Univariate Twin Analysis

OpenMx Tc26 2012 Hermine Maes, Elizabeth Prom-Wormley, Nick Martin

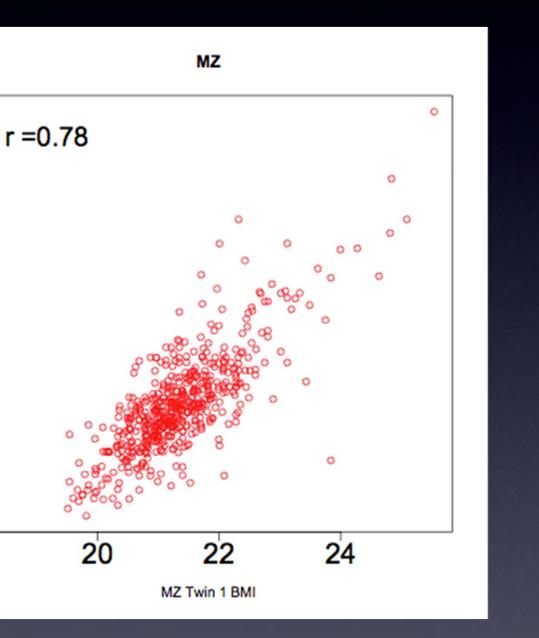
Answered

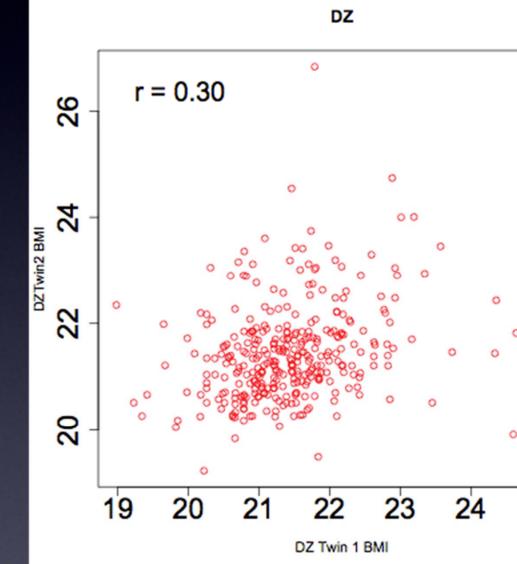
- Does a trait of interest cluster among relate ndividuals?
- Can clustering be explained by genetic or environmental effects?
- What is the best way to explain the degree which genetic and environmental effects aff a trait?

Designs

Family Studies

Classical Twin Studies


Adoption Studies


Ine Data

- Australian Twin Register
- 18-30 years old, males and females
- Nork from this session will focus on Body Mass Index (weight/height²) in females only

Sample size MZF = 534 complete pairs (zyg = 1) DZF = 328 complete pairs (zyg = 3)

A QUICK LOOK at the Data

Basic Background

- The Classical Twin Study (CTS) uses MZ and DZ twins reared together
 - MZ twins share 100% of their genes
 DZ twins share on average 50% of their genes

Expectation- Genetic factors are assumed

Assumptions

MZ twins are genetically identical
 Equal Environments of MZ and DZ pairs

Basic Data Assumptions

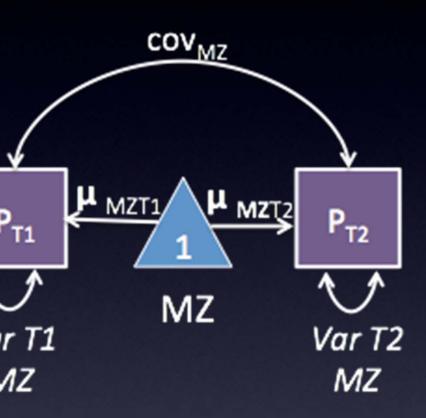
- MZ and DZ twins are sampled from the san population, therefore we expect :-
- Equal means/variances in Twin 1 and Tw
- Equal means/variances in MZ and DZ twi

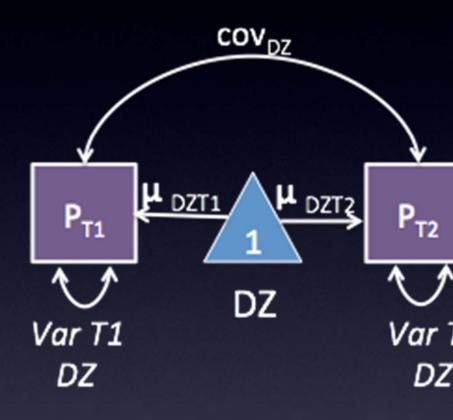
Further assumptions would need to be test f we introduce male twins and opposite sex twin pairs

