Summarizing Variation Matrix Algebra

Benjamin Neale Analytic and Translational Genetics Unit, Massachusetts General Hospital Program in Medical and Population Genetics, Broad Institute of Harvard and MIT

Goals of the session

- Introduce summary statistics
- Learn basics of matrix algebra
- Reinforce basic OpenMx syntax
- Introduction to likelihood

Each individual score (the i refers to the ith individual)

• Formula $\sum_{i=1}^{\infty} (x_i)/N$

Sum Sample size

Each individual score (the i refers to the ith individual)

Formula ∑(x_i)/N
Can compute with

- Formula $\sum(x_i)/N$
- Can compute with
 - Pencil
 - Calculator
 - SAS
 - SPSS
 - Mx
 - R, others....

Means and matrices

- For all continuous traits we will have a mean
 - Let's say we have 100 traits (a lot!)
 - If we had to specify each mean separately we would have something like this:
 - M1 M2 M3 ... M99 M100 (without "..."!)
 - This is where matrices are useful: they are boxes to hold numbers

Means and matrices cont' d

 So rather than specify all 100 means in OpenMx we can define a matrix to hold all of our means:

Means and matrices cont' d

 So rather than specify all 100 means in OpenMx we can define a matrix to hold all of our means:

mxMatrix(type="Full", nrow=1, ncol=100, free=TRUE, values=5, name="M")

Means and matrices cont' d

 So rather than specify all 100 means in OpenMx we can define a matrix to hold all of our means:

mxMatrix(type="Full", nrow=1, ncol=100, free=TRUE, values=5, name="M")

Quick note on specification of matrices in text: Matrix M has dimension 1,100 meaning 1 row And 100 columns – two mnemonics – like a procession rows first then columns, or RC = Roman Catholic

To the Variance!

We'll start with coin tossing...

One Coin toss

2 outcomes

Two Coin toss

3 outcomes

Four Coin toss

5 outcomes

Ten Coin toss

11 outcomes

Outcome

Fort Knox Toss Infinite outcomes

Variance

Measure of Spread

- Easily calculated
- Individual differences

Average squared deviation

Normal distribution

Measuring Variation

Weighs & Means

- Absolute differences?
- Squared differences?
- Absolute cubed?
- Squared squared?

Measuring Variation

Ways & Means

Squared differences

Fisher (1922) Squared has minimum variance under normal distribution

1. Calculate mean

- 1. Calculate mean
- 2. Calculate each squared deviation:

- 1. Calculate mean
- 2. Calculate each squared deviation:
 - 1. Subtract the mean from each observations and square individually: $(x_i-\mu)^2$

- 1. Calculate mean
- 2. Calculate each squared deviation:
 - 1. Subtract the mean from each observations and square individually: $(x_i-\mu)^2$
 - 2. Sum up all the squared deviations

- 1. Calculate mean
- 2. Calculate each squared deviation:
 - 1. Subtract the mean from each observations and square individually: $(x_i-\mu)^2$
 - 2. Sum up all the squared deviations
- 3. Divide sum of squared deviations by (N-1)

Your turn to calculate

Data Subject Weight in kg

1	80	1.	Calculate mean
2	70	2.	Calculate each deviation from the mean
3	75	3.	Square each deviation
4	85		individually
·		4.	Sum the squared deviations
5	90	5.	Divide by number of subjects - 7

Your turn to calculate

Data Subject Weight in kg

1	80	1.	Calculate mean (80)
2	70	2.	Calculate each deviation from the mean (0,-10,-5,5,10)
3	75	3.	Square each deviation individually
4	85		(0,100,25,25,100)
	4. 90 5.	4.	Sum the squared deviations (250)
5		5.	Divide by number of subjects -1 (250/(5-1))=(250/4)=62.5

