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Behavioral geneticists commonly parameterize a genetic or environmental covariance matrix
as the product of a lower diagonal matrix postmultiplied by its transpose—a technique
commonly referred to as ‘‘fitting a Cholesky.’’ Here, simulations demonstrate that this
procedure is sometimes valid, but at other times: (1) may not produce fit statistics that are

distributed as a v2; or (2) if the distribution of the fit statistic is v2, then the degrees of freedom
(df) are not always the difference between the number of parameters in the general model less
the number of parameters in a constrained model. It is hypothesized that the problem is

related to the fact that the Cholesky parameterization requires that the covariance matrix
formed by the product be either positive definite or singular. Even though a population
covariance matrix may be positive definite, the combination of sampling error and the

derived—as opposed to directly observed—nature of genetic and environmental matrices
allow matrices that are negative (semi) definite. When this occurs, fitting a Cholesky constrains
the numerical area of search and compromises the maximum likelihood theory currently used
in behavioral genetics. Until the reasons for this phenomenon are understood and satisfactory

solutions are developed, those who fit Cholesky matrices face the burden of demonstrating the
validity of their fit statistics and the df for model comparisons. An interim remedy is
proposed—fit an unconstrained model and a Cholesky model, and if the two differ, then

report the difference in fit statistics and parameter estimates. Cholesky problems are a matter
of degree, not of kind. Thus, some Cholesky solutions will differ trivially from the
unconstrained solutions, and the importance of the problems must be assessed by how often

the two lead to different substantive interpretation of the results. If followed, the proposed
interim remedy will develop a body of empirical data to assess the extent to which Cholesky
problems are important substantive issues versus statistical curiosities.

KEY WORDS: Cholesky; developmental genetics; lower diagonal matrix; matrix factorization; model
fitting; quantitative genetics; statistics; twins.

INTRODUCTION

A common numerical method for modeling genetic
and environmental covariance matrices for geneti-
cally informative data is to iterate on the elements of
a lower diagonal matrix and then obtain the desired
covariance matrix by postmultiplying the lower

diagonal matrix by its transpose. This procedure is
often referred to as ‘‘fitting a Cholesky.’’ This note
exposes a potential problem with this approach—
namely, in some cases, likelihood ratio test statistics
may not follow a v2 distribution and the degrees of
freedom may not equal the number of free parame-
ters in a general model less the number of free
parameters in a nested, constrained model.

An Illustration of the Problem

I illustrate the problem with a set of 10,000
simulated twin data sets. (specific details about these
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simulations and other methods used herein are given
in Methods at the end of this paper). Each data set
consisted of 100 pairs of identical and 100 pairs of
fraternal twins using only one phenotype with a
heritability (a2) of 0.50, no common environment
(c2), and unique environmentability (e2) of 0.50. For
each set of twin data, I computed the intraclass
covariance matrix1 and fitted the same model to the
data using two different numerical parameterizations.
The first parameterization iterated directly on a2, c2,
and e, obtaining e2 as e*e. Hence, there are no
boundary constraints except for the one implied by
iteration on e. The second parameterization iterated
on the elements of the Cholesky, which in this case
are simply a, c, and e, and obtained the variance
components as the squares of these estimates.

Table I shows the distribution of the v2 good-
ness-of-fit statistics for the first and second parame-
terizations according to the percentage of simulations
that exceeded the 0.20, 0.10, 0.05, and 0.01 levels of
significance. (Note that the v2 has one degree of
freedom because models were fitted to the intraclass
and not the interclass covariance matrixes.) For the
unconstrained parameterization, the distribution fits
a v2 with 1 df (goodness of fit v2=0.32, df=1,
p=0.57). For the Cholesky parameterization, how-
ever, what should be the general model is rejected
almost twice as often as the unconstrained model.
The ostensible v2=for the Cholesky does not fit a v2

distribution even when the df is a free parameter (best
df=1.46, v2=163.69, df=55, p\10�13Þ2.

The reason is easily seen if we consider for the
moment only estimates of c2 (unconstrained) and c

(constrained Cholesky parameterization). Because
the population value for c2 is 0, the unconstrained
estimate of c2 had a mean of 0 with half of the esti-
mates being lower than 0. Iteration on c, however,
cannot give a negative estimate of c2, so the value of c
becomes so small that it is effectively fixed at a
number very close to 0. Depending upon minimiza-
tion software (and how that software is used, of
course), this fact may or may be brought to the
attention of the user. When these boundary condi-
tions are encountered for the single parameter c, then
likelihood theory maintains that c be treated as a
fixed parameter and one degree of freedom is gained.

The two rightmost columns of Table I illustrate
this principle. Here, the 10,000 Cholesky results are
divided into two groups, those in which one and only
one parameter converged to a bound (arbitrarily de-
fined as an absolute value of the parameter less than
0.001) and those with no boundary condition. When
there is no boundary condition, then the test statistic
fits the distribution of a v2 with 1 df (v2 = 0.26,
df = 1, p = 0.61). When boundary constraints are
met, the test statistic is also v2, but with 2 df
(v2 = 0.91, df = 1, p = 0.34). The fixed parameter
was c in 97.4% of the cases and a in the remaining 2.6%.

The Problem Gets More Complicated

This illustration suggests a simple ad hoc solu-
tion—keep track of the number of parameters with
final values close to 0 and adjust the degrees of
freedom accordingly. Unfortunately, this strategy
appears appropriate only for the analysis of a single
phenotype.

Table I. Percentage of Simulated Twin Data Sets that Exceed the

Critical Value for a p Level: One Phenotype

p value

Unconstrained

Cholesky,

ignoring

boundary

conditions

Cholesky, fixing

parameters to

bounds.