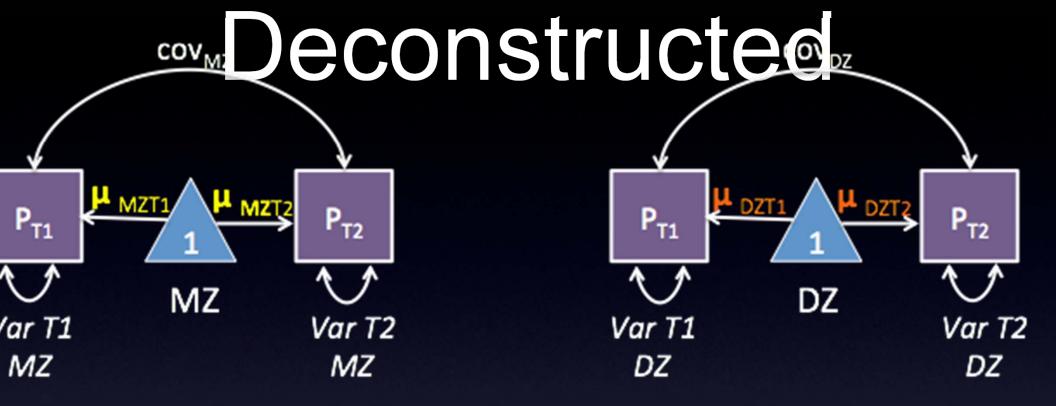
Checking

	Ν	Ζ		DZ		
	T1	T2	T1	T2		
ean	21.35	21.34	21.45	21.46		
riance	0.73 0.79		0.77	0.82		
variance(T1-T2)	0.	59	0.	25		

ce, but how can we actually be sure that the

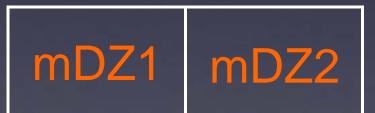

Use the data to test basic assumptions (equans & variances for twin 1/twin 2 and MZ/D rs)


Saturated Model


Estimate contributions of genetic and vironmental effects on the total variance of enotype ACE or ADE Models

Test ACE (ADE) submodels to identify and

Saturated Twin Model



neanMZ <- mxMatrix(type="Full", nrow=1, ncol=ntv, free=TRUE, alues=meVals, labels=c("mMZ1","mMZ2"), name="expMeanMZ")

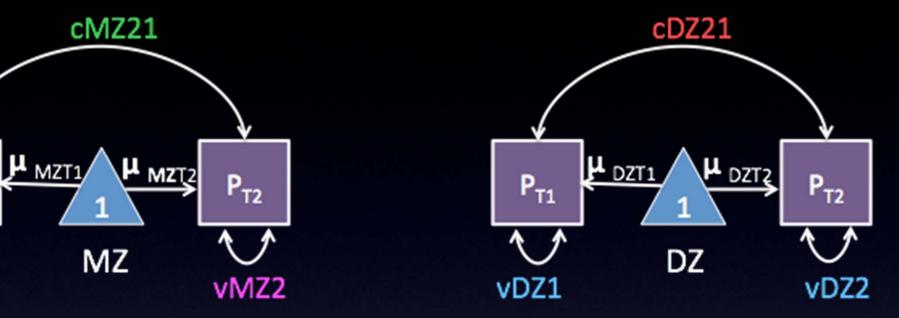
neanDZ <- mxMatrix(type="Full", nrow=1, ncol=ntv, free=TRUE, alues=meVals, labels=c("mDZ1","mDZ2"), name="expMeanDZ")

T1

vMZ1

covMZ = 2

T1


vDZ1

T1

T2

T1

T2

<- mxMatrix(type="Symm", nrow=ntv, ncol=ntv,
RUE, values=cvVals, lbound=lbVals, labels=c
","cMZ21","vMZ2"), name="expCovMZ")</pre>

<- mxMatrix(type="Symm", nrow=ntv, ncol=ntv,
RUE, values=cvVals, lbound=lbVals, labels=c
',"cDZ21","vDZ2"), name="expCovDZ")</pre>

