Ordinal data Analysis: Liability Threshold Models

Frühling Rijsdijk

SGDP Centre, Institute of Psychiatry, King's College London

Ordinal data

- Measuring instrument discriminates between two or a few ordered categories e.g.:
- Absence (0) or presence (1) of a disorder
- Score on a single Q item e.g. : 0-1, 0-4
- In such cases the data take the form of counts, i.e. the number of individuals within each category of response

Analysis of categorical (ordinal) variables

- The session aims to show how we can estimate correlations from simple count data (with the ultimate goal to estimate $h^{2}, \mathrm{c}^{2}, \mathrm{e}^{2}$)
- For this we need to introduce the concept of 'Liability' or 'liability threshold models'
- Explain the mathematics of the model
- Illustrate application in practical session

Liability

Liability is a theoretical construct. It's the assumption we make about the distribution of a variable which we were only able to measure in terms of a few ordered categories

Assumptions:
(1)Categories reflect an imprecise measurement of an underlying normal distribution of liability
(2)The liability distribution has 1 or more thresholds (cut-offs) to discriminate between the categories

For disorders:

The risk or liability to a disorder is normally distributed, only when a certain threshold is exceeded will someone have the disorder. Prevalence: proportion of affected individuals.

For a single questionnaire item score e.g:

0 = not at all
1 = sometimes
2 = always
Does not make sense to talk about prevalence: we simply count the endorsements of each response category

The Standard Normal Distribution

Liability is a latent variable, the scale is arbitrary, distribution is assumed to be a Standard Normal Distribution (SND) or z-distribution:

- Mathematically described by the SN Probability Density function ($\Phi=$ phi), a bell-shaped curve with:
- mean = 0 and SD = 1
- z-values are the number of SD away from the mean
- Convenience: area under curve =1, translates directly to probabilities

Mathematically the area under the curve can be worked out by integral calculus

$$
\text { Area }=P\left(z \geq z_{T}\right)
$$

Φ is the Standard Normal probability density function (Phi), L_{1} is the liability, with means 0 , and $\operatorname{Var}=1, \mathrm{~T}_{1}$ is threshold (z-value) on L_{1}

Standard Normal Cumulative Probability in right-hand tail

 (For negative z values, areas are found by symmetry)

We can find the area between any two thresholds

Area=P(. $6 \leq z \leq 1.8)$

$Z_{0} \quad$ Area to the right .6 . 27 (27 \%) 1.8 . 036 (3.6%) -

$$
27-3.6=23.4 \%
$$

Ability to work out the areas under the curve (proportions) enables the reverse operation, e.g. find the z-value to describe proportion of affected individuals in a sample or proportion scoring e.g 0, 1, 2 on item.

How to find Z-values

- Standard Normal Cumulative probability Tables
- Excel
-=NORMSINV()

区Microsoft Excel

畋Book1				
	A	B	c	D
1				
2	\%	Z-value		
3				
4	0.08	-1.40507156		
5	0.92	1.40507156		
6	0.27	-0.612812991		
7	0.73	0.612812991		

Two ordinal traits: Data from twins

> Contingency Table with 4 observed cells:
cell a: pairs concordant for unaffected cell d: pairs concordant for affected cell b/c: pairs discordant for the disorder

Twin2 $^{\text {Twin1 }}$	0	1
0	a	b
1	c	d

0 = unaffected
1 = affected

Joint Liability Model for twin pairs

- Assumed to follow a bivariate normal distribution, where both traits have a mean of 0 and standard deviation of 1 , but the correlation between them is variable.
- The shape of a bivariate normal distribution is determined by the correlation between the traits

Bivariate Normal ($\mathrm{R}=0.6$) partitioned at threshold 1.4 (z-value) on both liabilities

Expected Proportions of the BN, for R=0.6, Th1=1.4, Th2=1.4

How are expected proportions calculated?

