Summarizing Variation Matrix Algebra

Benjamin Neale
Analytic and Translational Genetics Unit, Massachusetts General Hospital Program in Medical and Population Genetics, Broad Institute of Harvard and MIT

Goals of the session

- Introduce summary statistics
- Learn basics of matrix algebra
- Reinforce basic OpenMx syntax
- Introduction to likelihood

Computing Mean

- Formula $\boldsymbol{\Sigma}\left(\mathrm{x}_{\mathrm{i}}\right) / \mathbb{N}$

Computing Mean

- Formula $\Sigma\left(\mathrm{x}_{\mathrm{i}}\right) / \mathbb{N}$

Sum

Computing Mean

- Formula $\Sigma\left(\mathrm{x}_{\mathrm{i}}\right) / \mathbb{N}$
 Sum

Each individual score (the i refers to the i^{t} individual)

Computing Mean

Sum Sample size

Each individual score (the i refers to the $\mathrm{i}^{\text {th }}$ individual)

Computing Mean

- Formula $\boldsymbol{\Sigma}\left(\mathrm{x}_{\mathrm{i}}\right) / \mathrm{N}$
- Can compute with

Computing Mean

- Formula $\Sigma\left(\mathrm{x}_{\mathrm{i}}\right) / \mathbb{N}$
- Can compute with
- Pencil
- Calculator
- SAS
- SPSS
- Mx
- R, others....

Means and matrices

- For all continuous traits we will have a mean
- Let's say we have 100 traits (a lot!)
- If we had to specify each mean separately we would have something like this:
- M1 M2 M3 ... M99 M100 (without "..."!)
- This is where matrices are useful: they are boxes to hold numbers

Means and matrices cont' d

- So rather than specify all 100 means in OpenMx we can define a matrix to hold all of our means:

Means and matrices cont' d

- So rather than specify all 100 means in OpenMx we can define a matrix to hold all of our means:
mxMatrix(type="Full", nrow=1, ncol=100, free=TRUE, values=5, name="M")

Means and matrices cont' d

- So rather than specify all 100 means in OpenMx we can define a matrix to hold all of our means:
mxMatrix(type="Full", nrow=1, ncol=100,
free=TRUE, values=5, name="M")
Quick note on specification of matrices in text: Matrix M has dimension 1,100 meaning 1 row And 100 columns - two mnemonics - like a procession rows first then columns, or RC = Roman Catholic

To the Variance!

We'll start with coin tossing...

One Coin toss

2 outcomes

Heads
Tails
Outcome

Two Coin toss

3 outcomes

Four Coin toss

5 outcomes

Ten Coin toss

11 outcomes

Outcome

Fort Knox Toss
 Infinite outcomes

Variance

- Measure of Spread
- Easily calculated
- Individual differences

Average squared deviation Normal distribution

Gauss 1827 de Moivre 1738

Measuring Variation

Weighs \& Means

- Absolute differences?
- Squared differences?
- Absolute cubed?
- Squared squared?

Measuring Variation

Ways \& Means

\rightarrow

- Squared differences

Fisher (1922) Squared has minimum variance under normal distribution

Variance calculation

1. Calculate mean

Variance calculation

1. Calculate mean
2. Calculate each squared deviation:

Variance calculation

1. Calculate mean
2. Calculate each squared deviation:
3. Subtract the mean from each observations and square individually: $\left(x_{i}-\mu\right)^{2}$

Variance calculation

1. Calculate mean
2. Calculate each squared deviation:
3. Subtract the mean from each observations and square individually: $\left(x_{i}-\mu\right)^{2}$
4. Sum up all the squared deviations

Variance calculation

1. Calculate mean
2. Calculate each squared deviation:
3. Subtract the mean from each observations and square individually: $\left(x_{i}-\mu\right)^{2}$
4. Sum up all the squared deviations
5. Divide sum of squared deviations by ($\mathrm{N}-1$)

Your turn to calculate

Data

Subject Weight in kg
\(\left.\begin{array}{lll}1 \& 80 \& 1. Calculate mean

2 \& 70 \& 2. Calculate each deviation from

the mean\end{array}\right]\)| 75 | 3. Square each deviation
 individually |
| :--- | :--- |
| 4 | 85 | | 4. Sum the squared deviations |
| :--- |
| 5 |

Your turn to calculate

Data

Subject Weight in kg
180 1. Calculate mean (80)
2. Calculate each deviation from the mean ($0,-10,-5,5,10$)
$3 \quad 75$
4
85 (0,100,25,25,100)
4. Sum the squared deviations (250)
$5 \quad 90$
5. Divide by number of subjects -1 $(250 /(5-1))=(250 / 4)=62.5$