Time to Play... with OpenMx

Please Open the File twinSatCon.R

Louinaleu valueo

cov T1 T1 T1 T2 T2 T2 T2 T2 0 Total Parameters T2 T2			T1	T2		T1	T2					
cov T1 T1 T1 T2 T2<	Saturated Model											
T2 T2 T2 T2 T2 T2 T2 T2 T2 T2	mean	mean MZ DZ										
0 Total Parameters MZ1emMZ2, vMZ1,vMZ2,cMZ21 mDZ1, mDZ2,	COV	T1			T1							
Stimateo MZ2, vMZ1,vMZ2,cMZ21		T2 T2										
in pair correlations (covMZ &	MZ1 mDZ MZ1	<i>tea</i> M ,∨MZ2 1, mD2	Z2, 2,cMZ2 Z2, 6 D 2726	1 nce m		s for						

Louinaleu valueo

		T1	T2		T1	T2					
Saturated Model											
mean MZ 21.34 21.35 DZ 21.45 21.4											
COV	T1	0.73		T1	0.77						
T2 0.59 0.79 T2 0.24 0.82											
0 Total Parameters MAZ1enMZ2, VMZ1,vMZ2,cMZ21 mDZ1, mDZ2, MAZ3rdDZ2602721 vin pair correlations (covMZ &											

Fitting Nested Models

Saturated Model

- likelihood of data without any constraints
- fitting as many means and (co)variances as possible
 Equality of means & variances by twin order
 - test if mean of twin 1 = mean of twin 2
 - test if variance of twin 1 = variance of twin 2
- Equality of means & variances by zygosity
 - test if mean of MZ = mean of DZ
 - test if variance of MZ = variance of DZ

Estimated Values

		T1	T2		T1	T2	
Equate Means & Variances across Twin Order							
mean	MZ			DZ			
COV	T1			T1			
	T2			T2			

Equate Means Variances across Twin Order & Zygosity

mean	MZ		DZ	
COV	T1		T1	
	T2		T2	

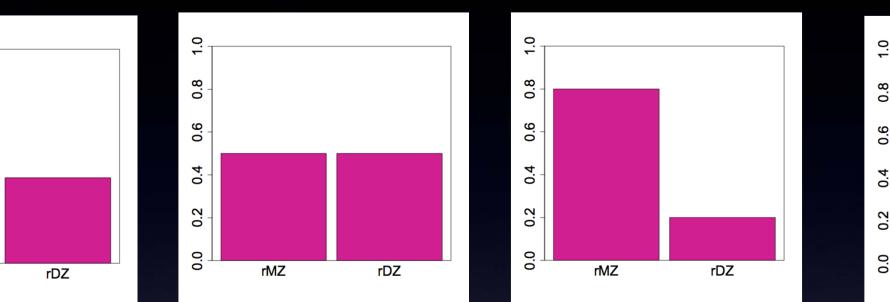
Estimates

		T1	T2		T1	T2	
Equate Means & Variances across Twin Order							
mean	MZ	21.35	21.35	DZ	21.45	21.45	
COV	T1	0.76		T1	0.79		
	T2	0.59	0.76	T2	0.24	0.79	

Equate Means Variances across Twin Order & Zygosity

mean	MZ	21.39	21.39	DZ	21.39	21.39
COV	T1	0.78		T1	0.78	
	T2	0.61	0.78	T2	0.23	0.78

