"Beyond Twins"

Lindon Eaves, VIPBG, Richmond Boulder CO, March 2012

The Twin Tool-Kit

- Continuous and categorical data
- Twins
- Univariate and Multivariate ACE
- Developmental Change
- Heterogeneity/Moderation
- Definition variables

THIS IS JUST A TOOL KIT TO GET STARTED

This week we have pretty much ignored

- Assortative Mating
- Explicit Specification of the Family Environment (e.g. enviromental effects of parental genotype)
- Genotype-environment covariance (e.g. "passive" rGE)
- Causal pathways between measures
- Some aspects of development

The chances are...

...that your real questions don't fit into this basic framework

BE CREATIVE... IMAGINE...

If you can write the model... ...you can fit it

(If you can get the data)

Choose the design and write the model to reflect your own scientific questions

You can combine different elements to answer your question

Here are a few examples but they do not exhaust the possibilities

Extended Kinships of Twins

Can Extend Pedigrees by Using Reports by Relatives

BUT NEED TO BE CAREFUL ABOUT RATER BIASES

Twins and Siblings

Twins and Parents ("TAP")

© Lindon Eaves, 2009

Transmission of Attitudes Toward Abortion and Gay Rights: Effects of Genes, Social Learning and Mate Selection

Lindon J. Eaves · Peter K. Hatemi

Behav Genet. 2008 May;38(3):247-56.

Relationship	Correlation		N (pairs)	
	Abortion	Gay rights		
Husband–wife	0.632	0.581	5162	
Mother-daughter	0.500	0.469	4802	
Mother-son	0.373	0.391	3233	
Father-daughter	0.428	0.365	3166	
Father-son	0.398	0.389	2315	
Male siblings	0.420	0.309	1564	
Female siblings	0.463	0.453	3701	
Unlike-sex siblings	0.405	0.346	4462	
Male DZ twins	0.423	0.371	610	
Female DZ twins	0.557	0.491	1273	
Unlike-sex DZ twins	0.425	0.393	1397	
Male MZ twins	0.553	0.574	814	
Female MZ twins	0.676	0.599	1982	
Retest male	0.801	0.774	1019	
Retest female	0.864	0.806	2912	

Table 2 Polychoric correlations for attitudes to abortion and gayrights

Path model for biological and cultural inheritance

Parameter	Abortion	Gay Rights	Path
h _m	0.756	0.834	Additive genetic effects to male phenotype
h _f	0.716	0.710	Additive genetic effects to female phenotype
h _s	0	0	Sex-specific genetic effects
c _m	0.370	0.051	Non-transmitted shared environment to male siblings
c _f	0.255	0.341	Non-transmitted shared environment to female siblings
t _m	0.048	0.301	Additional twin shared environment (males)
t _f	0.355	0.203	Additional twin shared environment (females)
u _f	0.184	0.261	Mother-daughter cultural inheritance
u _m	-0.140	-0.033	Mother-son cultural inheritance
V _f	-0.100	-0.203	Father-daughter cultural inheritance
V _m	0.107	-0.040	Father-son cultural inheritance
m	0.761	0.734	Phenotypic correlation between spouses
r _{gm}	0.895	0.881	Reliability (male)
r _{gf}	0.929	0.898	Reliability (female)

 Table 4: Estimates of path coefficients

Note: "reliabilities" are estimated as the path from "true" score to observed score. Test-retest correlations are the squares of the path coefficients.

	Proportion of reliable variance			
	Abo	ortion	Gay R	ights
Component of variance	Males	Females	Males	Female
Additive genetic	0.572	0.513	0.696	0.505
Non-shared environment	0.316	0.213	0.288	0.253
Shared sibling environment	0.137	0.065	0.003	0.116
Extra-shared twin environment	0.002	0.112	0.091	0.041
Vertical cultural inheritance	0.008	0.016	0.005	0.031
Genotype-environment covariance	-0.035	0.080	-0.081	0.053
Total shared environment	0.147	0.193	0.099	0.188
Reliability (retest)	0.801	0.863	0.776	0.806

Table 5: Proportions of reliable variation explained by sources of variance (full model)

The mediating effect of parental neglect on adolescent and young adult anti-sociality: A longitudinal study of twins and their parents (LTAP).

Running title: Childhood adversity and anti-social behavior.