Number of parame-

ters fixed (df):

df=1 df=1 0 (df=1) 1 (df=2)

N=10,000 N=10,000 N=4799 N=5201

0.20 20.4 33.1 20.2 21.6

0.10 10.5 19.4 10.7 10.6

0.05 5.1 10.5 5.1 5.4

0.01 1.1 2.5 1.0 1.0

N equals the number of simulated data sets for a particular

1 I use the intraclass covariance matrix for three reasons. First, the

parameter estimates from fitting an intraclass model (same means

and covariance matrices for twin 1 and twin 2 and a symmetric

cross-twin covariance matrix) to the intraclass matrix are identi-

cal to fitting the same model to raw data. They are not identical

when the interclass matrix is used. Second, it is much easier to

inspect visually the differences between an observed and predicted

covariance matrix using the intraclass matrix—one does not have

to mentally average two estimates of the same statistic as one

must do for the interclass matrix. Third, in interpreting results

and diagnosing models, one does not have to account for the

sampling error due to the assignment of one twin as twin 1 and

the other as twin 2.
2 See the Methods section for a full explanation of testing whether

the empirical distribution of ostensible v2 statistics fits a v2 dis-

tribution. This usually involves 50 or more df for the test. Given

that the distribution is reasonably approximated by a v2, then
testing whether the best fitting distribution fit the nominal df

involves a likelihood ratio test with one df (i.e., comparing the

free parameter of the best fitting df to fixed parameters of the

nominal df))

654 Carey



I performed 30,000 simulations on two pheno-
types using 100 pairs of MZ and 100 pairs of DZ
twins. Again, two different parameterizations of the
same model were fitted to the data. Both iterated on
the Cholesky for the unique environmental matrix.
The first parameterization—i.e., the unconstrained
solution—treated each element of the additive genetic
and common environmental matrices as free, un-
bounded parameters. The second parameterization
iterated on the elements of the Cholesky factors for
the genetic and for the common environmental
covariance matrices.

Figure 1 presents the distribution of the
observed v2 goodness of fit statistics for the uncon-
strained solution (panel a) and the Cholesky solution
(panel b). Fitting models to intraclass matrices here
gives 3 degrees of freedom for the goodness of fit
statistics, so the ‘‘nominal df’’ for both distributions
should be 3. Also shown in the Figure is the best
fitting degrees of freedom to the observed statistics
for each solution.

The unconstrained solution clearly fits the
expected distribution. The v2 goodness of fit for the
observed v2 statistics assuming 3 df is 74.70, df = 79,
p = 0.62. The best fitting degrees of freedom is 3.004,
within rounding error of 3. As a result, the curves for
the nominal and best fitting degrees of freedom
overlap so much that they appear as one curve in the
Figure.

The Cholesky solution clearly does not agree
with the nominal 3 degrees of freedom (v2 = 300.86,
df = 98, p\10�8Þ. Furthermore, the distribution of
the observed statistic is not a v2 even with its best
fitting degrees of freedom of 4.62 (v2=12, 558.17,
df=97, p\10�16Þ.

These results agree with those for a single phe-
notype in showing that the ostensible v2 from a
Cholesky solution is not, in fact, a v2. Will setting a
parameter to a bound and adding a degree of free-
dom rectify the situation? The answer is ‘‘No.’’

Table II gives the results of selecting those cases in
which one and only one parameter hit a boundary
constraint and then subdividing them by whether that
parameter was the lower right-hand element of the
genetic Cholesky or the lower right-hand element of
the common environmental Cholesky. (In the present
simulations, these situations account for over 99.7% of
the cases in which only one parameter hit a bound.)
The table gives the percent of simulations that exceeds
a given p level for the nominal df (3) and for adding a
degree of freedom so that the distribution has 4 df.

Note first that the perturbation away from a v2

distribution depends on which parameter encounters
the boundary condition. Let KA and KC respectively
denote the Choleskys that generate the additive ge-
netic matrix (A) and the common environment matrix
(C). If we compare the two columns with 3 df, 28.2%
of the statistics exceed a p value of 0.20 when KA(2,2)
hits the boundary constraint; but 40.4% of the sta-
tistics exceed that p value when KC(2,2) is bounded.

Furthermore, adding a degree of freedom no
longer rectifies the situation. With KA(2,2) set to its
bound, the resulting distribution of the fit statistic
departs significantly from a v2 with 4 df (v2 = 43.53,
df = 1, p\10�10Þ. Neither does adding a degree of
freedom work when KC(2,2) encounters a bound
(v2 = 612.26, df = 1, p\10�16Þ.

Finally, the distribution of fit statistics appears
to follow a v2—it is just that the degrees of freedom
are no longer integers. The best fitting degrees of

Fig. 1. Distribution of ostensible v2 statistics for an unconstrained solution (Panel a) and a Cholesky solution (Panel b) with theoretical

distributions for the nominal degrees of freedom and for the best fitting degrees of freedom: two phenotypes.
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freedom when KA(2,2) is fixed at its bound is 3.66.
This gives a good fit to the data (v2 = 62.15,
df = 59, p = 0.36). With KC(2,2) at a bound, the
best fitting df is 4.54, although the fit is not as good
(v2 = 120.98, df = 90, p = 0.02).

Simulations using three, four and five pheno-
types gave similar results with the one important
difference noted below. In all cases, the distribution
of the ostensible fit statistic for the Cholesky solution
departed significantly from a v2, even using the best
fitting degrees of freedom. Also, adding a degree of
freedom for each parameter that encountered a
bound in the Cholesky matrices did not result in a v2

distribution. Finally, the best fitting degrees of freedom
when parameters were bounded were fractional.

What was that ‘‘one important difference?’’ It
was this—as more phenotypes were simulated,
Cholesky problems got worse.

A Conjecture about the Problem

Before presenting and discussing further results,
it is important to step back and reflect on the nature
of the problem. I cannot provide a formal analytical
proof of why the Cholesky parameterizations behave
as they do in these simulations. Such a proof requires
analytic equations for the derivatives of the likeli-
hood with respect to the free parameters and would
be very time consuming to develop. Instead I offer a
conjecture.

Texts in matrix algebra demonstrate that any
symmetric matrix, say S, can be factorized as

S ¼ QDQt; ð1Þ

where Q is a lower diagonal (or if one prefers, lower
triangular) matrix with 1s on the diagonal and D is a

diagonal matrix. (This is sometimes referred to Gauss
or Gauss-Jordan factorization). Matrix S may be
negative semi definite (i.e., at least one negative
eigenvalue), singular (i.e., at least one eigenvalue
equal to 0), or positive definite (i.e., all eigenvalues
greater than 0), and this status of S depends on the
elements of D. If D has one or more 0s on its diag-
onal, then S is singular. Otherwise, if D has one or
more negative elements on the diagonal, then S is
negative semi definite. Otherwise (and now all diag-
onal elements of D will be greater than 0), S is
positive definite. If all of the elements of D are posi-
tive, then let W ¼ QD1=2 so that

S ¼WWt: ð2Þ
Matrix W is defined as the Cholesky matrix and
computation of W from an observed S is called
Cholesky factorization.