 Measure of association between two variables

Covariance

 Measure of association between two variables

Closely related to variance

Covariance

 Measure of association between two variables

- Closely related to variance
- Useful to partition variance

Covariance .3

Covariance .5

Covariance .7

 Calculate mean for each variables: (μ_x,μ_y)
- Calculate mean for each variables: (μ_x,μ_y)
- 2. Calculate each deviation:

- Calculate mean for each variables: (μ_x,μ_y)
- 2. Calculate each deviation:
 - Subtract the mean for variable 1 from each observations of variable 1 (x_i - µ_x)
 - Likewise for variable 2, making certain to keep the variables paired within subject (y_i - μ_y)

- Calculate mean for each variables: (μ_x,μ_y)
- 2. Calculate each deviation:
 - Subtract the mean for variable 1 from each observations of variable 1 (x_i - µ_x)
 - Likewise for variable 2, making certain to keep the variables paired within subject (y_i - μ_y)

Multiply the deviation for variable 1 and variable 2:
 (x_i - μ_x) * (y_i - μ_y)

- Calculate mean for each variables: (μ_x,μ_y)
- 2. Calculate each deviation:
 - 1.Subtract the mean for variable 1 from each observations of variable
 1 (x_i µ_x)
 - 2.Likewise for variable 2, making certain to keep the variables paired within subject (y_i - μ_v)

Multiply the deviation for variable 1 and variable 2:

 (x_i - μ_x) * (y_i - μ_y)

 Sum up all the multiplied deviations: Σ(x_i - μ_x) * (y_i - μ_y)

- Calculate mean for each variables: (μ_x,μ_y)
- 2. Calculate each deviation:
 - 1.Subtract the mean for 4.
 variable 1 from each
 observations of variable 5.
 1 (x_i µ_x)
 - 2.Likewise for variable 2, making certain to keep the variables paired within subject $(y_i - \mu_v)$

 Multiply the deviation for variable 1 and variable 2: (x_i - μ_x) * (y_i - μ_y)

> Sum up all the multiplied deviations: $\Sigma(x_i - \mu_x) * (y_i - \mu_y)$

Divide sum of the multiplied deviations by (N-1): $\Sigma((x_i - \mu_x) * (y_i - \mu_y))/(N-1)$

Your turn to calculate

Data: Subject	Х	Y	1. 2.	Calculate means Calculate each deviation:
1	80	180		1. Subtract the mean X from each observations of X
2	70	175	3.	 Likewise for Y Multiply the deviation for X
3	75	170	Л	and Y pair-wise
4	85	190	4.	deviation
5	90	185	5.	Divide sum of the multiplied deviations by (N-1)

• *J*

Your turn to calculate

Data: Subject	Х	Y	1. Calculate means: (80,180)
1	80	180	2. Calculate each deviation:
2	70	175	1.Subtract the mean for variable 1 from each observations of variable 1
3	75	170	(0,-10,-5,5,10)
4	85	190	2.Likewise for variable 2, making certain to keep the variables paired within
5	90	185	subject (0,-5,-10,10,5)

Your turn to calculate

Data:			3.	Mu
Subject	Х	Y		var
1	80	180		(0,- 10,
2	70	175	4.	Sur
3	75	170		dev 0+5
4	85	190	5.	Div dev
5	90	185		200

Multiply the deviation for variable 1 and variable 2: (0,-10,-5,5,10)*(0,-5,-10,10,5) (0,50,50,50,50)

. Sum up all the multiplied deviation 0+50+50+50+50=200

Divide sum of the multiplied deviations by (N-1):
 200/4=50

Covariance Formula

$$\sigma_{xy} = \sum (x_i - \mu_x) * (y_i - \mu_y)$$
(N-1)

Covariance Formula

$$\sigma_{xy} = \sum (x_i - \mu_x) * (y_i - \mu_y)$$
(N-1)
Sum

Covariance Formula

$$\sigma_{xy} = \sum (x_i - \mu_x) * (y_i - \mu_y)$$
(N-1)

Each individual score on trait x (the i refers to the ith pair)