Lindon J Eaves, Elizabeth C Prom, Judy L Silberg

Behav Genet. 2010 Jul;40(4):425-37.

TWINS MEASURED AS JUVENILES AND ADULTS

Twins and Parents ("TAP")

Conceptual model for the effects of genes and the family environment on anti-social behavior.

Polychoric correlations between childhood adversity and anti-social behavior of adult and juvenile offspring

	Statistic			
Outcome	Ν	r	a.s.e.	
Adult male	476	0.1506	0.0770	
Adult female	513	0.2986	0.0659	
Juvenile male	364	0.2276	0.1045	
Juvenile female	406	0.3183	0.0824	

Polychoric correlations between parental (adult) antisocial behavior (ASP) and childhood adversity

	Statistic			
Relationship	Ν	R	a.s.e.	
Mother-Father ASP	942	0.4006	0.0370	
Father ASP-Adversity	489	0.2805	0.0707	
Mother ASPAdversity	577	0.4121	0.0565	

Polychoric correlations between anti-social behavior of (adult) parents adult (ASP) and juvenile (CD) anti-social behavior of their offspring.

	Statistic			
Relationship	Ν	r	a.s.e.	
Mother-adult son	977	0.2368	0.0398	
Mother-adult daughter	1158	0.2126	0.0380	
Mother-juvenile son	662	0.1475	0.0583	
Mother-juvenile daughter	746	0.2454	0.0558	
Father-adult son	761	0.1507	0.0471	
Father-adult daughter	869	0.2558	0.0442	
Father-juvenile son	525	0.2035	0.0671	
Father-juvenile daughter	568	0.1450	0.0681	

Polychoric correlations for juvenile conduct disorder and adult anti-social personality in YAFU/VTSABD twins.

			Statistic)
Relationship		Ν	r	a.s.e.
	MZm	243	0.5654	0.0615
Twins	MZf	333	0.5093	0.0611
(as adults)	DZm	137	0.2646	0.1078
	DZf	154	0.4069	0.0960
	DZmf	209	0.3069	0.0875
	MZm	169	0.8003	0.0572
	MZf	225	0.8023	0.0552
Twins	DZm	101	0.5153	0.1498
(as juveniles)	DZf	92	0.4189	0.1565
	DZmf	132	0.0150	0.1809
	MZm	288	0.1751	0.0879
	MZf	394	0.1126	0.0848
Twins	DZm	168	0.1526	0.1284
(adult-juvenile)	DZf	164	0.3596	0.1101
	DZmf	115	0.0595	0.1474
	DZfm	113	0.0647	0.1630
Within subject	Males	569	0.2452	0.0632
(adult-juvenile)	Females	674	0.1103	0.0643

Estimated contributions of parents and residual effects to the shared environment of twin offspring.

Effects of the unique and shared environment on adult and juvenile anti-social behavior and females.

Children of Twins ("COT")

Gestational Age

Racial Differences in Genetic and Environmental Risk to Preterm Birth

Timothy P. York, Jerome F. Strauss, Michael C. Neale, Lindon J. Eaves

PLoS One. 2010 Aug 25;5(8):e12391.

	European American		African A	merican
Parental relationship	N. Families	N. Births	N. Families	N. Births
Sibship	284,446	575,709	66,983	119,791
Maternal half- sibship	6,736	12,269	2,431	4,515
Paternal half- sibship	5,419	9,800	2,839	5,292
MZ male twin	595	1,092	69	99
MZ female twin	618	1,212	98	144
DZ male twin	393	700	52	77
DZ female twin	368	696	72	119
DZ male-female twin	936	1,614	139	210
Total	299,511	603,092	72,683	130,247

Table 2. Sample frequencies by parental relationship and race.

Table 1. Expected covariance of gestational age expressed as variance components between pregnancy outcomes as a function of relationship between offspring.