Note the discrepancy between the way a Cholesky
matrix is defined in matrix algebra and the way in
which it is defined in behavioral genetics. In matrix
algebra, a Cholesky must be nonsingular and the
product of it and its transpose must be a positive
definite matrix. When we in behavioral genetics ‘‘fit a
Cholesky,’’ we really fit a lower diagonal matrix that
it sometimes deliberately set to be singular by fixing a
diagonal element to 0. If we wish to be consistent
with mathematical definitions, we should really speak
of ‘‘lower diagonal matrices’’ instead of Choleskys.
(Interestingly, the initial papers in behavioral genetics
that fitted ‘‘Choleskys’’—e.g., Cantor (1983); Fulker
(1978); Martin et al., (1984)—did not call them
Choleskys.) To avoid confusion, I rewrite Eq. (2) as

S ¼ XXt;

where X is a lower diagonal matrix that may or may
not contain a 0 as a diagonal element. I will now
speak of a lower diagonal or LD matrix instead of a
Cholesky.

The central substantive point is that when we
iterate on the elements of the lower diagonal matrix
X, then matrix S cannot be negative semi definite. It
must be either singular (i.e., at least one diagonal
element of X equals 0) or it must be positive definite
(no diagonal element of X equals 0). I submit that this
is the source of the fundamental problem outlined
above. A variance and a variance-covariance matrix
computed from raw data must be positive definite
(provided, of course, that there is variability to begin
with, more observations than variables, no missing
values, and no variable is a perfect linear combina-
tion of other variables). But the genetic and envi-

Table II. Percentage of simulations exceeding a critical level when

the lower right-hand element of the genetic Cholesky or the com-

mon environmental Cholesky hit a bound: two phenotypes using

only simulations where one and only one parameter hit a bound

p level

Parameter with the boundary constraint

Genetic parameter,

N=2271

Common environ-

ment parameter,

N=14,631

df=3 df=4 df=3 df=4

0.20 28.2 16.5 40.4 25.7

0.10 14.8 8.5 23.6 13.9

0.05 8.2 4.1 13.8 7.5

0.01 1.9 0.7 3.4 1.5

Both nominal df (3) the effect of adding one df are shown.
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ronmental covariance matrices in behavioral genetics
are not computed directly from raw data—they are
derived as mathematical functions of, say, a block in
an observed MZ covariance matrix with one in a DZ
matrix. Just as an estimate of a variance component
in the analysis of variance can be negative, so too can
sampling error give a negative estimate of, say,
common environmental variance. The LD parame-
terization will not allow for the possibility of a neg-
ative variance or, in the multivariate case, a negative
semi definite matrix.

In an unconstrained solution, the likelihood is a
function of two factors—sampling error and model
error. Here, the mathematical space for a numeric
search is over the whole set of real numbers. The
mathematical space in an LD search, however,
appears to be constrained to those combinations of
real numbers that generate positive definite or sin-
gular matrices. In constrained maximum likelihood
estimation, the degrees of freedom are a function of
both the number of free parameters and also the
constraints that are active at the solution. To
interpret the results from an LD solution, one must
know the extent to which constraints are active at
the solution; otherwise, the degrees of freedom are
unknown.

To say the same thing in different terms, the LD
solution may be a conditional likelihood. That is, it
provides a likelihood given that sampling error pro-
duces unconstrained parameter matrices that are
positive definite or singular. When such conditions
are met, then the likelihood is valid. When these
conditions are not met, however, the likelihood will
be perturbed.

If this line of thinking is correct, then there
should be a strong relationship between the eigen-
values of unconstrained matrices and the fit of the
LD solution. When all unconstrained matrices are
positive definite or singular, then the LD parame-
terization should give equivalent results to the
unconstrained model. As unconstrained matrices
become negative semi definite, however, the LD
solution should differ from the unconstrained
solution.

I examined this by computing the eigenvalues of
the additive genetic matrix (A) and the common
environmental matrix (C) from the unconstrained
solution and then examining the properties of the
ostensible v2 for the LD solution as a function of
these eigenvalues. The first property examined was
simply the difference between the ostensible v2 from
the LD and the v2 from the unconstrained solution. I

then fitted a model with one parameter—the degrees
of freedom—to the ostensible v2 from the LD
solution. Finally, I regressed the difference between
the ostensible v2 from the LD and the v2 from the
unconstrained model on the eigenvalues of the
matrices in the unconstrained solution. Tables III
and IV present the results from simulations on,
respectively, two and three phenotypes.

Table III. Mean difference and range of differences in v2 values

between the LD and the unconstrained solutions as a function of

the number of positive eigenvalues in the additive genetic (A) and

common environmental (C) matrices in the unconstrained solution:

two phenotypes

Number

of eigenvalues

>0 in matrix

A C N Mean Range Best df p R2

2 2 1,817 0.00 0.00 3.00 0.69 0.01

2 1 15,451 1.60 21.79 4.56 0.02 0.58

2 0 4,465 3.01 20.50 6.03 0.64 0.74

1 2 2,426 0.79 9.93 3.69 0.34 0.54

1 1 5,817 1.93 17.72 5.00 0.68 0.61

0 2 20 1.24 4.31 3.54 0.91 0.77

N = number of simulations in that category. Best df and p=best

fitting degrees of freedom to the v2 distribution from the LD model

and the p level for this fit. R2 = squared multiple correlation

regressing the difference in v2 on the four eigenvalues from the

unconstrained A and C matrices.

