimate,4)
twinSatSumm

Round(twinSatFit@output$estimate,4 : will give all Free parameter estimates



# RUN SUBMODELS
# SubModel 1: Thresholds across Twins within zyg group are equal

eqThresholdsTwinModel    <- twinSatFit

eqThresholdsTwinModel    <- omxSetParameters( eqThresholdsTwinModel, 
label="tMZ1", free=TRUE, values=thVals, newlabels='tMZ' )

eqThresholdsTwinModel    <- omxSetParameters( eqThresholdsTwinModel, 
label="tMZ2", free=TRUE, values=thVals, newlabels='tMZ' )

tMZ,       tMZthreMZ
cast90_tw1 cast90_tw2

tDZ,       tDZthreDZ
cast90_tw1 cast90_tw2

omxSetParameters : useful function to modify the attributes of parameters in
a model. 



Exercise 1

• Run script and check that the values in the Table 
are correct.

• What are the conclusions about the thresholds?

• What is the final model in terms of the thresholds?



MODEL ep -2LL df 2(df) P-val

1 All TH free & 6 1599.8 2282 - -

2 TH tw1=tw2 in MZ and DZ $ 4 1602.9 2284 3.18 (2) .20 ns

3 One TH for all males 3 1605.6 2285 5.85 (3) .12 ns

& Thresholds: MZM twin 1 = 1.14,  MZM twin 2 = 1.25
DZM twin 1 = 1.06,  DZM twin 2 = 1.06

$ Thresholds: MZM =1.19, DZM = 1.06

Based on these results, the final TH model in the script is: 
one overall TH for males: 1.11 (1.04 – 1.19) 

The correlations for this model are: 
r MZM = 0.87 (.80-.93) r DZM = 0.45 (.29-.59)



# PREPARE GENETIC MODEL
# Matrices to store a, c, and e Path Coefficients
pathA    <- mxMatrix( type="Full", nrow=1, ncol=1, free=TRUE, values=.6, 
label="a11", name="a" ) 
pathC    <- mxMatrix( type="Full", nrow=1, ncol=1, free=TRUE, values=.6, 
label="c11", name="c" )
pathE    <- mxMatrix( type="Full", nrow=1, ncol=1, free=TRUE, values=.6, 
label="e11", name="e" )    
# Algebra for Matrices to hold A, C, and E Variance Components
covA     <- mxAlgebra( expression=a %*% t(a), name="A" )
covC     <- mxAlgebra( expression=c %*% t(c), name="C" ) 
covE     <- mxAlgebra( expression=e %*% t(e), name="E" )

# Algebra to compute Total Variance
covP     <- mxAlgebra( expression=A+C+E, name="V" )

# Constrain Total variance of the liability to 1
matUnv <-mxMatrix( type="Unit", nrow=nv, ncol=1, 
name="Unv1" )

var1 <-mxConstraint( expression=diag2vec(V)==Unv1, name="Var1" )

1

C AE

L

A + C + E =1  



# RUN SUBMODELS #  Fit AE Model, fix C to zero
AeModel <- mxModel( AceFit, name="AE" )
AeModel <- omxSetParameters( AeModel, labels="c11", free=FALSE, 
values=0 )
AeFit <- mxRun(AeModel)
round(AeFit@output$estimate,4)
round(AeFit$Vars@result,4)

# Matrices to hold Parameter Estimates and Derived Variance Components
rowVars <- rep('vars',nv)
colVars <- rep(c('A','C','E','SA','SC','SE'),each=nv)
estVars <- mxAlgebra( expression=cbind(A,C,E,A/V,C/V,E/V), 
name="Vars", dimnames=list(rowVars,colVars))

> round(AeFit@output$estimate,4)
a11       e11         thre 

0.9356    -0.3532  1.1143 

> round(AeFit$Vars@result,4)
A          C      E            SA         SC       SE

vars 0.8753   0       0.1247   0.8753   0          0.1247



Exercise 2 
• Add the ‘E’sub-model, using the same logic as for 

the ‘AE’ and ‘CE’ sub-model



DF and Constraints

ACE
Model
param

EPBeforeConstraint

a, c, e  (3)
thresholds (1)

EPAfterConstraint

2
1 

4 3

OS 2288

df OS - EPAC = 2288 – 3 = 2285
OpenMx: OS + number of Constr - EPBC = 2289 – 4

= 2285

Number
Of Constr
1



Model -2LL df epBC Model of 
comp 

2(df) sig

ACE 1605.6 2285 4* - - -

CE 1633.6 2286 3 ACE 27.9 (1) p=<.001

AE 1605.7 2286 3 ACE 0.02 (1) p=.89

E 1774 2287 2 ACE 168 (2) p=<.001

* A, C, E + 1 Threshold

Table of Fit Statistics



Estimates

h2 c2 e2

ACE .85
.53/.93

.02
0/.31

.13
.07/.21

AE .88
.80/.93

- .12
.07/.20



For multiple threshold models, to ensure 
t1>t2>t3 etc....... 

We use a slightly more complicated model for 
the thresholds

Multiple Thresholds:
more than two categories



Threshold Specification

t11 t12

2 Categories > 1 threshold per Liability
Threshold Matrix : 1 x 2
T(1,1) T(1,2) threshold twin1 & twin2

T11

T12

Threshold twin 1
T11

Threshold twin 1
T12

T =

Expected Thresholds: T 



3 Categories > 2 thresholds per liability
Matrix T: 2 x 2
T(1,1) T(1,2) threshold 1 for twin1 & twin2
T(2,1) T(2,2) increment

Increment: 
must be positive

T11= t11 T21= t11+ t21

t21

T12= t12 T22= t12+ t22

t22

- 3 - 4

- 3 - 4

Twin 1

Twin 2



Expected Thresholds: L*T 

1 0
1 1

t11 t12
t21 t22

* =
t11 t12
t11 + t21 t12 + t22

Thresholds twin 1
T11
T21

Use multiplication to ensure 
that second threshold is higher 
than first

Thresholds twin 2
T12
T22

T11= t11 T21= t11+ t21

t21

T12= t12 T22= t12+ t22

t22



nth <- 2 # number of thresholds
thRows <- paste("th",1:nth,sep="")      # thRows <- c('th1','th2')
.
.
mxMatrix( type="Full", nrow=nth, ncol=ntv, free=TRUE, values=.5, 
lbound= c(-3,  0.0001,  -3,   0.0001), name="Thmz" ),

mxMatrix( type="Lower", nrow=nth, ncol=nth, free=FALSE, values=1, 
name="Inc" ), 
mxAlgebra( expression= Inc %*% Thmz, dimnames=list(thRows,selVars), 
name="expThmz"),    

1 0
1 1

t11 t12
t21 t22

* =
t11 t12
t11 + t21 t12 + t22

expThmzThe bounds stop the 
thresholds going 
‘backwards’, i.e. they 
preserve the ordering of 
the data