By numerical integration of the bivariate normal over two dimensions: the liabilities for twin1 and twin2 e.g. the probability that both twins are affected :

$$
\int_{\int \omega_{2}}^{1} \Phi(L, L ; \mu=0, \Sigma) d L d L
$$

Φ is the bivariate normal probability density function, L_{1} and L_{2} are the liabilities of twin1 and twin2, with means 0 , and Σ is the correlation matrix of the two liabilities T_{1} is threshold (z-value) on $\mathrm{L}_{1}, \mathrm{~T}_{2}$ is threshold (z-value) on L_{2}

How is this used to estimate correlations between two

 observed ordinal traits?

Ability to work out the expected proportions given any correlation (shape of the BND) and set of thresholds on the liabilities, enables the reverse operation i.e. the sample proportions in the 4 cells of the CT (i.e. number of 00, 01,10 and 11 scoring pairs) indicate the best correlation between liabilities and the thresholds

Twin Models

- Estimate correlation in liabilities separately for MZ and DZ pairs from their Count data
- Variance decomposition (A, C, E) can be applied to the liability of the trait
- Estimate of the heritability of the liability

Summary

- To estimate correlations for ordinal traits (counts) we make assumptions about the joint distribution of the data (Bivariate Normal)
- The relative proportions of observations in the cells of the Contingency Table are translated into proportions under the BN
- The most likely thresholds and correlations are estimated from those proportions
- Genetic/Environmental variance components are estimated based on these correlations derived from MZ and DZ data

ACE Liability Model

Test of BN assumption

For a 2×2 CT with 1 estimated TH on each liability, the χ^{2} statistic is always 0,3 observed statistics, 3 param, df=0 (it is always possible to find a correlation and 2 TH to perfectly explain the proportions in each cell). No goodness of fit of the normal distribution assumption.

This problem is resolved if the CT is at least
2×3 (i.e. more than 2 categories on at least one liability) A significant χ^{2} reflects departure from normality.

Fit function Raw Ordinal Data

- The likelihood for a vector of observed ordinal responses is computed by the expected proportion in the corresponding cell of the MV distribution
- The likelihood of the model is the sum of the likelihoods of all vectors of observation
- This is a value that depends on the number of observations and isn't very interpretable (as with continuous raw data analysis)
- So we compare it with the LL of other models, or a saturated (correlation) model to get a χ^{2} model-fit index
(Equations given in Mx manual, pg 89-90)

Power issues

- Ordinal data / Liability Threshold Model: less power than analyses on continuous data Neale, Eaves \& Kendler 1994
- Solutions:

1. Bigger samples
2. Use more categories

Model-fitting to Raw Ordinal Data

Practical

Sample and Measures

- TEDS data collected at age 8
- Parent report
- Childhood Asperger Syndrome Test (CAST) (Scott et al., 2002)
- twin pairs: 1221 MZ 2198 DZ
- Includes children with autism spectrum conditions

The CAST score dichotomized at 98% (i.e. Scores of >16), is the official cut-off point for children at risk for Autism Spectrum Disorder

This resulted in only 16 concordant affected pairs (0 in some groups).

Numbers improved using a cut-off point of 90\% (however, clinically less interesting)

Practical Exercise

CAST score dichotomized (0,1) at 90% > threshold (z-value) of around 1.28 Prevalence of boys (14\%)

Observed counts:

File: cast90m.dat
R Script: UnivSat\&ACE_Bin.R

Cast90m.dat

1	0	0
2	0	0
1	0	0
1	0	1
2	0	0
2	0	
2	0	0
1	0	0
2	0	0
2	0	0
2	1	0

```
# Program: UnivSat&ACE_Bin.R
require(OpenMx)
# Reads data from REC ASCI text file (cast90m.dat) with '.' as mis val, space sep
# Variabels: zyg cast90_tw1 cast90_tw2
# zyg: 1=mz, 2=dz (males only)
nv <-1 # number of var per twin
ntv <- nv*2 # number of var per pair
nthresh1 <-1 # number of thresholds
allVars<- c('zyg', 'cast90_tw1' , 'cast90_tw2')
Castdata <- read.table ('cast90m.dat', header=F, sep="', na.strings=".",
col.names=allVars)
Castdata[,c(2,3)] <- mxFactor(Castdata[,c(2,3)], c(0 : nthresh1))
summary(Castdata)
selVars <- c('cast90_tw1' , 'cast90_tw2')
mzData <- subset(Castdata, zyg==1, selVars)
dzData <- subset(Castdata, zyg==2, selVars)
# Print Descriptive Statistics
summary(mzData)
table(mzData$cast90_tw1, mzData$cast90_tw2 )
```


\# PREPARE SATURATED MODEL

\# Matrices for expected Means \& Thresholds (on liabilities) in MZ \& DZ twins meanG <-mxMatrix(type="Zero", nrow=1, ncol=ntv, name="expMean") (0,0 $)$
threMZ <-mxMatrix(type="Full", nrow=1, ncol=ntv, free=TRUE, values=thVals, labels=c("tMZ1","tMZ2"), name="expThreMZ")
threDZ <-mxMatrix(type="Full", nrow=1, ncol=ntv, free=TRUE, values=thVals, labels=c("tDZ1","tDZ2"), name="expThreDZ")
corMZ <-mxMatrix(type="Stand", nrow=ntv, ncol=ntv, free=T, values=corValsM, lbound=-.99, ubound=.99, labels=c("rMZ"), name="expCorMZ")
corDZ <-mxMatrix(type="Stand", nrow=ntv, ncol=ntv, free=T, values=corValsD, lbound=-.99, ubound=.99, labels=c("rDZ"), name="expCorDZ")
\# Data objects for Multiple Groups
dataMZ <- mxData(mzData, type="raw")
dataDZ <- mxData(dzData, type="raw")
\# Objective objects for Multiple Groups
objMZ <- mxFIMLObjective(covariance="expCorMZ", means="expMean",
dimnames=selVars, threshoíds="expThreMZ")
objDZ <- mxF1MLObjective(covariance="expCorDZ", means="expMean", dimnames=selVars, thresholds="expThreDZ")

Objective functions are functions for which free parameter values are chosen such that the value of the objective function is minimized
mxFIMLObjective : Objective functions is Full-Information maximum likelihood, The preferred method for raw data. Ordinal data requires an additional argument for the thresholds

\# Combine Groups to create Models

groupMZ<-mxModel("MZ", corMZ, meanG, threMZ, dataMZ, objMZ) groupDZ<-mxModel("DZ", corDZ, meanG, threDZ, dataDZ, objDZ)
minus2ll <-mxAlgebra(MZ.objective + DZ.objective, name="minus2sumloglikelihood")
obj <-mxAlgebraObjective("minus2sumloglikelihood")
ciCor <-mxCl(c('MZ.expCorMZ[2,1]', 'DZ.expCorDZ[2,1]'))
ciThre <-mxCl(c('MZ.expThreMZ','DZ.expThreDZ'))
twinSatModel <- mxModel("twinSat", minus2ll, obj, groupMZ, groupDZ, ciCor, ciThre)
\#
\# RUN SATURATED MODEL (Tetrachoric correlations)
\#
twinSatFit <- mxRun(twinSatModel, intervals=F) \# to run trough optimizer, return Values of the function in an object containing all free parameters assigned to their final values
twinSatSumm <- summary(twinSatFit)
round(twinSatFit@output\$estimate,4)
twinSatSumm