Table IV. Mean difference and range of differences in v2 values
between the LD and the unconstrained solutions as a function of

the number of positive eigenvalues in the additive genetic (A) and

common environmental (C) matrices in the unconstrained solution:

three phenotypes

Number of

eigenvalues>0

in matrix

A C N Mean Range Best df p R2

3 3 135 0.00 0.00 6.38 0.64 0.09

3 2 5324 2.33 16.37 8.38 0.68 0.80

3 1 8410 4.11 30.32 10.13 0.04 0.80

3 0 602 6.03 22.30 12.28 0.50 0.83

2 3 410 0.91 11.38 7.17 0.37 0.85

2 2 6405 2.67 20.16 8.71 0.04 0.80

2 1 3477 4.21 23.63 10.19 0.91 0.81

1 3 51 1.90 6.53 8.00 0.30 0.93

1 2 186 3.03 11.29 8.93 0.35 0.81

N = number of simulations in that category. Best df and p = best

fitting degrees of freedom to the v2 distribution from the LD model

and the p level for this fit. R2 = squared multiple correlation

regressing the difference in v2 on the four eigenvalues from the

unconstrained A and C matrices.
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Note that when all unconstrained parameter
matrices are positive definite, there are no Cholesky
problems—the LD and the unconstrained models
give identical answers. The ostensible v2 values in the
LD solution do indeed follow a v2 distribution with
the correct degrees of freedom—3 in the two pheno-
type simulations and 6 in the case of three pheno-
types. (The best fitting df with three phenotypes, 6.38,
is not significantly different from the distribution
using 6 df—v2 = 1.80, df = 1, p = 0.18). Also, the
eigenvalues of the unconstrained matrices do not
predict the difference in v2 values.

In all other cases, however, there is a significant
difference between the average ostensible v2 for the
LD and the v2 values for the unconstrained solu-
tion, with the former always being greater than the
latter. The difference is also a function of the
number of negative eigenvalues. If we fix the
number of positive eigenvalues for, say, matrix A,
then as the number of negative eigenvalues in C

increases, the LD solution becomes more discrepant
from the unconstrained solution. Similarly, if we fix
the number of positive eigenvalues for matrix C,
then the average ostensible v2 for the LD solution
increases as the number of negative eigenvalues in A

increases.
The range of the differences is, of course, sensi-

tive to the number of simulations that fall into a
category—the more simulations, the greater the
chance of observing a large difference. The numbers,
however, suggest that the difference between the LD
and the unconstrained models is not always trivial
and cannot always be safely ignored.

Note that the fit statistic for the LD in Tables III
and IV often fits a v2 distribution, albeit with frac-
tional degrees of freedom. This suggests that distri-
bution of the unconditional fit statistic for the LD
model (i.e., the fit statistic that is not conditioned on
the number of positive eigenvalues in an uncon-
strained solution) is closely approximated by a mix-
ture of v2 distributions. The situation is most easily
seen by recalling the results on one phenotype. If we
exclude the improbable situation in which both a and
c hit a bound, then the fit statistic will be a mixture of
a v2 distribution with 1 df (neither a nor c is bounded)
and a v2 distribution with 2 df (either a or c is
bounded). Such mixtures of v2 distributions have
been reported elsewhere in genetic epidemiology
(Sham et al., 1996; Terwilliger, 1995) as well as in
other likelihood problems when the solution occurs
on the boundary of the numerical space (Self and
Liang, 1987).

3Note also that when more than one phenotype
is analyzed, the best fitting degrees of freedom are not
consistent with setting a parameter to a bound and
adding a degree of freedom. If this were the case, then
the best fitting solution when there are two positive
eigenvalues in A but one in C should be the same as
when there is one positive eigenvalue in A but two in
C. For both two and three phenotypes, this is defi-
nitely not the case. Similarly, the addition of a degree
of freedom is not constant over the number of phe-
notypes. With two phenotypes, when A is positive
definite and C has only one negative eigenvalue, then
1.56 df need to be added in order to make the dis-
tribution equivalent to a v2. With three phenotypes,
however, a positive definite A and a C with only one
negative eigenvalue requires an addition of 2.38 df to
approximate a v2 distribution.

Of particular interest is the extent to which the
eigenvalues of the unconstrained solution predict the
difference in fit functions between the LD and the
unconstrained solutions. Excluding the case in which
the LD gives a valid likelihood, then over 50% of the
variance in these differences is predictable with two
phenotypes while 80% or more is predictable with
three phenotypes. In all cases, the regression coeffi-
cients were in the direction that the more negative
eigenvalues for a matrix, the greater the difference
between the fit statistics. This suggests that the degree

3 The concept of ‘‘boundary conditions’’ requires comment because

the term is used equivocally. Define a simple boundary constraint

as the deliberate limitation of the subset of real numbers into

which a likelihood solution must fall by specifying a lower and/or

upper real bound for a parameter. Simple boundary constraints

may be invoked by using boundary options in optimizing soft-

ware, by explicit programming in the function to be minimized

(e.g., iterating on c and computing c2 as c * c), or by using explicit

constraints (e.g., specifying that the sum of X1 and X2 must be less

than 1.0). When a constraint is active at the solution (e.g., a

parameter is within e of its stated bound, or c is within e of 0, or

X1 þ X2 is within e of 1.0), then one parameter is considered fixed

and a degree of freedom is gained (C.R. Rao, personal commu-

nication to John Rice). Those cases in which a likelihood ratio

statistic is a mixture of v2 distributions appear to be simple

boundary constraints. Define complex boundary constraints as a

set of mathematical rules that may limit the subset of real num-

bers into which a solution may fall but cannot be explicitly stated

as a series of simple boundary constraints. An example would be

iterating on the elements of a covariance matrix under the con-

straint that the covariance matrix be positive definite. One could

place simple bounds on the diagonals of this matrix but that in

itself will not guarantee that the matrix be positive definite. I have

not been able to uncover treatment of the properties of likelihood

estimates and likelihood ratio test statistics for complex boundary

conditions. I conjecture that Cholesky problems are complex

boundary constraints.
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of ‘‘negative definiteness’’ of a matrix is just as
important as the fact of negative definiteness in
assessing the fit of a LD model.

This observation suggests a reason why adjusted
degrees of freedom for elements in matrix A differed
from those in matrix C—when matrix A had (a)
negative eigenvalues(s), they were not as large as the
negative eigenvalues in C. With two phenotypes,
when A had one negative eigenvalue, the mean of
that negative eigenvalue was )0.04 (range = )0.93
to )8�10�6Þ. For C, however, the average was )0.18
(range = )1.67 to� 3� 10�7Þ: (This should not be
surprising given that matrix A was based on moder-
ate heritabilities while matrix C has a population
value of 0.)