Covariance

- Measure of association between two variables

Covariance

- Measure of association between two variables
- Closely related to variance

Covariance

- Measure of association between two variables
- Closely related to variance
- Useful to partition variance

Deviations in two dimensions

 μ_{x}

Deviations in two dimensions

 μ_{x}

Different covariance

Covariance .3

Covariance . 5

Covariance .7

Covariance calculation

1. Calculate mean for each variables: $\left(\mu_{x}, \mu_{y}\right)$

Covariance calculation

1. Calculate mean for each variables: $\left(\mu_{x}, \mu_{y}\right)$
2. Calculate each deviation:

Covariance calculation

1. Calculate mean for each variables: $\left(\mu_{x}, \mu_{y}\right)$
2. Calculate each deviation:
1.Subtract the mean for variable 1 from each observations of variable 1 ($\mathrm{X}_{\mathrm{i}}-\mu_{\mathrm{x}}$)

Covariance calculation

1. Calculate mean for each variables: $\left(\mu_{x}, \mu_{y}\right)$
2. Calculate each deviation:
3. Subtract the mean for variable 1 from each observations of variable 1 ($\mathrm{X}_{\mathrm{i}}-\mu_{\mathrm{x}}$)
4. Likewise for variable 2, making certain to keep the variables paired within subject $\left(\mathrm{y}_{\mathrm{i}}-\mu_{\mathrm{y}}\right)$

Covariance calculation

1. Calculate mean for each variables: $\left(\mu_{x}, \mu_{\mathrm{y}}\right)$
2. Calculate each deviation:
3. Subtract the mean for variable 1 from each observations of variable $1\left(\mathrm{X}_{\mathrm{i}}-\mu_{\mathrm{x}}\right)$
4. Likewise for variable 2, making certain to keep the variables paired within subject $\left(\mathrm{y}_{\mathrm{i}}-\boldsymbol{\mu}_{\mathrm{y}}\right)$
5. Multiply the deviation for variable 1 and variable 2 :
$\left(\mathrm{x}_{\mathrm{i}}-\mu_{\mathrm{x}}\right){ }^{*}\left(\mathrm{y}_{\mathrm{i}}-\mu_{\mathrm{y}}\right)$

Covariance calculation

1. Calculate mean for each variables: $\left(\mu_{\mathrm{x}}, \mu_{\mathrm{y}}\right)$
2. Calculate each deviation:
1.Subtract the mean for variable 1 from each observations of variable $1\left(\mathrm{X}_{\mathrm{i}}-\mu_{\mathrm{x}}\right)$
2.Likewise for variable 2, making certain to keep the variables paired within subject $\left(\mathrm{y}_{\mathrm{i}}-\mathrm{\mu}_{\mathrm{y}}\right)$
3. Multiply the deviation for variable 1 and variable 2 : $\left(\mathrm{x}_{\mathrm{i}}-\mu_{\mathrm{x}}\right){ }^{*}\left(\mathrm{y}_{\mathrm{i}}-\mu_{\mathrm{y}}\right)$
4. Sum up all the multiplied deviations: $\Sigma\left(\mathrm{x}_{\mathrm{i}}-\mu_{\mathrm{x}}\right)^{*}\left(\mathrm{y}_{\mathrm{i}}-\mu_{\mathrm{y}}\right)$

Covariance calculation

1. Calculate mean for each variables: $\left(\mu_{x}, \mu_{\mathrm{y}}\right)$
2. Calculate each deviation:
1.Subtract the mean for variable 1 from each observations of variable $1\left(\mathrm{x}_{\mathrm{i}}-\mu_{\mathrm{x}}\right)$
2.Likewise for variable 2, making certain to keep the variables paired within subject $\left(\mathrm{y}_{\mathrm{i}}-\mu_{\mathrm{y}}\right)$
3. Multiply the deviation for variable 1 and variable 2 :
$\left(\mathrm{x}_{\mathrm{i}}-\mu_{\mathrm{x}}\right)^{*}\left(\mathrm{y}_{\mathrm{i}}-\mu_{\mathrm{y}}\right)$
4. Sum up all the multiplied deviations: $\Sigma\left(x_{i}-\mu_{x}\right)^{*}\left(y_{i}-\mu_{y}\right)$
Divide sum of the multiplied deviations by ($\mathrm{N}-1$):
$\Sigma\left(\left(\mathrm{X}_{\mathrm{i}}-\mu_{\mathrm{x}}\right)^{*}\left(\mathrm{y}_{\mathrm{i}}-\mu_{\mathrm{y}}\right)\right) /(\mathrm{N}-1)$

Your turn to calculate

Data:
Subject $X \quad Y$
$1 \quad 80180$
$2 \quad 70 \quad 175$
$3 \quad 75170$
$4 \quad 85190$
$5 \quad 90185$

