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We will cover

• Easy introduction to probability
• Rules of probability
• How to calculate likelihood for discrete 

outcomes
• Confidence intervals in likelihood
• Likelihood for continuous data
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Starting simple

• Let’s think about probability
– Coin tosses
– Winning the lottery
– Roll of the die
– Roulette wheel

• Chance of an event occurring
• Written as P(event) = probability of the 

event
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a six-sided die

2. Probability of pulling a club from a deck 
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Simple probability calculations

• To get comfortable with probability, let’s 
solve these problems:

1. Probability of rolling an even number on 
a six-sided die ½ or 0.5

2. Probability of pulling a club from a deck 
of cards ¼ or 0.25
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Simple probability rules cnt’d

• P(A or B) = P(A) + P(B) – P(A and B)
– What is the probability of rolling a 1 or a 4?
– A = rolling a 1 and B = rolling a 4
– P(A) =   , P(B) =    , P(A or B) = 1

6 1 6 1 3

*We assume independence



Recap of rules

• P(A and B) = P(A)*P(B)
• P(A or B) = P(A) + P(B) – P(A and B)
• Sometimes things are ‘exclusive’ such as 

rolling a 6 and rolling a 4. It cannot occur 
in the same trial implies P(A and B) = 0

Assuming independence
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Conditional probabilities

• P(X | Y) = the probability of X occurring 
given Y. 

• Y can be another event (perhaps that 
predicts X) 

• Y can be a probability or set of 
probabilities
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Conditional probabilities

• Roll two dice in succession
• P(total = 10) = 
• What is P(total = 10 | 1st die = 5)?

– P(total = 10 | 1st die = 5) =

1
12

1 6
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Binomial probabilities

• Used for two conditions such as coin toss
• Determine the chance of any outcome:
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Probability # of positive 
results

# of trials

! = factorial; n! = n*(n-1)*(n-2)*…*2*1 and factorials are 
bad for big numbers

Probability of 
k occurring

Probability of 
not k occurringNumber of 

combinations of 
n choose k



Combinations piece long way

•

• Does it work? Let’s try: How many 
combinations for 3 heads out of 5 tosses?
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Combinations piece long way

•

• Does it work? Let’s try: How many 
combinations for 3 heads out of 5 tosses?

• HHHTT, HHTHT, HHTTH, HTHHT, 
HTHTH, HTTHH, THHHT, THHTH, 
THTHH, TTHHH = 10 possible 
combinations
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Combinations piece formula

•

• Does it work? Let’s try: How many 
combinations for 3 heads out of 5 tosses?

• We have 5 choose 3 = 5!/(3!)*(2!)
• =(5*4)/2
• =10
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Probability roundup

• We assumed the ‘true’ parameter 
values

– E.g. P(Heads) = P(Tails) = ½ 
• What happens if we have data and want 

to determine the parameter values?
• Likelihood works the other way round: 

what is the probability of the observed 
data given parameter values?
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different parameter values.
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Concrete example

• Likelihood aims to calculate the range of 
probabilities for observed data, assuming 
different parameter values.

• The set of probabilities is referred to as a 
likelihood surface

• We’re going to generate the likelihood 
surface for a coin tossing experiment

• The set of parameter values with the best 
probability is the maximum likelihood
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and 6 tails
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Coin tossing

• I tossed a coin 10 times and get 4 heads 
and 6 tails

• From this data, what does likelihood 
estimate the chance of heads and tails for 
this coin?

• We’re going to calculate:
– P(4 heads out of 10 tosses| P(H) = *)
– where star takes on a range of values



• P(4 heads out of 10 tosses | P(H)=0.1) = 

Calculations
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We can make this easier, as it will be 
constant C* across all calculations