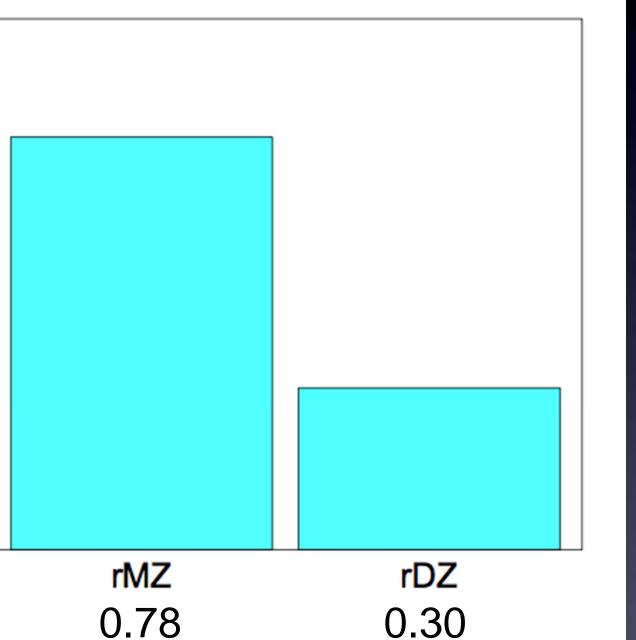
JIdly


Model	ер	-211	df	AIC	diff - 2II	diff df	
Saturated	10	4055.93	1767	521.93			
mT1=mT2	8	4056	1769	518	0.07	2	C
nT1=mT2 & arT1=VarT2	6	4058.94	1771	516.94	3.01	4	C
Zyg MZ=DZ	4	4063.45	1773	517.45	7.52	6	C

ignificant differences between saturated mo models where means/variances/covariance equal by zygosity and between twins

Questions?

This is all great, but we still don't understand the genetic and environmental contributions to BMI


= 2rDZ ditive

vins on erage 50% of ditive fects rMZ = rDZ Shared Environmen rMZ > 2rDZ Additive & Dominance

DZ twins on average share 25% of dominance Additive "Share Enviror

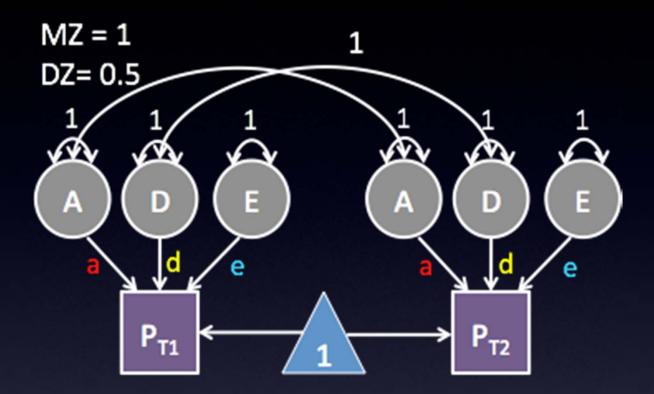
A = 2(rMZ)C = 2rDZ $\underline{E} = 1 - rM$

A = 2(rMZ-rE)C = 2rDZ - rE = 1 - rMZ

A = 0.96C = -0.20E = 0.22

ADE or ACE

A Roadmap Use the data to test basic assumptions inhe standard ACE (ADE) models Saturated Model


Estimate contributions of genetic and vironmental effects on the total variance of enotype ADE or ACE Models

Test ADE (ACE) submodels to identify and ort significant genetic and environmental

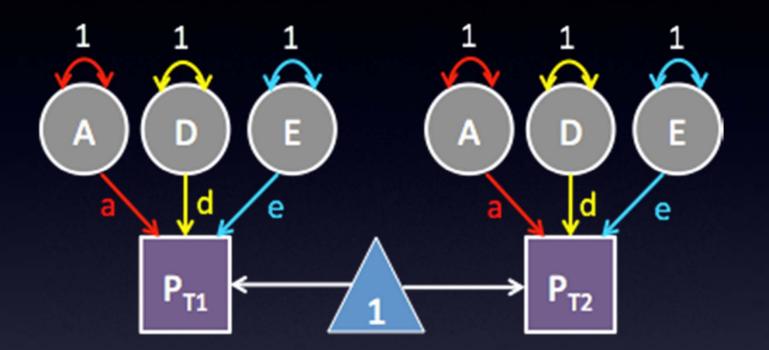
A Few Considerations

- Dominance refers to non-additive genetic effects resulting from interactions between alleles at the same locus
- ADE models also include effects of interact between different loci (epistasis)
- In addition to sharing on average 50% of th DNA, DZ twins also share about 25% of effective to dominance

Path Coefficients

A <- mxAlgebra(expression=a %*% t(a), ne="A")

D <- mxAlgebra(expression=d %*% t(d), ne="D")

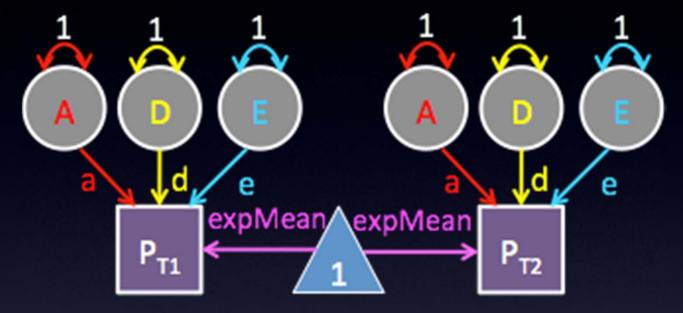


Variance Components

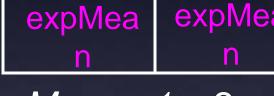
<- mxAlgebra(expression=a %*% t(a), name="A")