1. Calculate means
2. Calculate each deviation:
3. Subtract the mean X from each observations of X
4. Likewise for Y
5. Multiply the deviation for X and Y pair-wise
6. Sum up all the multiplied deviation
7. Divide sum of the multiplied deviations by ($\mathrm{N}-1$)

Your turn to calculate

Data:

Subject X Y
180180
$2 \quad 70175$
$3 \quad 75170$
$4 \quad 85190$
$5 \quad 90185$

1. Calculate means: $(80,180)$
2. Calculate each deviation:
1.Subtract the mean for variable 1 from each observations of variable 1 (0,-10,-5,5,10)
3. Likewise for variable 2, making certain to keep the variables paired within subject ($0,-5,-10,10,5$)

Your turn to calculate

Data:
Subject X Y
180180
$2 \quad 70175$
$3 \quad 75170$
$4 \quad 85190$
590185
3. Multiply the deviation for variable 1 and variable 2 :
(0,-10,-5,5,10)*(0,-5,$10,10,5)(0,50,50,50,50)$
4. Sum up all the multiplied deviation
$0+50+50+50+50=200$
5. Divide sum of the multiplied deviations by ($\mathrm{N}-1$):
200/4=50

Measuring Covariation

Covariance Formula

$$
\sigma_{\mathrm{xy}}=\frac{\sum\left(\mathrm{x}_{\mathrm{i}}-\mu_{\mathrm{x}}\right) *\left(\mathrm{y}_{\mathrm{i}}-\mu_{\mathrm{y}}\right)}{(\mathrm{N}-1)}
$$

Measuring Covariation

Covariance Formula

$$
\sigma_{x y}=\frac{\Sigma\left(x_{i}-\mu_{x}\right) *\left(y_{i}-\mu_{y}\right)}{(N-1)}
$$

Sum

Measuring Covariation

Covariance Formula

$$
\sigma_{\mathrm{xy}}=\sum_{(\mathrm{N}-1)}^{\left.\mathrm{X}_{\mathrm{i}}-\mu_{\mathrm{x}}\right) *\left(\mathrm{y}_{\mathrm{i}}-\mu_{\mathrm{y}}\right)}
$$

Each individual score on trait x (the i refers to the ith pair)

Measuring Covariation

Covariance Formula

$$
\sigma_{\mathrm{xy}}=\frac{\sum\left(\mathrm{x}_{\mathrm{i}}-\mu_{\mathrm{x}}\right) *\left(\mathrm{y}_{\mathrm{i}}-\mu_{\mathrm{y}}\right)}{(\mathrm{N}-1)}
$$

Mean
of x

Measuring Covariation

Covariance Formula

$$
\sigma_{\mathrm{xy}}=\frac{\sum\left(\mathrm{x}_{\mathrm{i}}-\mu_{\mathrm{x}}\right) *\left(\mathrm{y}_{\mathrm{i}}-\mu_{\mathrm{y}}\right)}{(\mathrm{N}-1)}
$$

Number of
pairs

Measuring Covariation

Covariance Formula

$$
\sigma_{\mathrm{xy}}=\frac{\sum_{\left(\mathrm{X}_{\mathrm{i}}-\mu_{x}\right) *\left(\mathrm{y}_{\mathrm{i}}-\mu_{\mathrm{y}}\right)}^{(\mathrm{N}-1)}}{\text { (})}
$$

Each individual score on trait y (the i refers to the ith pair)

Measuring Covariation

Covariance Formula
(TVN

Mean
of y

Measuring Covariation

Covariance Formula

$$
\sigma_{\mathrm{xy}}=\sum^{\sum}\left(\mathrm{Xi}-\mu_{\mathrm{x}}\right) *\left(\mathrm{y}_{\mathrm{i}}-\mu_{\mathrm{y}}\right)
$$

Each
individual score on trait x (the i refers to the $\mathrm{i}^{\text {th }}$ pair)

Number Each individual of pairs score on trait x (the i refers to the ith pair)

Variances, covariances, and matrices

For multiple traits we will have:

Variances, covariances, and matrices

For multiple traits we will have: a variance for each trait a covariance for each pair

Variances, covariances, and matrices

For multiple traits we will have: a variance for each trait a covariance for each pair

If we have 5 traits we have:

Variances, covariances, and matrices

For multiple traits we will have:
a variance for each trait
a covariance for each pair
If we have 5 traits we have:
5 variances (V1, V2, .. V5)
10 covariances (CV1-2, CV1-3,...CV4-5

Variances, covariances, and matrices cont' d

- Just like means, we can put variances and covariances in a box
- In fact this is rather convenient, because:
- $\operatorname{Cov}(X, X)=\operatorname{Var}(X)$ so the organization is natural