Round(twinSatFit@output\$estimate,4 : will give all Free parameter estimates

\# RUN SUBMODELS

\# SubModel 1: Thresholds across Twins within zyg group are equal
eqThresholdsTwinModel <- twinSatFit
eqThresholdsTwinModel <- omxSetParameters(eqThresholdsTwinModel, label="tMZ1", free=TRUE, values=thVals, newlabels='tMZ')
eqThresholdsTwinModel <- omxSetParameters(eqThresholdsTwinModel, label="tMZ2", free=TRUE, values=thVals, newlabels='tMZ')
omxSetParameters : useful function to modify the attributes of parameters in a model.
threMZ $\left.\begin{array}{ccc}\text { cast90_tw1 } & \text { cast90_tw2 } & \mathrm{tMZ}, \\ \mathrm{tMZ}\end{array}\right) \quad$ threDZ $\left.\begin{array}{ccc}\text { cast90_tw1 } & \text { cast90_tw2 } \\ \mathrm{tDZ}, & \mathrm{tDZ}\end{array}\right)$

Exercise 1

Run script and check that the values in the Table are correct.

What are the conclusions about the thresholds?

What is the final model in terms of the thresholds?

MODEL	ep	-2LL	df	$\boldsymbol{\Delta} \boldsymbol{\chi}^{\mathbf{2}} \mathbf{(d f)}$	P-val
1 All TH free \&	6	1599.8	2282	-	-
2 TH tw1=tw2 in MZ and DZ \$	4	1602.9	2284	$3.18(2)$.20 ns
3 One TH for all males	3	1605.6	2285	$5.85(3)$.12 ns

${ }^{\text {® }}$ Thresholds:

> MZM $\operatorname{twin} 1=1.14, M Z M \operatorname{twin} 2=1.25$
> DZM $\operatorname{twin} 1=1.06$, DZM $\operatorname{twin} 2=1.06$
§ Thresholds: \quad MZM =1.19, DZM $=1.06$
Based on these results, the final TH model in the script is: one overall TH for males: 1.11 (1.04-1.19)

The correlations for this model are:

$$
r_{\text {MzM }}=0.87(.80-.93) \quad r_{\text {DzM }}=0.45(.29-.59)
$$

\# PREPARE GENETIC MODEL
\# Matrices to store a, c, and e Path Coefficients
pathA <- mxMatrix(type="Full", nrow=1, ncol=1, free=TRUE, values=.6, label="a11", name="a")
pathC <- mxMatrix(type="Full", nrow=1, ncol=1, free=TRUE, values=.6, label="c11", name="c")
pathE <- mxMatrix(type="Full", nrow=1, ncol=1, free=TRUE, values=.6, label="e11", name="e")
\# Algebra for Matrices to hold A, C, and E Variance Components covA <- mxAlgebra(expression=a \%*\% t(a), name="A") covC <- mxAlgebra(expression=c $\% * \% \mathrm{t}$ (c), name="C") covE <- mxAlgebra(expression=e \%*\% t(e), name="E")
\# Algebra to compute Total Variance covP <- mxAlgebra(expression=A+C+E, name="V")
\# Constrain Total variance of the liability to 1 matUnv <-mxMatrix(type="Unit", nrow=nv, ncol=1, name="Unv1")

var1 <-mxConstraint(expression=diag2vec(V)==Unv1, name="Var1")
\# RUN SUBMODELS \# Fit AE Model, fix C to zero
AeModel <- mxModel(AceFit, name="AE")
AeModel <- omxSetParameters(AeModel, labels="c11", free=FALSE, values=0)
AeFit <- mxRun(AeModel)
round(AeFit@output\$estimate,4)
round(AeFit\$Vars@result,4)
\# Matrices to hold Parameter Estimates and Derived Variance Components
rowVars <- rep('vars',nv)
colVars <- rep(c('A','C','E','SA','SC','SE'),each=nv)
estVars <- mxAlgebra(expression=cbind(A,C,E,A/V,C/V,E/V),
name="Vars", dimnames=list(rowVars,colVars))
> round(AeFit@output\$estimate,4)
a11 e11 thre
$0.9356-0.35321 .1143$
> round(AeFit\$Vars@result,4)