Covariance Formula

$$\sigma_{xy} = \sum (x_i - \mu_x) * (y_i - \mu_y)$$
(N-1)
Mean
of x

Covariance Formula

$$\sigma_{xy} = \sum (x_i - \mu_x) * (y_i - \mu_y)$$
(N-1)
Number of
pairs

Covariance Formula

$$\sigma_{xy} = \sum (x_i - \mu_x) * (y_i - \mu_y)$$
(N-1)

Each individual score on trait y (the i refers to the ith pair)

Covariance Formula

$$\sigma_{xy} = \frac{\sum(x_i - \mu_x) * (y_i - \mu_y)}{(N-1)}$$
Mean
of y

Covariance Formula

For multiple traits we will have:

For multiple traits we will have: a variance for each trait a covariance for each pair

For multiple traits we will have: a variance for each trait a covariance for each pair

If we have 5 traits we have:

For multiple traits we will have: a variance for each trait a covariance for each pair

If we have 5 traits we have: 5 variances (V1, V2, ... V5) 10 covariances (CV1-2, CV1-3,...CV4-5

- Just like means, we can put variances and covariances in a box
 - In fact this is rather convenient, because:
 - Cov(X,X) = Var(x) so the organization is natural

Trait 1Trait 2Trait 3Trait 4Trait 1Var(T1)Var(T1)Trait 2Trait 3Trait 3Trait 4

	Variances, covariances, and matrices cont' d						
Trait 1	Trait 1 Var(T1)	Trait 2	Trait 3	Trait 4			
Trait 2		Var(T2)					
Trait 3			Var(T3)				
Trait 4				Var(T4)			

Trait 1Trait 2Trait 3Trait 4Trait 1Cov(T1,T2)

Trait 2

Trait 3

Trait 4

Trait 1Trait 2Trait 3Trait 4Trait 1Cov(T1,T2)Cov(T1,T3)Cov(T1,T4)

Trait 2 Cov(T2,T1) Cov(T2,T3) Cov(T2,T4)

Trait 3 Cov(T3,T1) Cov(T3,T2) Cov(T3,T4)

Trait 4 Cov(T4,T1) Cov(T4,T2) Cov(T4,T3)

Trait 1Trait 2Trait 3Trait 4Trait 1Cov(T1,T2)Cov(T1,T3)Cov(T1,T4)

Trait 2 Cov(T2,T1) Cov(T2,T3) Cov(T2,T4)

Trait 3 Cov(T3,T1) Cov(T3,T2) Cov(T3,T4)

Trait 4 Cov(T4,T1) Cov(T4,T2) Cov(T4,T3)

Note Cov(T3,T1)=Cov(T1,T3)

 Trait 1
 Trait 2
 Trait 3
 Trait 4

 Trait 1
 Var(T1)
 Cov(T1,T2)
 Cov(T1,T3)
 Cov(T1,T4)

 Trait 2
 Cov(T2,T1)
 Var(T2)
 Cov(T2,T3)
 Cov(T2,T4)

 Trait 3
 Cov(T3,T1)
 Cov(T3,T2)
 Var(T3)
 Cov(T3,T4)

 Trait 4
 Cov(T4,T1)
 Cov(T4,T2)
 Cov(T4,T3)
 Var(T4)

A variance covariance matrix is symmetric, which means the elements above and below the diagonal are identical:
Considered another way, a symmetric matrix's transpose is equal to itself.

A variance covariance matrix is symmetric, which means the elements above and below the diagonal are identical:
Considered another way, a symmetric matrix's transpose is equal to itself.
Transpose is exchanging rows and columns
A variance covariance matrix is symmetric, which means the elements above and below the diagonal are identical:

Considered another way, a symmetric matrix's **transpose** is equal to itself.

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$$

A variance covariance matrix is symmetric, which means the elements above and below the diagonal are identical:

Considered another way, a symmetric matrix's **transpose** is equal to itself.