Variances, covariances, and matrices cont' d

Trait 1 Trait 2 Trait 3 Trait 4
Trait $1 \operatorname{Var}(\mathrm{~T} 1)$
Trait 2
Trait 3
Trait 4

Variances, covariances, and matrices cont' d

Trait 1 Trait 2 Trait 3 Trait 4
Trait 1 Var(T1)
Trait 2
$\operatorname{Var}(\mathrm{T} 2)$
Trait 3
$\operatorname{Var}(T 3)$
Trait 4
$\operatorname{Var}(\mathrm{T} 4)$

Variances, covariances, and matrices cont' d

Trait 1
Trait 1 Trait 2 Trait 3 Trait 4 $\operatorname{Cov}(\mathrm{T} 1, \mathrm{~T} 2)$

Trait 2
Trait 3
Trait 4

Variances, covariances, and matrices cont' d

Trait 1 Trait 2 Trait 3 Trait 4
Trait $1 \quad \operatorname{Cov}(T 1, T 2) \operatorname{Cov}(T 1, T 3) \operatorname{Cov}(T 1, T 4)$
Trait $2 \operatorname{Cov}(T 2, T 1)$
$\operatorname{Cov}(\mathrm{T} 2, \mathrm{~T} 3) \quad \operatorname{Cov}(\mathrm{T} 2, \mathrm{~T} 4)$
Trait $3 \operatorname{Cov}(T 3, T 1) \operatorname{Cov}(T 3, T 2)$
$\operatorname{Cov}(\mathrm{T} 3, \mathrm{~T} 4)$
Trait $4 \operatorname{Cov}(\mathrm{~T} 4, \mathrm{~T} 1) \operatorname{Cov}(\mathrm{T} 4, \mathrm{~T} 2) \operatorname{Cov}(\mathrm{T} 4, \mathrm{~T} 3)$

Variances, covariances, and matrices cont' d

Trait 1 Trait 2 Trait 3 Trait 4
Trait $1 \quad \operatorname{Cov}(T 1, \mathrm{~T} 2) \operatorname{Cov}(\mathrm{T} 1, \mathrm{~T} 3) \operatorname{Cov}(\mathrm{T} 1, \mathrm{~T} 4)$
Trait $2 \operatorname{Cov}(T 2, T 1)$
$\operatorname{Cov}(\mathrm{T} 2, \mathrm{~T} 3) \quad \operatorname{Cov}(\mathrm{T} 2, \mathrm{~T} 4)$
Trait $3 \operatorname{Cov}(\mathrm{~T} 3, \mathrm{~T} 1) \operatorname{Cov}(\mathrm{T} 3, \mathrm{~T} 2)$
$\operatorname{Cov}(\mathrm{T} 3, \mathrm{~T} 4)$
Trait $4 \operatorname{Cov}(\mathrm{~T} 4, \mathrm{~T} 1) \operatorname{Cov}(\mathrm{T} 4, \mathrm{~T} 2) \operatorname{Cov}(\mathrm{T} 4, \mathrm{~T} 3)$

Note $\operatorname{Cov}(\mathrm{T} 3, \mathrm{~T} 1)=\operatorname{Cov}(\mathrm{T} 1, \mathrm{~T} 3)$

Variances, covariances, and matrices cont' d

Trait 1 Trait 2 Trait 3 Trait 4
Trait $1 \operatorname{Var}(\mathrm{~T} 1) \quad \operatorname{Cov}(\mathrm{T} 1, \mathrm{~T} 2) \operatorname{Cov}(\mathrm{T} 1, \mathrm{~T} 3) \operatorname{Cov}(\mathrm{T} 1, \mathrm{~T} 4)$
Trait $2 \operatorname{Cov}(T 2, T 1) \operatorname{Var}(T 2) \quad \operatorname{Cov}(T 2, T 3) \operatorname{Cov}(T 2, T 4)$
Trait $3 \operatorname{Cov}(T 3, T 1) \operatorname{Cov}(T 3, T 2) \quad \operatorname{Var}(T 3) \quad \operatorname{Cov}(T 3, T 4)$
Trait $4 \operatorname{Cov}(T 4, T 1) \operatorname{Cov}(T 4, T 2) \operatorname{Cov}(T 4, T 3) \quad \operatorname{Var}(T 4)$

Variances, covariances, and matrices in Mx

A variance covariance matrix is symmetric, which means the elements above and below the diagonal are identical

Variances, covariances, and matrices in Mx

A variance covariance matrix is symmetric, which means the elements above and below the diagonal are identical
$\left(\begin{array}{llll}A & B & C & D \\ B & E & F & G \\ C & F & H & I \\ D & G & I & J\end{array}\right)$

Variances, covariances, and matrices in Mx

A variance covariance matrix is symmetric, which means the elements above and below the diagonal are identical

Variances, covariances, and matrices in Mx

A variance covariance matrix is symmetric, which means the elements above and below the diagonal are identical

Variances, covariances, and matrices in Mx

A variance covariance matrix is symmetric, which means the elements above and below the diagonal are identical

Variances, covariances, and matrices in Mx

A variance covariance matrix is symmetric, which means the elements above and below the diagonal are identical

Variances, covariances, and matrices in Mx

A variance covariance matrix is symmetric, which means the elements above and below the diagonal are identical:
Considered another way, a symmetric matrix's transpose is equal to itself.