A	C	E	SA	SC	SE
vars 0.8753	0	0.1247	0.8753	0	0.1247

Exercise 2

- Add the 'E'sub-model, using the same logic as for the 'AE' and 'CE' sub-model

DF and Constraints

OS

2288
ACE Model
param
EP $P_{\text {BeforeConstraint }}$
a, \mathbf{c}, e (3)
thresholds (1)

Number Of Constr
1

$$
\begin{aligned}
& 2 \\
& 1
\end{aligned}
$$

EP AfterConstraint

3

OS - $E P_{A C}=2288-3=2285$
OpenMx: OS + number of Constr - EP $\mathrm{BC}_{\mathrm{BC}}=2289$ - 4
$=2285$

Table of Fit Statistics

| Model | $-2 L L$ | df | e_{BC} | Model of
 comp | $\Delta \chi^{2}(\Delta \mathrm{df})$ | sig |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| ACE | 1605.6 | 2285 | 4^{*} | - | - | - |
| CE | 1633.6 | 2286 | 3 | ACE | $27.9(1)$ | $\mathrm{p}=<.001$ |
| AE | 1605.7 | 2286 | 3 | ACE | $0.02(1)$ | $\mathrm{p}=.89$ |
| E | 1774 | 2287 | 2 | ACE | $168(2)$ | $\mathrm{p}=<.001$ |

* A, C, E + 1 Threshold

Estimates

	$\mathbf{h}^{\mathbf{2}}$	$\mathbf{c}^{\mathbf{2}}$	$\mathbf{e}^{\mathbf{2}}$
$\mathbf{A C E}$.85	.02	.13
	$.53 / .93$	$0 / .31$	$.07 / .21$
$\mathbf{A E}$.88	-	.12
	$.80 / .93$		$.07 / .20$

Multiple Thresholds: more than two categories

For multiple threshold models, to ensure t1>t2>t3 etc.......

We use a slightly more complicated model for the thresholds

Threshold Specification

2 Categories > 1 threshold per Liability

 Threshold Matrix : 1×2 $\mathrm{T}(1,1) \mathrm{T}(1,2)$ threshold twin1 \& twin2

Expected Thresholds:

$$
T=\left[\begin{array}{cc}
t_{11} & t_{12}
\end{array}\right]
$$

Threshold twin 1

Threshold twin 1
T_{12}

3 Categories > 2 thresholds per liability

Matrix T: 2×2

$\mathrm{T}(1,1) \mathrm{T}(1,2)$ threshold 1 for twin1 \& twin2
$T(2,1) T(2,2)$ increment

Increment:

 must be positive Twin 1Twin 2

Use multiplication to ensure that second threshold is higher than first

Expected Thresholds：

－ーーーーーーーーーーーーーニーーー
$\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right) *\left(\begin{array}{ll}t_{11} & t_{12} \\ t_{21} & t_{22}\end{array}\right)=\begin{aligned} & t_{11} \\ & t_{11}+t_{21}\end{aligned} \begin{aligned} & t_{12} \\ & t_{12}+t_{22}\end{aligned}$

Thresholds twin 1
T_{11}
$\mathrm{~T}_{21}$

Thresholds twin 2
T_{12}
T_{22}
nth <- 2
thRows <- paste("th",1:nth,sep="')
\# number of thresholds \# thRows <- c('th1','th2')
mxMatrix(type="Full", nrow=nth, ncol=ntv, free=TRUE, values=.5, lbound= c(-3, 0.0001, -3, 0.0001), name="Thmz"),
mxMatrix(type="Lower", nrow=nth, ncol=nth, free=FALSE, values=1, name="Inc"),
mxAlgebra(expression= Inc \%*\% Thmz, dimnames=list(thRows,selVars), name="exp/hmz"),

$$
\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right) *\left(\begin{array}{ll}
t_{11} & t_{12} \\
t_{21} & t_{22}
\end{array}\right)=\begin{array}{ll}
t_{11} \\
t_{11}
\end{array}+t_{21} \quad \begin{aligned}
& t_{12} \\
& t_{12}
\end{aligned}+t_{22}
$$

The bounds stop the thresholds going 'backwards', i.e. they preserve the ordering of the data
expThmz