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} \qquad A' = \begin{pmatrix} A' = \\ Or \\ A^{T} \end{pmatrix}$$

A variance covariance matrix is symmetric, which means the elements above and below the diagonal are identical:

Considered another way, a symmetric matrix's **transpose** is equal to itself.

A variance covariance matrix is symmetric, which means the elements above and below the diagonal are identical:

Considered another way, a symmetric matrix's **transpose** is equal to itself.

OpenMx uses mxFIMLObjective to calculate the variance-covariance matrix for the data (let's stick with matrix V)

mxMatrix(type="Sym", nrow=2, ncol=2, free=TRUE, values=.5, name="V")

type specifies what kind of matrix – symmetric nrow specifies the number of rows ncol specifies the number of columns free means that OpenMx will estimate

How else can we get a symmetric matrix?

We can use matrix algebra and another matrix type.

How else can we get a symmetric matrix?

We can use matrix algebra and another matrix type.

We will be using matrix multiplication and lower matrices

How else can we get a symmetric matrix?

We can use matrix algebra and another matrix type.

We will be using matrix multiplication and lower matrices

Let's begin with matrix multiplication

Surprisingly, everyone in this room has completed matrix multiplication

Surprisingly, everyone in this room has completed matrix multiplication—it's just been of two 1x1 matrices

Surprisingly, everyone in this room has completed matrix multiplication—it's just been of two 1x1 matrices

Let's extend this to a simple case: Two 2x2 matrices

Surprisingly, everyone in this room has completed matrix multiplication—it's just been of two 1x1 matrices

Let's extend this to a simple case: Two 2x2 matrices

$$\begin{pmatrix}
 A & B \\
 C & D
 \end{pmatrix}
 \%^*\%
 \begin{pmatrix}
 E & F \\
 G & H
 \end{pmatrix}$$

 $\begin{pmatrix}
 A & B \\
 C & D
 \end{pmatrix}
 \%*\%
 \begin{pmatrix}
 E & F \\
 G & H
 \end{pmatrix}$

RULE: The number of columns in the 1st matrix must equal the number of rows in the 2nd matrix.

$$\left(\begin{array}{ccc}
A & B \\
C & D
\end{array}\right)\%*\%\left(\begin{array}{ccc}
E & F \\
G & H
\end{array}\right)$$

Step 1: Determine the size of the box (matrix) needed for the answer

$$\left(\begin{array}{ccc}
A & B \\
C & D
\end{array}\right)\%*\%\left(\begin{array}{ccc}
E & F \\
G & H
\end{array}\right)$$

Step 1: Determine the size of the box (matrix) needed for the answer

•The resulting matrix will have dimension: the number of rows of the 1st matrix by the number of columns of the 2nd matrix

Step 1: Determine the size of the box (matrix) needed for the answer

•The resulting matrix will have dimension: **the number of rows of the 1**st **matrix** by the number of columns of the 2nd matrix

Step 1: Determine the size of the box (matrix) needed for the answer

•The resulting matrix will have dimension: the number of rows of the 1st matrix by **the number of columns of the 2nd matrix**

RULE: The number of columns in the 1st matrix must equal the number of rows in the 2nd matrix.

Step 2: Calculate each element of the resulting matrix.

Step 2: Calculate each element of the resulting matrix. There are 4 elements in our new matrix: **1,1**

Step 2: Calculate each element of the resulting matrix. There are 4 elements in our new matrix: 1,1; **1,2**;

Step 2: Calculate each element of the resulting matrix. There are 4 elements in our new matrix: 1,1; 1,2; **2,1**;

Step 2: Calculate each element of the resulting matrix.There are 4 elements in our new matrix: 1,1; 1,2; 2,1;2,2

Step 2: Calculate each element of the resulting matrix. Each element is the cross-product of the corresponding row of the 1st matrix and the corresponding column of the 2nd matrix (e.g. element 2,1 will be the cross product of the 2nd row of matrix 1 and the 1st column of matrix 2)

What's a cross-product?