Variances, covariances, and matrices in Mx

A variance covariance matrix is symmetric, which means the elements above and below the diagonal are identical:
Considered another way, a symmetric matrix's transpose is equal to itself.
Transpose is exchanging rows and columns

Variances, covariances, and matrices in Mx

A variance covariance matrix is symmetric, which means the elements above and below the diagonal are identical:
Considered another way, a symmetric matrix's transpose is equal to itself.
Transpose is exchanging rows and columns e.g.:

$$
A=\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right)
$$

Variances, covariances, and matrices in Mx

A variance covariance matrix is symmetric, which means the elements above and below the diagonal are identical:
Considered another way, a symmetric matrix's transpose is equal to itself.
Transpose is exchanging rows and columns e.g.:

$$
A=\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right) \quad \begin{aligned}
& A^{\prime}= \\
& \text { or } \\
& A^{\top}
\end{aligned}
$$

Variances, covariances, and matrices in Mx

A variance covariance matrix is symmetric, which means the elements above and below the diagonal are identical:
Considered another way, a symmetric matrix's transpose is equal to itself.
Transpose is exchanging rows and columns e.g.:

Variances, covariances, and matrices in Mx

A variance covariance matrix is symmetric, which means the elements above and below the diagonal are identical:
Considered another way, a symmetric matrix's transpose is equal to itself.
Transpose is exchanging rows and columns e.g.:

$$
\left.A=\left(\begin{array}{ccc}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right) \quad \begin{array}{ll}
A^{\prime}=\left(\begin{array}{ll}
1 & 4 \\
2 & 5 \\
\text { or } \\
A^{\top}
\end{array}\right. \\
3 & 6
\end{array}\right)
$$

Variances, covariances, and matrices in Mx

OpenMx uses mxFIMLObjective to calculate the variance-covariance matrix for the data (let's stick with matrix V)
mxMatrix(type="Sym", nrow=2, ncol=2, free=TRUE, values=.5, name="V")
type specifies what kind of matrix - symmetric nrow specifies the number of rows ncol specifies the number of columns free means that OpenMx will estimate

How else can we get a symmetric matrix?

We can use matrix algebra and another matrix type.

How else can we get a symmetric matrix?

We can use matrix algebra and another matrix type.

We will be using matrix multiplication and lower matrices

How else can we get a symmetric matrix?

We can use matrix algebra and another matrix type.

We will be using matrix multiplication and lower matrices

Let's begin with matrix multiplication

Matrix multiplication

Surprisingly, everyone in this room has completed matrix multiplication

Matrix multiplication

Surprisingly, everyone in this room has completed matrix multiplication-it's just been of two 1×1 matrices

Matrix multiplication

Surprisingly, everyone in this room has completed matrix multiplication-it's just been of two 1×1 matrices

Let's extend this to a simple case: Two 2×2 matrices

Matrix multiplication

Surprisingly, everyone in this room has completed matrix multiplication-it's just been of two 1×1 matrices

Let's extend this to a simple case: Two 2×2 matrices

$$
\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right) \% * \%\left(\begin{array}{ll}
E & F \\
G & H
\end{array}\right)
$$

Matrix multiplication example

$$
\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right) \% * \%\left(\begin{array}{ll}
E & F \\
G & H
\end{array}\right)
$$

Matrix multiplication example

$$
\begin{aligned}
& \left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right) \% * \%\left(\begin{array}{ll}
E & F \\
G & H
\end{array}\right) \\
& 2 \times(2)
\end{aligned}
$$

RULE: The number of columns in the $1^{\text {st }}$ matrix must equal the number of rows in the $2^{\text {nd }}$ matrix.