Parental relationship	Fetal relationship	Expected covariance
MZ female twins	Half-sibling	$\frac{1}{4}f^2 + m^2$
DZ female twins	Cousin	⅓ f² + ½ m²
MZ male twins	Half-sibling	1⁄4 f ²
DZ male twins	Cousin	1/8 f ²
DZ male-female twins	Cousin	1/8 f ²
Sibship	Sibling	$\frac{1}{2}f^2 + m^2 + c^2$
Maternal half-sibship	Half-sibling	$\frac{1}{4}f^2 + m^2 + hc^2$
Paternal half-sibship	Half-sibling	$\frac{1}{4}f^{2} + hc^{2}$

 f^2 =fetal genetic, m^2 =maternal genetic, c^2 =shared familial environment h = parameter to allow for differences in half-sibling versus full-sibling shared environment ("fudge factor")

	Full Genetic Model (Model 2)		Reduce	d Genetic Model	(Model 8)	
Source	Estimate	95% CI	Percentage	Estimate	95% CI	Percentage
African American						
Fetal genetic	0.264	(0.0, 2.302)	3.7	-	-	-
Maternal genetic	0.976	(0.274, 1.357)	13.8	1.040	(0.531, 1.445)	14.7
Shared environment	1.215	(0.499, 1.666)	17.1	1.281	(0.872, 1.781)	18.0
Unique environment	4.642	(3.559, 4.899)	65.4	4.777	(4.625, 4.927)	67.3
European American						
Fetal genetic	1.325	(0.640, 1.927)	35.2	1.325	(0.695, 1.964)	35.2
Maternal genetic	0.503	(0.263, 0.767)	13.4	0.503	(0.235, 0.758)	13.4
Shared environment	0.263	(0.006, 0.537)	7.0	0.264	(0.027, 0.537)	7.0
Unique environment	1.673	(1.355, 2.024)	44.4	1.674	(1.355, 1.990)	44.5

Table 4. Estimated variance components from model 2 with empirically derived 95% bootstrap confidence intervals adjusted for covariates (birth order, maternal age, fetal sex, source of care, smoking, maternal education).

Spouses of Twins ("SPOT")

© Lindon Eaves, 2009

Modeling the Cultural and Biological Inheritance of Social and Political Behavior in Twins and Nuclear Families

Lindon J. Eaves, Peter K. Hatemi, Andrew C. Heath, Nicholas G. Martin

In P.Hatemi and R.McDermott (2011) "Man is by Nature a Political Animal", Chicago, IL: University of Chicago Press.

Phenotypic Assortment

Spouses of Twins

Twins

Latent Variable Assortment (Phenotype subject to error)

Latent Trait

Errors

"Social Homogamy"

Latent Trait

Errors

Spousal Interaction

Latent Trait

Residuals

Table 19: Goodness-of-fit statistics (weighted residual sums of squares, S²) for selected models for assortative mating in the US and Australia

Model		Random	Phenotypic	P+Error	Spousal	Social
		mating	assortment (P)		Interaction	Homogamy
d.f.		16	15	13	14	11
Variable	Sample	S ²	S ²	S ²	S ²	S
Stature	US	449.179	31.363	24.423	78.930	28.786
	AU	239.827	12.947	11.817 ¹	31.694	25.353
Conservatism	US	2535.373	14.845	12.143	118.266	328.491
	AU	2041.407	31.627	29.669	113.276	239.123
Neuroticism	US	63.371	17.811	See note ²	20.226	19.458
	AU	28.337	17.444	See note ²	15.583	22.807
Church attendance	US	3375.872	15.187	12.841	103.042	611.006
	AU	3019.544	22.140	21.548	76.574	403.950
Political affiliation	US	2213.625	22.254	18.500	87.889	429.819
	AU	2337.500	34.183	32.537	70.696	322.685
Educational attainment	US	2477.957	46.210	28.207	243.100	57.774
	AU	1430.440	44.146	18.624	160.747	82.086

Notes:

¹ Estimated regression of male outcome on latent trait on upper bound (1.000).

² This model is poorly identified for Neuroticism because the correlation between mates is close to zero. Stable parameter estimates are not available.

I GOIDING IN IMAL COLOG TOTHI AD.

J Child Psychol Psychiatry. 2010 June 1; 51(6): 734–744. doi:10.1111/j.1469-7610.2010.02205.x.

Genetic and environmental influences on the transmission of parental depression to children's depression and conduct disturbance: An extended Children of Twins study

Judy L. Silberg¹, Hermine Maes¹, and Lindon J. Eaves¹ ¹ Virginia Institute for Psychiatric and Behavioral Genetics, Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA USA

JUVENILES

Twin, parent - child, avuncular – offspring, and cousin correlations for MZ and DZ twins.