<- mxAlgebra(expression=d %*% t(d), name="D")

<- mxAlgebra(expression=e %*% t(e), name="E")

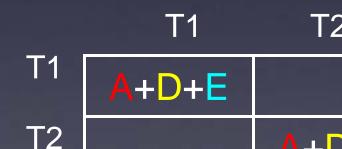


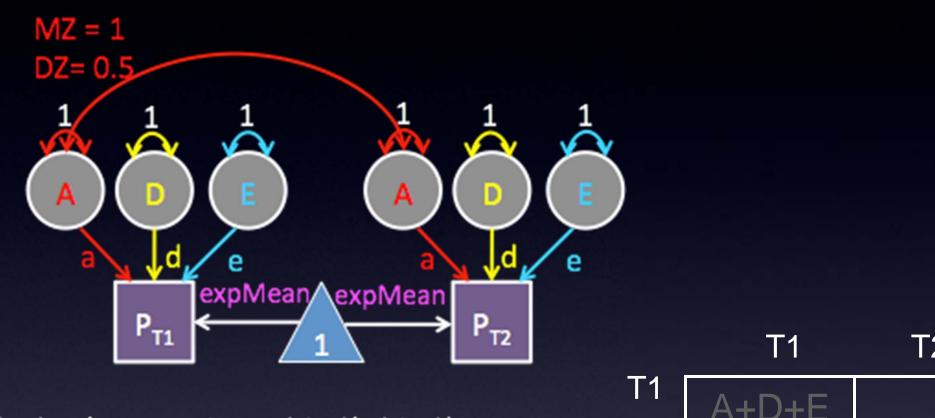
1 x 1 m



*

Means & Covariances


<- mxMatrix(type="Full", nrow=1, ncol=ntv, JE, values= 20, label="mean", expMean")


expMean= 1 x 2 m

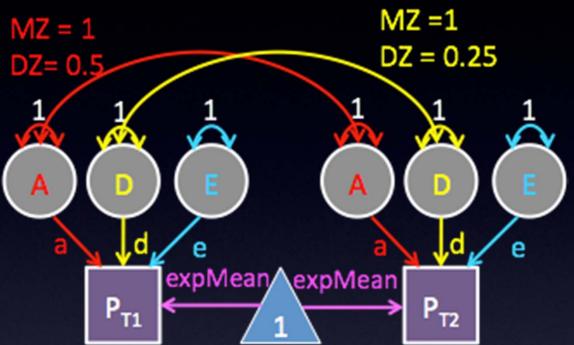
<- mxAlgebra(expression= rbind(cbind(A+D+E , ind(A+D , A+D+E)), name="expCovMZ")

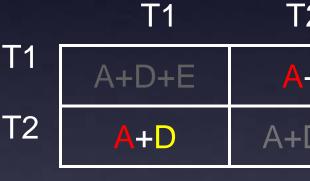
<- mxAlgebra(expression= rbind(cbind(A+D+E, A+0.25%x%D), cbind(0.5%x%A+0.25%x%D , A+D)



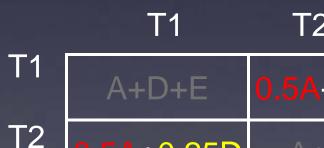
Means & Covariances

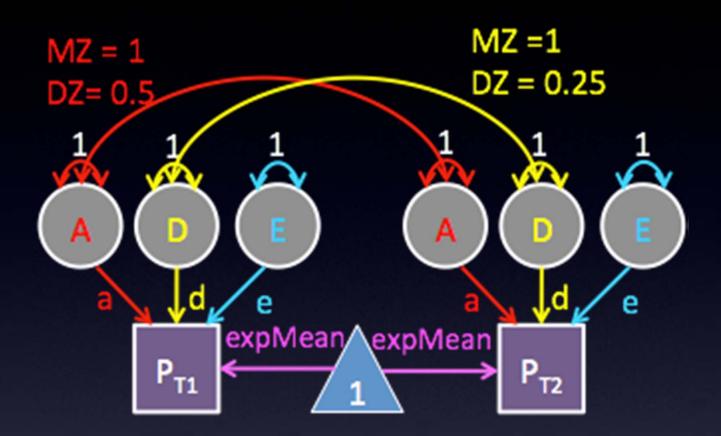
<- mxAlgebra(expression= rbind(cbind(A+D+E , bind(A+D , A+D+E)), name="expCovMZ")