Matrix multiplication example

$$
\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right) \% * \%\left(\begin{array}{ll}
E & F \\
G & H
\end{array}\right)
$$

Step 1: Determine the size of the box (matrix) needed for the answer

Matrix multiplication example

$$
\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right) \% * \%\left(\begin{array}{ll}
E & F \\
G & H
\end{array}\right)
$$

Step 1: Determine the size of the box (matrix) needed for the answer
-The resulting matrix will have dimension: the number of rows of the $1^{\text {st }}$ matrix by the number of columns of the $2^{\text {nd }}$ matrix

Matrix multiplication example

$$
\begin{align*}
& \left(\begin{array}{cc}
A & B \\
C & D
\end{array}\right] \% * \%\left(\begin{array}{ll}
E & F \\
G & H
\end{array}\right)=[\\
& (2) \times 2 \tag{2}
\end{align*}
$$

Step 1: Determine the size of the box (matrix) needed for the answer
-The resulting matrix will have dimension: the number of rows of the $1^{\text {st }}$ matrix by the number of columns of the $2^{\text {nd }}$ matrix

Matrix multiplication example

$$
\begin{aligned}
& \left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right) \% *\left(\begin{array}{ll}
E & F \\
G & H
\end{array}\right) \\
& 2 \times 2
\end{aligned}
$$

Step 1: Determine the size of the box (matrix) needed for the answer
-The resulting matrix will have dimension: the number of rows of the $1^{\text {st }}$ matrix by the number of columns of the $2^{\text {nd }}$ matrix

Matrix multiplication example

$$
\underset{2 \times 2}{\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right) \% * \%\left(\begin{array}{ll}
E & F \\
G & H
\end{array}\right)} \underset{2 \times 2}{ }=(\underbrace{}_{2 \times 2})
$$

RULE: The number of columns in the $1^{\text {st }}$ matrix must equal the number of rows in the $2^{\text {nd }}$ matrix.

Matrix multiplication example

$$
\begin{array}{cc}
\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right) \% * *\left(\begin{array}{ll}
E & F \\
G & H
\end{array}\right) \\
2 \times 2 & (\underset{2 \times 2}{ }) \\
\hline 2 \times 2
\end{array}
$$

Step 2: Calculate each element of the resulting matrix.

Matrix multiplication example

$$
\begin{aligned}
\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right) \% * \%\left(\begin{array}{ll}
E & F \\
G & H
\end{array}\right) & =\left(\begin{array}{l}
2 \times 2
\end{array}\right) \\
2 \times 2 & \left(\begin{array}{l}
2 \times 2
\end{array}\right)
\end{aligned}
$$

Step 2: Calculate each element of the resulting matrix.
There are 4 elements in our new matrix: 1,1

Matrix multiplication example

$$
\left.\begin{array}{rl}
\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right) \% * \%\left(\begin{array}{ll}
E & F \\
G & H
\end{array}\right) \\
2 \times 2 & (O) \\
2 \times 2
\end{array}\right)
$$

Step 2: Calculate each element of the resulting matrix.
There are 4 elements in our new matrix: 1,1; 1,2;

Matrix multiplication example

$$
\begin{array}{cc}
\left(\begin{array}{cc}
A & B \\
C & D
\end{array}\right) \% * \%\left(\begin{array}{ll}
E & F \\
G & H
\end{array}\right) \\
2 \times 2 & (\bigcirc) \\
2 \times 2
\end{array}
$$

Step 2: Calculate each element of the resulting matrix.
There are 4 elements in our new matrix: 1,1;1,2; 2,1;

Matrix multiplication example

$$
\begin{array}{cc}
\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right) \% * \%\left(\begin{array}{ll}
E & F \\
G & H
\end{array}\right) \\
2 \times 2 & (\bigcirc) \\
2 \times 2
\end{array}=\left(\begin{array}{r}
2 \times 2
\end{array}\right.
$$

Step 2: Calculate each element of the resulting matrix.
There are 4 elements in our new matrix: 1,1; 1,2; 2,1; 2,2

Matrix multiplication example

$$
\underbrace{\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right) \% \%\left(\begin{array}{ll}
E & F \\
G & H
\end{array}\right)}_{2 \times 2}=\left(\underset{2 \times 2}{ }=\left({ }_{2 \times 2}\right)\right.
$$

Step 2: Calculate each element of the resulting matrix. Each element is the cross-product of the corresponding row of the $1^{\text {st }}$ matrix and the corresponding column of the $2^{\text {nd }}$ matrix (e.g. element 2,1 will be the cross product of the $2^{\text {nd }}$ row of matrix 1 and the $1^{\text {st }}$ column of matrix 2)

What's a cross-product?

- Used in the context of vector multiplication:
-We have 2 vectors of the same length (same number of elements)
-The cross-product (x) is the sum of the products of the elements, e.g.:

$$
\begin{aligned}
& \cdot \text { Vector } 1=\{a b c\} \text { Vector } 2=\{d \text { e f }\} \\
& \cdot V 1 \times \text { V2 }=a^{*} d+b^{*} e+c^{*} f
\end{aligned}
$$

Matrix multiplication example

$$
\left.\begin{array}{rl}
\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right) \% * \%\left(\begin{array}{ll}
E & F \\
G & H
\end{array}\right) & =\left(\begin{array}{l}
2 \times 2
\end{array}\right) \\
2 \times 2
\end{array}\right)
$$