The conjecture offered here, along with the
results of the multiple regressions, also suggest why
parameters in the diagonals of an LD matrix often
converge towards their implied mathematical bounds
of 0. If an unconstrained A or C matrix is negative
(semi) definite, then the LD model will move towards
a solution that most closely approximates a negative
(semi) definite matrix—i.e., a singular matrix, one
that has one or more zeros on the diagonal of the LD
matrix.

To explore this possibility, I calculated the
eigenvalues for the predicted additive genetic covari-
ance matrix and the predicted common environmental
matrix from the LD solution. I arbitrarily defined a
predicted matrix as singular if had an eigenvalue that
was less than 10)10. Table V gives the percent of sin-
gular predicted A matrices in the LD solution as a
function of the number of positive eigenvalues of that

matrix in the unconstrained solution. Table VI gives
the analogous statistics for the C matrix.

The results suggest that there is considerable
merit to this conjecture. Whenever an unconstrained
matrix is negative (semi) definite, the predicted matrix
formed by the product of the LD matrix and its
transpose is almost always singular. On the other
hand, if the unconstrained matrix is positive definite,
then the predicted matrix formed by the product of
the LD matrix and its transpose is always positive
definite.

MORE RESULTS

The most sobering aspect of these results is that
Cholesky problems are not rare. These simulations
(and many others not reported) were based on those
parameter values most often reported in behavioral
genetic research—heritabilities in the moderate range,
genetic correlations that are the major source of
phenotypic correlations, and little common environ-
ment. Yet only 135 of the 25,000 simulations reported
for three phenotypes—that is, only 0.54% of all these
simulations—never encountered a Cholesky problem
(see Table III). And matters got worse with more
phenotypes. With five phenotypes, over 99.9% of the
simulations had a Cholesky problem. Cholesky
problems are probably the norm, not the exception
under this parameter space.

Factors such as sample size and the population
covariance matrix do indeed moderate results, but
not as much as one might think. Over the parameter
space mentioned above, the main effect of increasing
sample size was to stabilize matrix A and let it
become negative (semi) definite less often. It had no

Table V. Percent of matrices formed byKAKt
A that are singular as

a function of the number of positive eigenvalues in the uncon-

strained A matrix

m N Percent singular

Two phenotypes

0 20 100.0

1 2408 99.7

2 1817 0.0

Three phenotypes

0 0

1 51 100.0

2 410 97.3

3 135 0.0

m=number of positive eigenvalues in A, N=number of simula-

tions. Only simulations with a positive definite unconstrained C

matrix are given.

Table VI. Percent of matrices formed by KCKt
C that are singular as

a function of the number of positive eigenvalues in the uncon-

strained C matrix

m N Percent singular

Two phenotypes

0 4465 99.9

1 15451 99.0

2 1817 0.0

Three phenotypes

0 602 100.0

1 8410 99.6

2 5324 97.1

3 135 0.0

m=number of positive eigenvalues in C, N=number of simula-

tions. Only simulations with a positive definite unconstrained A

matrix are given.
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effect on matrix C when its population value was 0.
To illustrate, using 100 pairs for each zygosity and
two phenotypes, only 6 percent of simulations were
free of Cholesky problems. Using the same popula-
tion parameters but increasing sample size to 1000
pairs of each zygosity bettered that number, but only
to 15%.

Cholesky problems are most likely to be
encountered with the common environment matrix.
Why? Empirically, common environment usually
accounts for less variance than either additive genetic
or unique environmental effects. Hence, sampling
error is more likely to result in an unconstrained
variance estimate that is less than 0 in a common
environmental matrix than in a matrix with popula-
tion values much larger than 0. Furthermore, the
more phenotypes in the analysis, the more likely that
a negative variance will be sampled in C. This, I
suspect, is the reason why matters became worse as
more phenotypes were simulated.

One can, of course, simulate data that are rela-
tively immune from Cholesky problems. Just use a
large number of twin pairs and population covariance
matrices with large diagonals but very small off
diagonals. The optimal situation that avoids Cholesky
problems appears be one in which genetics, common
environment, and unique environment contribute
equally to phenotypic variance but there are no
genetic and environmental correlations among
traits. This scenario, however, is not particularly
informative—what is the sense of doing a multivariate
analysis of uncorrelated phenotypes?

Do the Cholesky problems outlined above create
problems for behavioral genetic analysis? For some
types of multivariate problems with some pheno-
types, the answer is definitely ‘‘yes,’’ at least for the

‘‘business as usual’’ approach. Here, one fits an LD
matrix to, say, the common environment covariance
matrix, then fits a second model in which all elements
of that matrix are set to 0, and assumes that the de-
grees of freedom for the likelihood ratio test are
n(n+1)/2 where n is the number of phenotypes. As
the simulations have demonstrated, however, the
distribution—if it is even v2 to begin with—is unlikely
to have the hypothesized degrees of freedom. If there
were five phenotypes, then the ‘‘business as usual’’
approach tabulates 15 free elements in the LD matrix,
giving a test with ostensibly 15 df. If, in fact there
were only 6.7 df because of Cholesky problems, then
we lose power to detect common environmental
effects. Champions of the family environment may
justifiably look askance at field that claims that there
is little common environment when the statistical
techniques used to justify that assertion are not fully
powered. Note that other model fitting criteria that
are a function of the degrees of freedom—e.g., Ak-
aike’s Information Criterion—will also be influenced
by Cholesky problems.