<- mxAlgebra(expression= rbind(cbind(A+D+E, A+0.25%x%D), cbind(0.5%x%A+0.25%x%D,

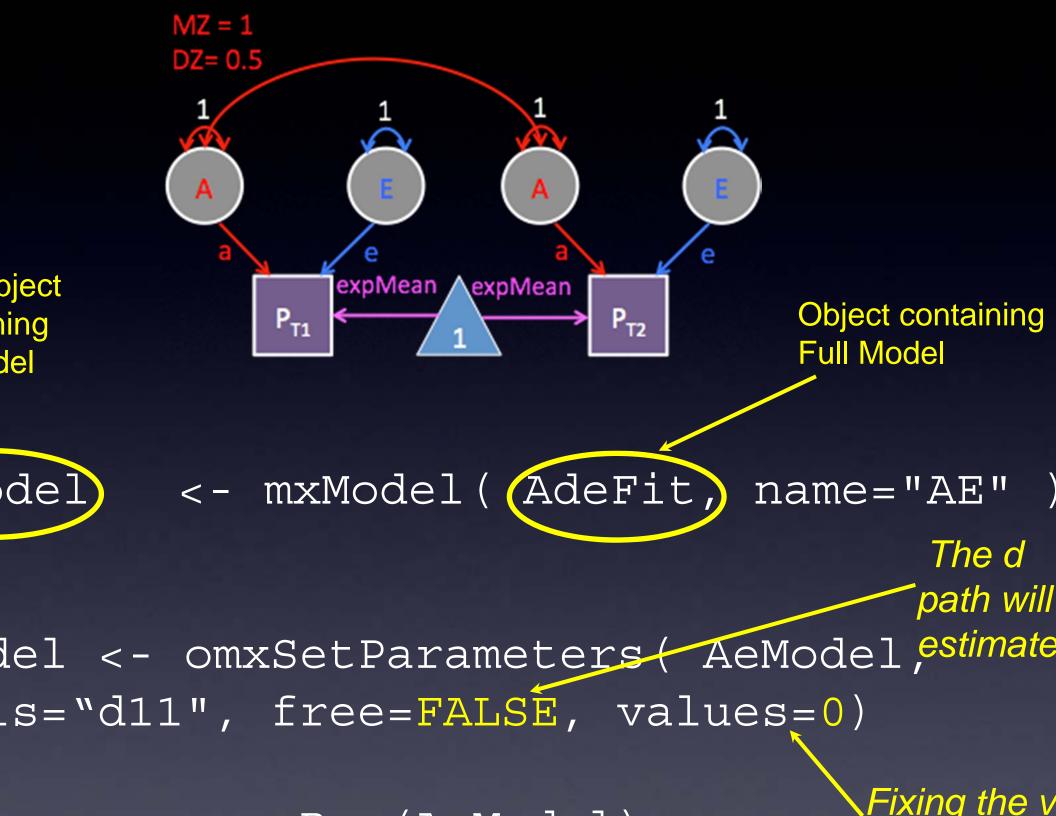

A+[

T2


Means & Covariances


<- mxAlgebra(expression= rbind(cbind(A+D+E , ind(A+D , A+D+E)), name="expCovMZ")

<- mxAlgebra(expression= rbind(cbind(A+D+E, +0.25%x%D), cbind(0.5%x%A+0.25%x%D), (A+D


4 Parameters Estimated ExpMean Variance due to A Variance due to D

A Roadmap Use the data to test basic assumptions inhe standard ACE (ADE) models Saturated Model

Estimate contributions of genetic and vironmental effects on the total variance of enotype ADE or ACE Models

Test ADE (ACE) submodels to identify and ort significant genetic and environmental

Please Open twinADEcon.R 'Full' ADE Model Comparison against Saturated Nested Models • AE Model test significance of D E Model vs AE Model test significance of A E Model vs ADE Model test combined significance of A & D

Goodness of Fil Stats

	ер	-211	df	AIC	diff - 2II	diff df	р
nturated							
ADE							
AE							
DE	no!	no!	no!	no!	no!	no!	no!
E							