• P(4 heads out of 10 tosses | P(H)=0.1) = 

Calculations

))((* knk qpC 

Now all we do is change 
the values of p and q



• P(4 heads out of 10 tosses | P(H)=0.1) = 

Calculations

))((* knk qpC 

))((* 4104  qpC

)9.0)(1.0(* 64C

)531441.0)(0001.0(*C

)0000531441.0(*C



Table of likelihoods
p q p^4 q^6 p^4*q^6

0.1 0.9 0.0001 0.531441 5.31441E-05
0.15 0.85 0.000506 0.37715 0.000190932
0.2 0.8 0.0016 0.262144 0.00041943
0.25 0.75 0.003906 0.177979 0.000695229
0.3 0.7 0.0081 0.117649 0.000952957
0.35 0.65 0.015006 0.075419 0.001131755
0.4 0.6 0.0256 0.046656 0.001194394
0.45 0.55 0.041006 0.027681 0.001135079
0.5 0.5 0.0625 0.015625 0.000976563
0.55 0.45 0.091506 0.008304 0.000759846
0.6 0.4 0.1296 0.004096 0.000530842
0.65 0.35 0.178506 0.001838 0.000328142



Table of likelihoods
p q p^4 q^6 p^4*q^6

0.1 0.9 0.0001 0.531441 5.31441E-05
0.15 0.85 0.000506 0.37715 0.000190932
0.2 0.8 0.0016 0.262144 0.00041943
0.25 0.75 0.003906 0.177979 0.000695229
0.3 0.7 0.0081 0.117649 0.000952957
0.35 0.65 0.015006 0.075419 0.001131755
0.4 0.6 0.0256 0.046656 0.001194394
0.45 0.55 0.041006 0.027681 0.001135079
0.5 0.5 0.0625 0.015625 0.000976563
0.55 0.45 0.091506 0.008304 0.000759846
0.6 0.4 0.1296 0.004096 0.000530842
0.65 0.35 0.178506 0.001838 0.000328142

Largest probability observed = maximum likelihood



Graph of likelihood
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Graph of likelihood

Likelihood values
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Formal likelihood for discrete 
outcomes

• The binomial example can be expanded 
for any number of discrete outcomes:
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Formal likelihood for discrete 
outcomes

• The binomial example can be expanded 
for any number of discrete outcomes:

where k is the number of occurrences of a 
given event and p is the assumed 
probability for event k 

nn k
n

k
n

kkk ppppp *...*** 1321
1321





Testing in maximum likelihood

• We know how to choose the best model
• How do we test for the best model?
• When Fisher devised this approach, he 

noted that minus twice the difference in log 
likelihoods is distributed like a chi square 
with degrees of freedom equal to the 
number of parameters dropped or fixed



How does this test work?

• Let’s test in our example, whether the 
chance of heads is significantly different 
from 0.5

• We’ll use the likelihood ratio test 
• We are fixing 1 parameter, the estimate of 

heads
• Note that P(tails) is constrained to be       

1-P(heads)



Formula for LRT

MLE of P(Heads)

Assumed value 
for P(heads)

Assumed value 
for P(tails)

MLE of P(tails)

n = number of trials, k = number of heads, n-k = number of tails

2
14104

4104

~5.05.0ln*2 
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Calculation

2
14104

4104

~
6.04.0
5.05.0ln*2 








 



LRT

    41044104 6.04.0ln5.05.0ln*2  LRT

        6.0ln64.0ln45.0ln10*2 LRT

 6.73012 -93.6-*2- LRT
4027.0LRT

5257.0;4027.02
1  p



LRT roundup

• The key to the interpretation to the LRT is 
to understand what we are test

• Formally, we are testing to determine 
whether the fit of the model is significantly 
worse

• In layman’s terms: we are testing for the 
necessity of the parameter. A big chi 
square means the parameter is important



Confidence intervals

• Now that we know how to estimate the 
parameter value and test significance we 
can determine MLE confidence intervals



Confidence intervals

• Now that we know how to estimate the 
parameter value and test significance we 
can determine MLE confidence intervals

• Anyone have any idea how we would 
generate CIs using MLE?