Cholesky problems also affect properties of confi-
dence intervals. This should not be surprising—Cholesky
problems perturb the fit statistic and the confidence
intervals depend on this fit statistic. Here, I present an
example. Table VII presents results of fitting an
unconstrained model and an LD model on a simu-
lated data set for a single phenotype. The MZ vari-
ance and covariance was, respectively, 1.0378 and
0.497 and DZ variance and covariance was 1.0074
and 0.2058 (N=1000 pairs of each zygosity). Note
that the estimate of c2 is negative in the unconstrained
solution while the estimate of c goes to its implied
mathematical bound of 0 in the LD model. A major
property of confidence limits—that they are invariant

Table VII. Effect of Cholesky constraints on 95% confidence intervals

Unconstrained LD solution

Confidence limits Confidence limits

Parameter Estimate Lower Upper Parameter Estimate Lower Upper

a2 0.546 0.395 0.702 a 0.691 0.615 0.731

c2 )0.062 )0.192 0.065 c 0.000 )0.280 0.280

e 0.733 0.703 0.765 e 0.738 0.710 0.768

v2 0.390 v2 1.294

c2=0 c=0

a2 0.478 0.422 0.535 a 0.691 0.650 0.731

e 0.738 0.710 0.768 e 0.738 0.710 0.768

v 2 1.294 v 2 1.294
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over transformations of the parameters (Neale and
Miller, 1997)—is violated when there is a Cholesky
problem. If confidence limits were invariant, then the
square of the lower confidence interval for a in the
LD solution should equal the lower confidence limit
for a2 in the unconstrained solution. But it does not:
0.6152 = 0.378, not 0.395. The same is true of the
upper confidence limit for a in the Cholesky:
0.7312 = 0.534, a considerable difference away from
0.702. It is intriguing that a Cholesky problem with
parameter c should influence the confidence interval
of a different parameter, a.

Note that the invariance property is regained
once the boundary constraint on c is considered
(bottom section of the Table). Here, the square of the
lower interval for a in the Cholesky is now within
rounding error of the lower interval of a2 in the
unconstrained solution (0.652=0.423 versus 0.422).
The same is true of the upper limits (0.7312=0.534
versus 0.535).

In summary, all of these results suggest that
those who fit LD matrices to data face the burden of
demonstrating the validity of the fit statistics and of
the degrees of freedom for testing models. So how
should this be done?

Potential Remedies

One solution that cannot be recommended is to
fix diagonal elements of an LD matrix to 0 and adjust
the degrees of freedom. The constraints imposed by
the Cholesky model are subtle and the degrees of

freedom are not always integers. Perhaps future
research will develop an acceptable variant of this
strategy, but for the present time it should be
avoided.

A second solution is to calculate the eigen-
values from the matrix computed as the product of
the LD matrix and its transpose. That is, if you
iterate on the elements of the LD matrix KA, then
compute A ¼ KAKt

A and take the eigenvalues of A.
(One could also use Eq. (1) to derive the Gauss
factors and examine the diagonal elements of D). If
all eigenvalues are positive, then there is no prob-
lem. If one or more eigenvalues is 0, then matrix is
singular and there may be a significant Cholesky
problem.

There are two difficulties with this solution.
First, with numerical estimation, it is not always
easy to distinguish a singular matrix from one that
is positive definite but happens to have an eigen-
value close to 0. The second difficulty is more seri-
ous—this solution does not inform how much of a
problem is at hand. Recall that the difference be-
tween an LD and an unconstrained solution is not
akin to falling off a cliff. As the unconstrained
matrix departs more and more from positive defi-
niteness, the LD solution becomes more and more
invalid (examine the R2 values from Tables III and
IV). A singular predicted matrix, however, will oc-
cur whenever there is a trivial difference between the
two solutions as well as whenever there is a large,
substantive difference. Hence, the fact of singularity
cannot be used to judge the extent to which likeli-
hood principles are violated. Again, future research
could develop fruitful avenues alone this line, but
for the present singularity should not be used as the
sole criterion for the diagnosis of the importance of
Cholesky problems.

Another potential solution is not to fit an LD
matrix, but to use Eq. (1) and fit the Gauss fac-
tors—i.e., matrices Q and D—in the model. In the
general case, this parameterization will give the same
answer as the unconstrained solution. There are,
however, two problems with this approach, one
practical, the other substantive. The practical issue is
that numerical searches on this parameterization are
not well conditioned, so it often takes a number of
different tries to achieve convergence. The substan-
tive problem occurs when the solution has a negative
element in D. This denotes a negative variance, and
how does one interpret a negative variance? The
problem goes away if one can set that element in
D—and, of course, all elements in the corresponding

Table VIII. Common environment covariance matrix (correlations

above the diagonal) for the unconstrained and lower diagonal

solutions for the five subtests of the National Merit Scholarship

Qualifying Test

English Math

Social

science

Natural

science Vocabulary

Unconstrained solution

English 8.94 0.85 0.83 0.72 0.86

Math 6.32 6.20 1.00 0.91 0.90

Social science 6.40 6.41 6.59 1.04 1.02

Natural science 7.48 7.88 9.29 12.19 0.78

Vocabulary 8.42 7.31 8.54 8.83 10.60

Lower diagonal ssolution

English 8.96 0.85 0.81 0.72 0.86

Math 6.34 6.22 0.95 0.91 0.90

Social science 6.64 6.50 7.53 0.93 0.95

Natural science 7.50 7.87 8.91 12.09 0.78

Vocabulary 8.40 7.31 8.50 8.87 10.61
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column of Q—to 0 without a worsening in fit. But
this may not always be the case4.

A more productive approach is to eschew fitting
LD matrices altogether (at least for the moment).
Instead, use the unconstrained solution. Then try to
extract the Cholesky factors5 (or Gauss factors or
eigenvalues) from the final parameter matrices. If
Cholesky factorization succeeds, then one has the
same solution that one would have observed by fit-
ting LD matrices in the first place. If the factorization
fails, then at least one has computed the baseline
likelihood (or v2) needed to compare the fit statistic
from an LD solution and has also identified the
troublesome matrix (or matrices). It is also possible
to reduce a general model using only the uncon-
strained solution. For example one could test whether
the common environmental covariance matrix equals
0 using unconstrained parameters. Factorization can
then be performed after model reduction.

Whenever Cholesky factorization fails but one
wants to fit an LD model, then it is essential to make
two comparisons. The first is the comparison of the
fit statistic of the unconstrained solution with the fit
statistic for the LD solution. In some cases, this dif-
ference will be trivial enough to ignore. Future re-
search, however, is needed to provide satisfactory
criteria to distinguish a ‘‘trivial’’ from a ‘‘substantive’’
difference.

The second comparison is between the uncon-
strained parameter matrix and the predicted value of
that matrix computed as the product of an LD matrix
and its transpose. One could arrive at a relatively
large difference between the fit statistics of the
unconstrained and the LD solutions simply because
of large sample size. (Or, for that matter, a small
difference between fit statistics because of modest
sample size.). Only a comparison between the pre-
dicted parameter matrices can inform one of whether
a comparison of fit statistics is accompanied by a
substantive difference about how genes and envi-
ronment influence traits.