Twin correlations	Depression	Conduct Disturbance
MZ adult ¹	.32 (n=498)	
DZ adult	.12 (n=545)	
MZ child ²	.34 (n=692)	.73 (n=684)
DZ child ²	.17 (n=645)	.34 (n=627)
Adult - Child correlations ³		
MZ parent	.18 (n=753)	.21 (n=1347)
DZ parent	.20 (n=845)	.23 (n=1508)
MZ avuncular	.07 (n=661)	.11 (n=1141)
DZ avuncular	.01 (n=654)	.06 (n=1129)
Cousin Correlations		
MZ twin pair families	.01 (n=261)	.15 (n=526)
DZ twin pair families	.02 (n=185)	.15 (n=441)

¹Adult twin correlations - Children of Twins Study (COT)

² Juvenile twin correlations - Virginia Twin Study of Adolescent Behavioral Development (VTSABD)

⁵ Complete and incomplete twin pair families

^{*} Child ratings of depression

Parental ratings of conduct

Children of Twins Model (COT)

Parental Depression and Childhood Outcomes: Results

Parameter	Depression	Conduct	Parameter Descriptiion	Free?
m	0.1761	0.2064	Correlation between spouses	F
g	0.5410	0.5426	Path from persistent additive genetic effect to	F
			adult phenotype	
d	0.0000!	0.3898	Path from persistent additive genetic effect to	F
			juvenile phenotype	
b	0.5339	0.6775	Path from juvenile limited genetic effect to	F
			juvenile phenotype	
u	0.0000!	0.0000!	Path from adult shared environment to adult	F
			phenotype	
W	0.6520	0.6438	Path from parental phenotype to juvenile shared	D
			environment	
с	0.2101	0.1304	Path from juvenile shared environment to	F
			juvenile phenotype	
V	0.0000!	0.0000!	Path from juvenile-specific shared environment	F
			to phenotype	
r	0.4149	0.4215	Correlation between persistent genetic and shared	D
			environmental effects	
wc	0.1369	0.0839	Path from parental phenotype to juvenile shared	D
			environment	
а	0.5410	0.5246	Correlation between genes of parents and	D
			phenotype of parents	
f	0.5226	0.5303	Correlation between additive genetic effects of	D
			siblings/twins	
χ^2	0.325	1.218		
d.f.	3	2		
Р	0.9552	0.5438		

Genetic and Environmental Factors in Relative Body Weight and Human Adiposity

Hermine H. M. Maes, Michael C. Neale and Lindon J. Eaves.

Behavior Genetics, Vol. 27. No. 4, 1997

Family	N	r	Avuncular	N	r	Cousins	N	r	In-laws	N	r	·	N	r
S	4751	.144	PSib♂∂	92	026	Mzm ਹੈ ਹੈ	39	.094	SibI & Q	337	075	SPDzQð	54	223
			PSib3 Ŷ	155	.004	Mzm♀♀	92	.223	Sibl♀♂	728	007	SPDz 9 9	80	177
Sibðð	1493	.234	NSib 🎗 ở	402	.185	Mzmð 9	107	.185	SibI ර ර	422	.077	SND2 රී රී	126	.114
SibՉՉ	3524	.317	NSib♀♀	536	.083	Mzfð ð	153	.040	SibI ♀ ♀	447	.075	SND ð 9	169	043
Sidd Q	4255	.224	₽Sib♀♂	131	007	MzfՉ Չ	340	.191				SPDz ð ð	36	255
			PSib♀♀	196	.065	Mzfð ¥	449	.064	Dzl∂ ♀	387	.047	SPDzð 9	68	.146
DZðð	573	.292	NSib3 ð	236	.105				Dzl 2 3	603	.126	SNDz 2 o	64	.090
DzՉՉ	1164	.360	NSibð 9	284	.059	Dzm ී ී	19	375	Dzlð ð	353	.038	SNDz 9 9	95	.106
Dzð♀	1307	.264				Dzm ♀ ♀	41	.070	DzI ♀ ♀	458	028			
Mzðð	775	.692	PDz ਹੈ ਹੈ	105	.292	Dzm ở 9	52	072	MzI & 9	589	.048	SPMz೪ನೆ	129	.014
Mz♀♀	1847	.730	PDz & P	137	. 0 16	Dzfਰ ਹੈ	52	.260	MzI ♀ ♂	1139	.109	SPMz 9 9	213	.062
			NDz♀♂	345	.152	Dzf99	138	.095	_			SNMzđđ	342	107
Fa-So	2160	.190	NDzՉՉ	525	.176	Dzfð 9	159	025	Fa-Dal	205	068	SNM238	502	040
Fa-Da	2971	.194	PDz&3	118	.393	Dzo ටී ටී	38	.176	Fa-SoI	188	.044	01.11.0		
Mo-So	3035	.227	₽Dz♀♀	188	001	Dzo 9 9	71	.118	Mo-Dal	293	.024	SDzm	10 0	126
Mo-Da	4476	.257	NDzさる	150	.185	Dzođ 2	51	118	Mo-Sol	338	.102	SDzf	120	065
			NDz 3 9	202	.098	Dzo ♀ ♂	72	.141				SDzmf	167	- 057
						_						SMzm	172	025
			PMzđđ	217	.141							SMzf	300	132
			PMzð 9	337	.264							UNILI	500	
			NMzgð	673	.124									
			NMz99	1040	.255									_