CI: degradation of likelihood

Once we obtain the MLE of a parameter:
1. We note the likelihood at the MLE
2. We fix the parameter to a different value
3. We recalculate the likelihood and conduct a 

LRT between the new likelihood and the 
MLE

4. Calculate the   2 test, 
5. Repeat 2-4 till significance = (1-CI) level 

(e.g. for 95% CI   2 = 3.84, P = 0.05)







CI Example

Returning to our trusty coin toss example

1. Our MLE was P(Heads) = 0.4
2. Our likelihood = 0.00119439*C
3. We’ll now fix P(Heads) different from 0.4
4. Let’s start with the lower CI
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CI Example
p q p^4 q^6 p^4*q^6 2 P-value CI

0.40 0.60 2.56E-02 4.67E-02 1.19E-03 0.00 1.00 0.00
0.37 0.63 1.87E-02 6.25E-02 1.17E-03 0.04 0.85 0.15
0.34 0.66 1.34E-02 8.27E-02 1.10E-03 0.16 0.69 0.31
0.31 0.69 9.24E-03 1.08E-01 9.97E-04 0.36 0.55 0.45
0.28 0.72 6.15E-03 1.39E-01 8.56E-04 0.67 0.41 0.59
0.25 0.75 3.91E-03 1.78E-01 6.95E-04 1.08 0.30 0.70
0.22 0.78 2.34E-03 2.25E-01 5.28E-04 1.63 0.20 0.80
0.19 0.81 1.30E-03 2.82E-01 3.68E-04 2.35 0.12 0.88
0.16 0.84 6.55E-04 3.51E-01 2.30E-04 3.29 0.07 0.93
0.13 0.87 2.86E-04 4.34E-01 1.24E-04 4.53 0.03 0.97

Gone too far!!!



CI Example
p q p^4 q^6 p^4*q^6 2 P-value CI

0.40 0.60 2.56E-02 4.67E-02 1.19E-03 0.00 1.00 0.00
0.37 0.63 1.87E-02 6.25E-02 1.17E-03 0.04 0.85 0.15
0.34 0.66 1.34E-02 8.27E-02 1.10E-03 0.16 0.69 0.31
0.31 0.69 9.24E-03 1.08E-01 9.97E-04 0.36 0.55 0.45
0.28 0.72 6.15E-03 1.39E-01 8.56E-04 0.67 0.41 0.59
0.25 0.75 3.91E-03 1.78E-01 6.95E-04 1.08 0.30 0.70
0.22 0.78 2.34E-03 2.25E-01 5.28E-04 1.63 0.20 0.80
0.19 0.81 1.30E-03 2.82E-01 3.68E-04 2.35 0.12 0.88
0.16 0.84 6.55E-04 3.51E-01 2.30E-04 3.29 0.07 0.93
0.13 0.87 2.86E-04 4.34E-01 1.24E-04 4.53 0.03 0.97
0.15 0.85 4.80E-04 3.83E-01 1.84E-04 3.75 0.05 0.95

The right answer



CI Caveat

• Sometimes CIs are unbalanced, with one 
bound being much further from the 
estimate than the other

• Don’t worry about this, as it indicates an 
unbalanced likelihood surface
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Balanced likelihoods
Maximum likelihood

P(H) P(H)
Balanced

(symmetric)

Unbalanced

(asymmetric)



Major recap

• Should understand what likelihood is
• How to calculate a likelihood
• How to test for significance in likelihood
• How to determine confidence intervals



Couple of thoughts on likelihood

• Maximum likelihood is a framework which 
can implemented for any problem

• Fundamental to likelihood is the 
expression of probability

• One could use likelihood in the context of 
linear regression, instead of χ2 for testing



Maximum likelihood for continuous 
data

• When the data of interest are continuous 
we must use a different form of the 
likelihood equation

• We can estimate the mean and the 
variance and covariance structure

• From this we define the SEMs we’ve seen



Maximum likelihood for continuous 
data

• We assume multivariate normality (MVN):
• The MVN distribution is characterized by:

– 2 means, 2 variances, and 1 covariance
– The nature of the covariance is as important 

as the 2 variances
– Univariate normality for each trait is 

necessary but not sufficient for MVN



Picture of MVN
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It’s not really necessary to understand this equation. We’ll go 
through the important constituent parts.



Ugliest formula

2π the 
constant

 

   
2

'

2
1

2

1

2

1 











xx

p
eL



Ugliest formula
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Ugliest formula
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Ugliest formula

2π the 
constant

The number of 
means/variables

The variance 
covariance matrix
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Likelihood in practice

• In SEM we estimate parameters from our 
statistics e.g.