•Used in the context of vector multiplication:

•We have 2 vectors of the same length (same number of elements)

•The cross-product (x) is the sum of the products of the elements, e.g.:

•Vector $1 = \{a b c\}$ Vector $2 = \{d e f\}$

•V1 x V2 = a*d +b*e +c*f

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} \% * \% \begin{pmatrix} E & F \\ G & H \end{pmatrix} = \begin{pmatrix} O \\ 2 \times 2 \end{pmatrix}$$

$$2 \times 2 \qquad 2 \times 2 \qquad 2 \times 2$$

Step 2, element 1,1: cross-product row1 matrix1 with column1 matrix2

 $\{AB\} \times \{EG\} = (A^*E + B^*G)$

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} \% * \% \begin{pmatrix} E & F \\ G & H \end{pmatrix} = \begin{pmatrix} AE + BG & O \\ 2 \times 2 & 2 \times 2 & 2 \times 2 \end{pmatrix}$$

Step 2, element 1,2: cross-product row1 matrix1 with column2 matrix2

 $\{AB\} \times \{FH\} = (A^*F + B^*H)$

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} \% * \% \begin{pmatrix} E & F \\ G & H \end{pmatrix} = \begin{pmatrix} AE + BG & AF + BH \\ O & \end{pmatrix}$$

$$2 \times 2 \qquad 2 \times 2 \qquad 2 \times 2$$

Step 2, element 2,1: cross-product row2 matrix1 with column1 matrix2

 $\{CD\} \times \{EG\} = (C^*E + D^*G)$

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} \% \% \begin{pmatrix} E & F \\ G & H \end{pmatrix} = \begin{pmatrix} AE + BG & AF + BH \\ CE + DG & O \end{pmatrix}$$

$$2 \times 2 \qquad 2 \times 2 \qquad 2 \times 2$$

Step 2, element 2,2: cross-product row2 matrix1 with column2 matrix2

 $\{CD\} \times \{FH\} = (C^*F + D^*H)$

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} \% * \% \begin{pmatrix} E & F \\ G & H \end{pmatrix} = \begin{pmatrix} AE + BG & AF + BH \\ CE + DG & CF + DH \end{pmatrix}$$

$$2 \times 2 \qquad 2 \times 2 \qquad 2 \times 2$$

Step 2, element 2,2: cross-product row2 matrix1 with column2 matrix2

 $\{CD\} \times \{FH\} = (C^*F + D^*H)$

Matrix multiplication exercises

$$\begin{array}{cccc} L & \begin{pmatrix} 2 & 0 \\ 1 & 4 \end{pmatrix} & A \begin{pmatrix} 1 \\ 2 \\ 5 \end{pmatrix} & B & C \\ \begin{pmatrix} 4 & 7 & -4 \end{pmatrix} & \begin{pmatrix} -4 & 2 \\ -3 & 2 \\ 2 & -2 \end{pmatrix}$$

Calculate:

- 1. L^{%*%} t(L) (L times L transpose)
- 2. B^{%*%}A
- 3. A^{%*%}B

4. C^{%*%}A

 $\begin{array}{ccc}
1 & 4 & 2 \\
2 & 17
\end{array}$

 $\begin{array}{cccc}
1 & \left(\begin{array}{ccc}
4 & 2\\
2 & 17 \end{array} \right) & 2 & \left(\begin{array}{c}
-2\\
\end{array} \right)
\end{array}$

Incomputable
What have we learned?