I illustrate this remedy with an analysis of a
public data set—the National Merit Twins (Loehlin

and Nichols, 1976). For the subtests of the National
Merit Scholarship Qualifying Test, the v2 goodness of
fit for the unconstrained and lower diagonal models
were, respectively, 19.33 and 21.26 (df = 15). Here,
the difference is only 1.93 v2 units, and it came about
because three correlations in the common environ-
ment matrix exceeded 1.0. The additive genetic
covariance matrix could not be set to 0 in either the
unconstrained (v2 = 167.76, df = 15, p <0.0001) or
the lower diagonal solution (v2 = 165.83, df = 15,
p<0.0001). Neither could the common environment
matrix be set to 0 in the unconstrained (v2 = 61.28,
df = 15, p<0.0001) or the lower diagonal solution
(v2 = 59.35, df = 15, p<0.0001). Finally, there is
no appreciable difference between the common en-
vironment covariance matrices for the two solutions
(see Table VIII). Although there is a Cholesky
problem here, it can safely be ignored because there is
no substantive difference between the unconstrained
and the lower diagonal solutions.

The situation is different if we consider the five
extraversion scales of the California Psychological
Inventory (Gough, 1964). The v2 goodness of fit
statistics for the unconstrained and the lower diago-
nal models are, respectively 23.95 and 28.74. Both
models reject the hypothesis that the additive genetic
covariance matrix can be set to 0 (Unconstrained
model: v2 = 69.44, df = 15, p<0.0001; lower diag-
onal model: v2 = 64.65 df = 15, p<0.0001). On the
other hand, the two models differ in hypothesis
testing about the common environmental matrix. The
unconstrained model rejects the hypothesis that this
matrix is 0 (v2 = 27.61, df = 15, p = 0.024); the
lower diagonal model fails to reject this hypothesis
(v2 = 22.82, df = 15, p = 0.088).

Furthermore, there is a large substantive differ-
ence in interpretation of the common environmental
matrix between the two solutions (see Table IX). This
matrix is not positive definite because three diagonal
elements are less than 0, making common environ-
mental correlations incomputable. This pattern sug-
gests nonadditive genetic variance. The lower
diagonal solution on the other hand gives moderate
to large common environmental correlations (with
one exception). Which of the two situations is cor-
rect? Other data suggest nonadditive genetic variance
for extraversion (Eaves et al., 1989; see also Table 2.1
of Loehlin, 1992). Furthermore, the common envi-
ronmental effect for the Capacity for Status (CS)
scale has been independently replicated in two other
twin samples (Carey et al., 1978). Hence, the uncon-
strained solution is more consistent with the literature

4 The observation of a negative variance should never be dismissed

out of hand. If the negative variance cannot be set to 0, then it

suggests that the model itself is at fault. For example, significant

negative variance in C often implies nonadditive genetic variance.
5 Here the distinction between the matrix-algebra and the behav-

ioral-genetic definition of the Cholesky matrix becomes impor-

tant. Software for computing Cholesky factors often applies only

to positive definite matrices and will give an error if the matrix is

not positive definite.
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than the lower diagonal solution. In this example, the
Cholesky problem can lead to substantive differences
in inference. If a lower diagonal solution is desired,
the authors should also report the unconstrained
solution and allow readers to judge for themselves
which solution to interpret.

These potential remedies must be tempered by
the fact that there is no analytical proof about the
nature of Cholesky problems. The suggested solu-
tions are based on a conjecture about the source of
the problem and that conjecture itself is not trouble
free. Remember that the likelihood function involves
the term (A+C) or, for DZ twins, (0.5*A+C). Why
does a Cholesky problem for the LD parameteriza-
tion that computes A seem to influence only matrix A

and one for C only matrix C? Could not Cholesky
issues jointly affect the sum of A and C? Clearly work
remains to be done on this issue.

If the conjecture offered herein has some valid-
ity, then it portends problems that extend well
beyond the Cholesky. Specifically, any mathematical
model with either explicit or implicit constraints on
the maximum likelihood solution may be compro-
mised whenever the implications of those constraints
are not recognized. For example, one could iterate on
a matrix of standard deviations (S), the off-diagonal
elements of a correlation matrix (R), and compute the
covariance matrix as SRS. The resulting covariance
matrix may be negative definite, but it will never be
negative definite because a diagonal element is less
than 0. The present conjecture predicts that this

parameterization will create problems whenever
sampling error results in a negative variance but not
when the covariance matrix is negative definite for
other reasons (e.g., a genetic correlation greater than
1.0). The extent to which such allied issues present a
practical problem in behavioral genetic analysis is
another fertile area for future research.

One final point needs forceful emphasis—the
Cholesky problems outlined above may turn out to
be more of a statistical curiosity than an impediment
to empirical research. The only way to discover this is
to amass an empirical database that compares the LD
parameterization to an unconstrained model and
then views the extent to which the two models lead to
a substantive difference in the interpretation of
results. Because Cholesky problems are a matter of
degree—not of kind—we will definitely find that
many discrepancies are inconsequential. It is the fre-
quency of the consequential discrepancies that must
be empirically determined.

METHODS

Software for the simulations was developed by
the author as a series of programs and subroutines
written in Fortran 90 and 95 that used algorithms
from the NAG (Numerical Algorithms Group, http://
www.nag.com), LAPACK, and BLAS libraries for
random number generation, function minimization,
and certain matrix operations. In each simulated data
set, genetic values were generated for a twin pair
based on a simple additive model with a genetic
correlation of 1.0 for MZ twins and 0.5 for DZ twins.
Here, pseudorandom numbers were generated from a
multivariate normal distribution with a mean of 0
and a pre-specified genetic covariance matrix (and, of
course, the relevant genetic correlation for the type of
twin pair) giving vectors g1 for twin 1 and g2. Two
uncorrelated vectors of unique environmental values,
e1 and e2, were separately generated from a multi-
variate normal distribution with means of 0 and a
pre-specified unique environmental covariance
matrix. Phenotypes for a twin pair were then com-
puted as the sum of the relevant genetic and unique
environmental vectors. (In some simulations where
the common environmental matrix was not 0,
then vector c was generated from the common
environmental covariance matrix. The phenotype for
a member of a twin pair was then calculated as
gi+c+ei, i = 1, 2).