• A univariate example
– Var(MZ or DZ) = A + C + E
– Cov(MZ) = A + C
– Cov(DZ) = 0.5*A + C

• From these equations we can estimate A, 
C, and E (our parameters)



Testing parameters

• From the ACE example, let’s drop A, so:
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• From the ACE example, let’s drop A, so:
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Testing parameters

• From the ACE example, let’s drop A, so:
• Var(MZ or DZ) = A + C + E → C + E
• Cov(MZ) = A + C → C
• Cov(DZ) = 0.5*A + C → C
• Effectively this is a test of what?

– Cov(MZ)=Cov(DZ)



Testing parameters 2

• In the univariate case, A is one parameter

2~ pL 

Difference in 
likelihood
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Testing parameters 2

• In the univariate case, A is one parameter

2~ pL 

# of parametersChi square

Distributed 
like a

Difference in 
likelihood

So the difference will be a 1 degree of freedom chi square test



Example of LRT

• We have an ACE model:
Model # parameters ∆parameters -2*likelihood ∆likelihood P-value
ACE 4 - 4055.935 - -

Saturated twin model, note the likelihood and the parameter 
number.

What are the parameters?



Example of LRT

• We have an ACE model:
Model # parameters ∆parameters -2*likelihood ∆likelihood P-value
ACE 4 - 4055.935 - -
AE 3 1

If we fit an AE model we are dropping a parameter—what?



Example of LRT

• We have an ACE model:
Model # parameters ∆parameters -2*likelihood ∆likelihood P-value
ACE 4 - 4055.935 - -
AE 3 1 4057.141 1.206

We observe a difference in likelihood of 1.206. Now we can 
test this for significance on a 1 degree of freedom chi square.



Example of LRT

• We have an ACE model:
Model # parameters ∆parameters -2*likelihood ∆likelihood P-value
ACE 4 - 4055.935 - -
AE 3 1 4057.141 1.206 0.27

What does a P-value of 0.27 mean? 



Example of LRT

• We have an ACE model:
Model # parameters ∆parameters -2*likelihood ∆likelihood P-value
ACE 4 - 4055.935 - -
AE 3 1 4057.141 1.206 0.27
CE 3 1 4061.347 5.412 0.020
E 2 2 4069.487 13.55 0.0011

We perform likewise for the CE and E model, but note the chi 
square is now significant. What does this mean?



Example of LRT

• We have an ACE model:
Model # parameters ∆parameters -2*likelihood ∆likelihood P-value
ACE 4 - 4055.935 - -
AE 3 1 4057.141 1.206 0.27
CE 3 1 4061.347 5.412 0.020
E 2 2 4069.487 13.55 0.0011

This is our most well-behaved model. We have the fewest 
number of parameters without a significantly degraded fit.



Rule of parsimony

• Philosophically, we favour the model with 
the fewest parameters that does not show 
a significantly worse fit
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Rule of parsimony

• Philosophically, we favour the model with 
the fewest parameters that does not show 
a significantly worse fit

• Occam’s razor:
– entia non sunt multiplicanda praeter 

necessitatem, or
– entities should not be multiplied beyond 

necessity. 
• Reductionist thinking drives this as well



Nesting

• Structural equation models can be nested
– Effectively, this implies that you can get to a 

nested sub model from the original model via 
either dropping parameters or imposing 
constraints

– For example, the AE, CE, and E model are 
nested within the ACE model, but the AE and 
CE models are non-nested submodels of the 
ACE

– What is the relationship between AE and E 
models?



Dealing with non-nested 
submodels

• When models are non-nested the LRT 
cannot be used as it requires the 
submodel to be nested

• Fit indices such as AIC, BIC, and DIC 
come into play here



Fit indices

• AIC = -2ln(L) – df 
• BIC = -2ln(L) + kln(n)
• DIC = too complicated for a slide

– Where df is the degrees of freedom, k is the 
number of parameters, and n is the number of 
observations

• These three are used for comparison of 
non-nested model. 

• Rule of thumb: the smaller the better



One other rough indicator

• The root mean square error of 
approximation (RMSEA)

• A general indicator of fit of the model
• Only valid for raw data

– <0.05 indicate good fit115
– <0.08 reasonable fit
– >0.08 & <0.10 indicate mediocre fit
– >0.10 indicate poor fit 
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