•Matrix multiplication is not commutative:

•E.g. A*B ≠ B*A

•The product of a lower matrix and its transpose is symmetric

•Not all matrices were made to multiply with one another

Correlation

- Standardized covariance
- Calculate by taking the covariance and dividing by the square root of the product of the variances
- Lies between -1 and 1

Calculating Correlation from data

Data:			. 1	Calculate mean for X and Y
Subject	Χ	Y	2.	Calculate variance for X and Y
1	80	180	3.	Calculate covariance for X and Y
2	70	175	4.	Correlation formula is $cov_{yy}/(\sqrt{(var_y * var_y)})$
3	75	170	5.	Variance of X is 62.5, and Variance
4	85	190		of Y is 62.5, covariance(X,Y) is 50
5	90	185		

Calculating Correlation from data

Data:			1	Correlation formula is $cov_{xy}/(\sqrt{(var_x * var_y)})$
Subject	Х	Y	1.	
1	80	180	2.	Variance of X is 62.5, and Variance of Y is 62.5, covariance(X,Y) is 50
2	70	175	3.	Answer: $50/(\sqrt{(62.5*62.5)})=.8$
3	75	170		
4	85	190		
5	90	185		

• We can standardize an entire variance covariance matrix and turn it into a correlation matrix

- We can standardize an entire variance covariance matrix and turn it into a correlation matrix
- What will we need?

- We can standardize an entire variance covariance matrix and turn it into a correlation matrix
- What will we need?

- We can standardize an entire variance covariance matrix and turn it into a correlation matrix
- What will we need?

Covariance(X,Y)

 $\mathbf{r}_{\mathbf{x}\mathbf{y}} = \underbrace{\boldsymbol{\sigma}_{\mathbf{x}\mathbf{y}}}_{\text{Variance}(X)} \underbrace{\boldsymbol{\sigma}_{\mathbf{x}}^2 \mathbf{\sigma}_{\mathbf{y}}^2}_{\text{Variance}(Y)}$

Standardization back to boxes

• We'll start with our Variance Covariance matrix:

$$V = \begin{pmatrix} V_{1} & CV_{12} & CV_{13} \\ CV_{21} & V_{2} & CV_{23} \\ CV_{31} & CV_{32} & V_{3} \end{pmatrix}$$

Standardization back to boxes

• We'll start with our Variance Covariance matrix:

$$V = \begin{pmatrix} V_{1} & CV_{12} & CV_{13} \\ CV_{21} & V_{2} & CV_{23} \\ CV_{31} & CV_{32} & V_{3} \end{pmatrix}$$

- •We'll use 4 operators:
- •Dot product (*)
- Inverse (solve)
- •Square root (\sqrt)

•Pre-multiply and post-multiply by the transpose (%&%)

Formula to standardize V: solve (sqrt (I*V)) %&% V

Extracts the variances

The dot product does element by element multiplication, so the dimensions of the two matrices must be equal, resulting in a matrix of the same size

Formula to standardize V: solve (sqrt (I*V)) %&% V

Inverts the matrix

The inverse of matrix B is the matrix that when multiplied by B yields the identity matrix:

B %*% B⁻¹ = B⁻¹ %*%B = I

Warning: not all matrices have an inverse. A matrix with no inverse is a **singular** matrix. A zero matrix is a good example.

Formula to standardize V: solve (sqrt (I*V)) %&% V

Inverts the matrix

Let's call this K:

$$\begin{pmatrix} \sqrt{V_1} & 0 & 0 \\ 0 & \sqrt{V_2} & 0 \\ 0 & 0 & \sqrt{V_3} \end{pmatrix}^{-1} = \begin{pmatrix} 1/\sqrt{V_1} & 0 & 0 \\ 0 & 1/\sqrt{V_2} & 0 \\ 0 & 0 & 1/\sqrt{V_3} \end{pmatrix}$$

Operator roundup

Operator %*% * / solve

+

%&%

Function Matrix multiplication Dot product Element-byelement division Inverse Element-byelement addition Element-byelement subtraction Pre- and postmultiplication

Rule $C_1 = R_2$ $R_1 = R_2 \& C_1 = C_2$ $R_1 = R_2 \& C_1 = C_2$

non-singular $R_1 = R_2 \& C_1 = C_2$

 $R_1 = R_2 \& C_1 = C_2$

 $C_1 = R_2 = C_2$

Full list can be found:

http://openmx.psyc.virginia.edu/wiki/matrix-operators-and-functions