Table VI. Observed Correlations of BMI for Biological Relationships in the Virginia 30,000 (Eaves, Unpublished Data)*

* S, spouse; Sib, sibling; Dz, DZ twin; Mz, MZ twin; Fa, father; Mo, mother; So, son; Da, daughter; P, paternal; N, maternal; I, in-laws; m, male; f, female; o, opposite sex; 33, male-male pair; 99, female-female pair; 39, male-female pair; 93, female-male pair.

The "Stealth" Model

Full model with special MZ twin environment		Paramete Full me specia envi	er estimate of odel without I MZ twin ironment	Bes n	t-fitting 10del	Prop varian fittin	ortion of ce of best- g model	Confidence intervals	
A ² m	.28+.16	$A^2_{\rm m}$.19+.20	A _m	.521	A ² _m	.351	.290415	
(asm)	.01	(asm)	.01	$A_{\rm f}$.637	(asm)	(.020)		
D^2_m	.00	D^2_{m}	.27	Em	.474	D^2_m	.307	.211–.395	
E^{2}_{m}	.23	E^2_m	.27	Er	.543	E^{2}_{m}	.274	.247304	
CT^{2}_{m}	.00	CT_{m}	00.	$D_{\mathfrak{m}}$.501	72 _m	.068	.023–.134	
S ² m	01	S_m^2	.01	D _f	.532				
$C_{\rm m}^2$.02	C^{2}_{m}	.00.	$T_{ m m}$	236	A ² f	.394	.350–.437	
T ² m	.03	$T_{\mathbf{m}}$.03	$T_{\rm f}$.292	(asm)	(.022)		
Tmz ²	.24	Tmz_m^2		$P_{\rm m}$	1.094	$D^2{}_{ m f}$.259	.192324	
A ² _T	.26	$A^2_{\rm f}$.28	Pf	.819	$E_{\rm f}^2$.269	.252288	
(asm)	.01	(asm)	.01	I	.159	$T_{\rm f}^2$.078	.033–.128	
D_{f}^{2}	.00	D^2	.32						
E_{f}^{2}	.21	E^{2} T	.27						
CT_{f}^{2}	.00	CT^{2}_{f}	.0 1						
S^{2}_{f}	.03	S^{2}_{f}	.03						
C_{f}^{2}	.10	C_{f}^{2}	.01						
T^2_f	.06	T_{f}^{2}	.06						
Tmz ² f	.31	Tmz ²							

Table V. Statistics, Parameter Estimates, Proportion of Variance, and Confidence Intervals of the Best-Fitting Model for BMI in the Virginia 30,000^o

^a Goodness-of-fit statistics of best-fitting model: observed statistics, 24,230; estimated parameters, 72; constraints, 12; active constraints, 7; -2 times log-likelihood of data, 64,988.057; degrees of freedom, 24,158. A², additive genetic factors; asm, assortment; D^2 , dominance factors; E^2 , unique environmental factors; CT^2 , cultural transmission; S^2 , genotype-environment covariance; C^2 , nonparental shared environment; T^2 , special twin environment; Tmz^2 , special twin environment; f and m subscripts, males and females.