Intraclass covariance matrices were calculated
for MZ and for DZ twins based on these phenotypic

Table IX. Common environment covariance matrix (correlations

above the diagonal) for the unconstrained and lower diagonal

solutions for the extraversion scales of the California Psychological

Inventory

DO CS SO SP SA

Unconstrained solution

DO )0.31
CS 3.22 4.88 0.48

SO 0.01 1.10 )0.07
SP 0.51 1.78 )3.04 )2.65
SA 0.65 0.95 )0.40 )0.66 0.80

Lower diagonal solution

DO 2.59 0.94 0.62 0.80 0.74

CS 3.43 5.09 0.52 0.86 0.49

SO 1.49 1.75 2.20 .05 0.40

SP 1.82 2.75 0.10 2.01 0.51

SA 1.35 1.25 0.68 0.82 1.30

DO=dominance; CS=capacity for status; SO=socialization;

SP=social presence; SA=self acceptance.
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vectors by double entry of the twin pair in reversed
order. The function minimized was

�2LogðLÞ ¼
Xdz

i¼mz

NiðlogRi� logSi

þ traceðR�1i SiÞ � 2pÞ;

whereNi is the number of twin pairs for a zygosity, Ri

is the predicted and Si, the observed covariance ma-
trix for a zygosity, and p is the number of phenotypes.

The predicted phenotypic covariance matrix
block was the sum of matrices A (additive
genetic covariance matrix), C (common environmen-
tal covariance matrix) and E (unique environment
covariance matrix), and the cross-twin covariance was
calculated as cA+C where c qualed 1.0 for MZ and
0.5 for DZ twins. In the unconstrained model, ele-
ments of A and C were all free parameters that were
estimated without bounds. In the Cholesky model,
elements of Cholesky factors KA andK were iterated
on so that A ¼ KAKt

A and C ¼ KKt
C. In both the

unconstrained and Cholesky models, elements the
lower diagonal matrix KE were iterated on so that
E ¼ KEKt

E. (Given uncorrelated error variance, matrix
E must be positive definite and the current parameteri-
zation greatly improved the numerical search. No ele-
ment in matrix KE ever entered into a boundary
constraint or Cholesky problem in the simulations
reported here. This precept, however, should not be
generalized to all models, especially those that have
information on measurement error.)

Two sets of starting values were used, one based
on the observed covariance matrices and the other
from the genetic and unique environmental covari-
ance matrices used to generate the simulated data.
Minimization of the function was done using the
NAG algorithm e04ucf. Two criteria were used to
assess convergence. The first was the NAG return
value indicating successful convergence along with a
test that the convergence was not obtained because
the parameters entered a space where a predicted twin
matrix was not positive definite. If, despite using
different sets of starting values, the NAG return did
not indicate successful convergence but instead
suggested numerical problems in the accuracy of the
calculated function value or of elements in the
Hessian matrix, then first derivatives were calculated.
If the norm of the gradient (i.e., the vector of first
derivatives) was less than 10)6 and the absolute value
of no derivative exceeded 0.0001, then convergence
was assumed. Lack of convergence was not a

problem. It never occurred using one phenotype and
occurred 0.05% of the time with two phenotypes.

The parameters used for a single phenotype were
given in the text. The genetic covariance matrix for
the two-phenotype simulations was

0:52 0:48
0:48 0:52

� �

and the unique environmental covariance matrix

0:5125 0:39
0:39 0:5125

� �
:

Many other covariance matrices were also used, but I
chose to present these because they were the ones
used to develop and test the program and to perform
the initial simulations.

For three, four and five phenotypes, heritabili-
ties were set to 0.50, genetic correlations to 0.60, and
unique environmental correlations to 0.20. A range
of other values were also used—heritabilities ranging
from 0.30 to 0.70, modest amounts of common
environment, smaller and larger genetic correla-
tions—in simulations that were not reported except
in general terms.

For a single phenotype, 10,000 replicated were
generated. I initially used 10,000 replicates for two
phenotypes, but they provided too few cases of the
rare combinations of parameters that encountered
certain forms of Cholesky problems to permit fur-
ther exploration. Hence, I used 30,000 replicates.
For three, four, and five phenotypes, the program
was altered so that the first 25,000 simulations that
converged were accepted.

I also varied sample size in the simulations,
trying 100, 500, 1000, and 5000 pairs of each
zygosity. Sample size did indeed influence results,
but only in the general terms described in the text.
I presented the results on 100 pairs because they
gave a sufficient number of Cholesky problems with
the additive genetic matrix to compare to those
Cholesky problems with the common environmental
matrix.

To compute the distribution of the ostensible v2

statistic, I grouped the observed fit statistics into cells
with increments of 0.02 between adjacent cells. That
is, the first cell contained the number of simulations
with an ostensible v2 between 0 and 0.02, the next cell
contained the number of simulations with an osten-
sible v2 between 0.02 and 0.04, and so on. If a cell
contained fewer than 5 observations, it was merged
with (an) adjacent cell(s) until all cells had at least 5
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observations. The goodness of fit to a v2 distribution
was calculated as

Xk

i¼1

ðOi � EiÞ2

Ei
;

where k = the number of cells, Oi = the observed
number of simulations in the ith cell, and Ei = the
expected number of simulations in the ith cell. Ei was
derived from the distribution function for v2 with k
degrees of freedom where k was either a free
parameter or a parameter fixed to the nominal df,
depending on the problem at hand. The integral for
Ei was calculated from the cell’s lower real limit to its
upper real limit. The degrees of freedom for this
goodness of fit was k)1.

To compute the fit for a fixed, nominal degrees
of freedom relative to a freely estimated degrees of
freedom, parameter k was fixed at the nominal value
and the difference in function values for the above
equation (i.e., k fixed versus k free) was computed.
This was treated as v2 with one df.

For analysis of the National Merit Twin sample,
I first removed mean differences between male and
female twins, treating each member of a twin pair as a
separate observation. Models were then fitted to MZ
and DZ intraclass covariance matrices.
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