Step 2, element 1,1: cross-product row1 matrix1 with column1 matrix2
$\{A B\} \times\{E G\}=\left(A^{*} E+B^{*} G\right)$

Matrix multiplication example

$$
\begin{aligned}
&\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right) \% * \%\left(\begin{array}{ll}
E & F \\
G & H
\end{array}\right)=\left(\begin{array}{l}
A E+B G \\
2 \times 2
\end{array}\right. \\
& 2 \times 2
\end{aligned}
$$

Step 2, element 1,2: cross-product row1 matrix1 with column2 matrix2
$\{A B\} \times\{F H\}=\left(A^{*} F+B^{*} H\right)$

Matrix multiplication example

$$
\begin{aligned}
& \left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right) \% * \%\left(\begin{array}{ll}
E & F \\
G & H
\end{array}\right)=\left(\begin{array}{cc}
A E+B G & A F+B H \\
O
\end{array}\right) \\
& 2 \times 2 \\
& 2 \times 2 \\
& 2 \times 2
\end{aligned}
$$

Step 2, element 2,1: cross-product row2 matrix1 with column1 matrix2
$\{C D\} \times\{E G\}=\left(C * E+D^{*} G\right)$

Matrix multiplication example

$$
\begin{aligned}
&\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right) \% * *\left(\begin{array}{ll}
E & F \\
G & H
\end{array}\right)=\left(\begin{array}{cc}
A E+B G & A F+B H \\
C E+D G & O
\end{array}\right) \\
& 2 \times 2
\end{aligned}
$$

Step 2, element 2,2: cross-product row2 matrix1 with column2 matrix2
$\{C D\} \times\{F H\}=\left(C * F+D^{*} H\right)$

Matrix multiplication example

$$
\begin{array}{rl}
\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right) \% * \%\left(\begin{array}{ll}
E & F \\
G & H
\end{array}\right) & =\left(\begin{array}{ll}
A E+B G & A F+B H \\
C E+D G & C F+D H
\end{array}\right) \\
2 \times 2 & 2 \times 2
\end{array}
$$

Step 2, element 2,2: cross-product row2 matrix1 with column2 matrix2
$\{C D\} \times\{F H\}=\left(C * F+D^{*} H\right)$

Matrix multiplication exercises

$\mathrm{L}\left(\begin{array}{ll}2 & 0 \\ 1 & 4\end{array}\right)^{\mathrm{A}}\left(\begin{array}{l}1 \\ 2 \\ 5\end{array}\right)^{\mathrm{B}}\left[\begin{array}{lll}4 & 7 & -4\end{array}\right]^{\mathrm{C}}\left(\begin{array}{cc}-4 & 2 \\ -3 & 2 \\ 2 & -2\end{array}\right)$
Calculate:

1. $L \% * \% \mathrm{t}(\mathrm{L})(\mathrm{L}$ times L transpose)
2. $B \% \% \% \mathrm{~A}$
3. $A \% * \% B$
4. $\mathrm{C} \% \% \mathrm{~A}$

Matrix multiplication answers

$1\left(\begin{array}{cc}4 & 2 \\ 2 & 17\end{array}\right)$

Matrix multiplication answers

$1\left(\begin{array}{cc}4 & 2 \\ 2 & 17\end{array}\right)^{2}(-2)$

Matrix multiplication answers

$1\left(\begin{array}{cc}4 & 2 \\ 2 & 17\end{array}\right)^{2}(-2)^{3}\left(\begin{array}{ccc}4 & 7 & 4 \\ 8 & 14 & 8 \\ 20 & 35 & 20\end{array}\right)$

Matrix multiplication answers

$1\left(\begin{array}{cc}4 & 2 \\ 2 & 17\end{array}\right)^{2}(-2)^{3}\left(\begin{array}{ccc}4 & 7 & 4 \\ 8 & 14 & 8 \\ 20 & 35 & 20\end{array}\right)^{4}$ Incomputable

What have we learned?

-Matrix multiplication is not commutative:

$$
\cdot \text { E.g. } A^{*} B \neq B^{*} A
$$

-The product of a lower matrix and its transpose is symmetric
-Not all matrices were made to multiply with one another

Correlation

- Standardized covariance
- Calculate by taking the covariance and dividing by the square root of the product of the variances
- Lies between -1 and 1

$$
r_{x y}=
$$

Calculating Correlation from data

Data:		Calculate mean for X and Y Calculate variance for X and Y
Subject	X Y	
1	80180	Calculate covariance for X and Y
2	70175	Correlation formula is $\operatorname{cov}_{\mathrm{xy}} /\left(\sqrt{ }\left(\operatorname{var}_{\mathrm{x}}{ }^{*} \operatorname{var}_{\mathrm{y}}\right)\right)$
3	75170	Variance of X is 62.5, and Variance
4	85190	of Y is 62.5 , covariance (X, Y) is 50
5	90185	

Calculating Correlation from data

Standardization

- We can standardize an entire variance covariance matrix and turn it into a correlation matrix

Standardization

- We can standardize an entire variance covariance matrix and turn it into a correlation matrix
- What will we need?