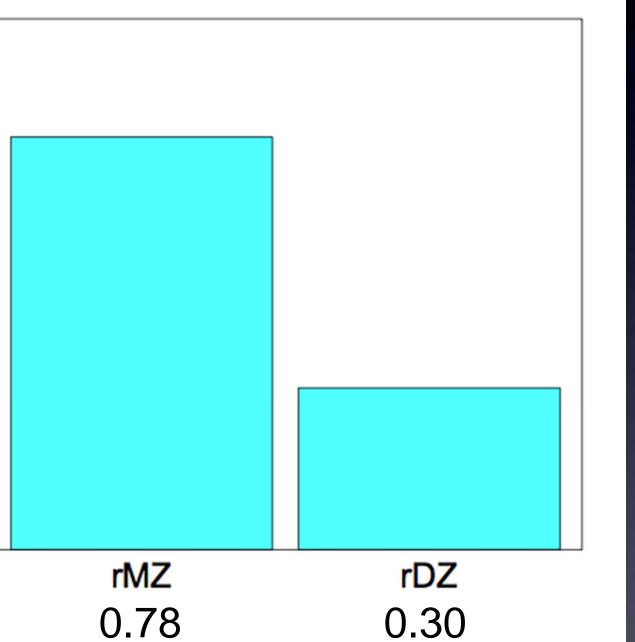
Statistics of the

	ер	-211	df	AIC	diff - 2ll	diff df	р
turated	10	4055.93	1767	521.93		-	
ADE	4	4063.45	1773	517.45	7.52	6	0.28
AE	3	4067.66	1774	519.66	4.21	1	0.06
E	2	4591.79	1775	1041.79	528.3	2	0.00

What about the magnitudes of genetic and environmental contributions to BMI?

A Roadmap Use the data to test basic assumptions inhe standard ACE (ADE) models Saturated Model

Estimate contributions of genetic and vironmental effects on the total variance of enotype ADE or ACE Models


Test ADE (ACE) submodels to identify and ort significant genetic and environmental

	a	d	e	С	a ²	d ²	e ²	c ²
ADE								
AE				-				
ш				-				

	a	d	е	С	a ²	d ²	e ²
ADE	0.57	0.54	0.41		0.41	0.37	0.22
AE	0.78		0.42		0.78		0.22
Е	-		88.0	-	-	-	1.00

Okay, so we have a sense of which model best explains the data...or do we?

A = 2(rMZ-rE)C = 2rDZ - rE = 1 - rMZ

ADE or ACE

Giving the ACE Model Try (if there is time)

Goodness-ol-Fil Statistics

/lodel	ер	-211	df	AIC	diff - 2II	diff df	
turated							
ADE							
ACE							

Statistics

Nodel	lodel ep		df	AIC	diff - 2II	diff df	
turated	10	4055.93	1767	521.93	-		
ADE	4	4063.45	1773	517.45	7.52	6	C
ACE	4	4067.66	1773	521.66	11.73	6	C

	а	d	е	С	a ²	d ²	e ²	C ²
ADE								
AE								
ACE								
AE								
Е								

	a	d	е	С	a ²	d ²	e ²	C ²
ADE	0.57	0.54	0.41		0.41	0.37	0.22	
AE	0.78		0.42		0.78		0.22	
ACE	0.78	0.00	0.42		0.78	0.00	0.22	
AE	-	-	0.56	0.68	-		0.41	0.59
Е	-	-	88.0	-	-	-	1.00	-

Conclusions

- BMI in young OZ females (age 18-30)
 - additive genetic factors: highly significant
 - dominance: borderline significant
 - specific environmental factors: significant
 - shared environmental factors: not

Complications Assortative Mating

- Gene-Environment Correlation
- Gene-Environment Interaction
- Sex Limitation
- Gene-Age Interaction

Processes Built the ADE Model as Coded in twinADEcon.R

Make matrices pathA, pathD, pathE

Do Matrix Algebra w Matric covA, covD, covE, covMZ,co

Call Data for Use in the Mo dataMZ, dataDZ

Call Data for Use in the Mo dataMZ, dataDZ

Build Model from Matrices modelMZ, modelDZ

Build/Complie Overall Mo from Matrices/Algebras AdeModel

Run Overall Model AdeModel

Get Summary Information Overall Model AdeSumm

Generate Parameter Estir

Thank You!