Standardization

- We can standardize an entire variance covariance matrix and turn it into a correlation matrix
- What will we need?

$$
r_{x y}=
$$

Standardization

- We can standardize an entire variance covariance matrix and turn it into a correlation matrix
- What will we need?

Covariance(X,Y)

Variance(X)

Standardization back to boxes

- We' ll start with our Variance Covariance matrix:

$$
V=\left(\begin{array}{lll}
V_{1} & C V_{12} & C V_{13} \\
C V_{21} & V_{2} & C V_{23} \\
C V_{31} & C V_{32} & V_{3}
\end{array}\right)
$$

Standardization back to boxes

- We' 11 start with our Variance Covariance matrix:

Standardization formula

Formula to standardize V :
solve (sqrt (I*V)) \%\&\% V
Extracts the variances

The dot product does element by element multiplication, so the dimensions of the two matrices must be equal, resulting in a matrix of the same size

Standardization formula

Formula to standardize V :

solve (sqrt (I*V)) \%\&\% V

Extracts the variances In this case I is an identity matrix of

Identity matrices same size as $\mathrm{V}(3,3)$:

100
have the property of
returning the same
matrix as the original
in standard
multiplication

Standardization formula

Formula to standardize V:
solve (sqrt ([*V)) \%\&\% V
Extracts the variances

So I*V =
$\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{lll}V_{1} & C V_{12} & C V_{13} \\ C V_{21} & V_{2} & C V_{23} \\ C V_{31} & C V_{32} & V_{3}\end{array}\right)=\left(\begin{array}{lll}V_{1} & 0 & 0 \\ 0 & V_{2} & 0 \\ 0 & 0 & V_{3}\end{array}\right)$

Standardization formula

Formula to standardize V :

solve (squirt (I*V)) \%\&\% V

Square root
Take the square root of each element
$\left(\begin{array}{lll}V_{1} & 0 & 0 \\ 0 & V_{2} & 0 \\ 0 & 0 & V_{3}\end{array}\right) \longrightarrow\left(\begin{array}{ccc}\sqrt{ } V_{1} & 0 & 0 \\ 0 & \sqrt{ } V_{2} & 0 \\ 0 & 0 & \sqrt{ } V_{3}\end{array}\right)$

Standardization formula

Formula to standardize V: solve (sqrt (I*V)) \%\&\% V Inverts the
matrix

The inverse of matrix B is the matrix that when multiplied by B yields the identity matrix:
B \%*\% $B^{-1}=B^{-1} \%{ }^{*} \%$ B $=1$

Warning: not all matrices have an inverse. A matrix with no inverse is a singular matrix. A zero matrix is a good example.

Standardization formula

Formula to standardize V :

solve (sqrt (I*V)) \%\&\% V
Inverts the matrix

Let's call this K:

$$
\left(\begin{array}{lcc}
\sqrt{ } V_{1} & 0 & 0 \\
0 & V V_{2} & 0 \\
0 & 0 & \sqrt{ } V_{3}
\end{array}\right)^{-1} \cdot=\left(\begin{array}{ccc}
1 / \sqrt{ } V_{1} & 0 & 0 \\
0 & 1 / \sqrt{ } V_{2} & 0 \\
0 & 0 & 1 / \sqrt{ } V_{3}
\end{array}\right)
$$

Operator roundup

Operator
$\%$
$\%$
$\%$
$/$

solve
+
-
\%\&\%

Function
Matrix multiplication
Dot product
Element-byelement division
Inverse
Element-byelement addition
Element-by-
element subtraction
Pre- and post-
multiplication

Rule
$\mathrm{C}_{1}=\mathrm{R}_{2}$
$\mathrm{R}_{1}=\mathrm{R}_{2} \& \mathrm{C}_{1}=\mathrm{C}_{2}$
$\mathrm{R}_{1}=\mathrm{R}_{2} \& \mathrm{C}_{1}=\mathrm{C}_{2}$
non-singular $\mathrm{R}_{1}=\mathrm{R}_{2}$ \& $\mathrm{C}_{1}=\mathrm{C}_{2}$
$\mathrm{R}_{1}=\mathrm{R}_{2} \& \mathrm{C}_{1}=\mathrm{C}_{2}$
$\mathrm{C}_{1}=\mathrm{R}_{2}=\mathrm{C}_{2}$

Full list can be found:
http://openmx.psyc.virginia.edu/wiki/matrix-operators-and-functions

