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SuMMmARY
The analysis of covariance structures (Joreskog, 1973) is adapted to the simul-
taneous maximum likelihood estimation of genetical and environmental
factor loadings and specific variances. The goodness of fit is tested by chi
square and standard errors of parameter estimates can be obtained.

Any linear model used in univariate genetical analyses can be extended
to the multivariate case. Most biological hypotheses about the relationships
between variables can be specified by a variety of factor models. Individual
parameters can be given fixed values or set to zero and hypotheses concerning
the congruence of genetical and environmental correlations can be tested.

The method is illustrated with published twin data on cognitive abilities.

1. INTRODUCTION

THE techniques of factor analysis have been used extensively in the
behavioural sciences to simplify the representation of the relationships
between multiple variables. Geneticists, rightly, are sceptical about the
use of such methods in genetical research. There are several reasons for
this. Firstly, factor analysis has generally been confined to the analysis of
phenotypic variation and the interpretation in simple genetical or environ-
mental terms of factors defined in this way is not legitimate. Secondly,
factor analysis has usually, though not without exception, been an exploratory
device. Consequently, factor-analytic studies have often consisted of a
post-hoc examination of tables of factor loadings and studies designed in
advance to test particular hypotheses about the structure of covariation
have been atypical. This approach does not commend itself to geneticists
for whom predictive statements, not rationalisations, are the ideal of pro-
gressive research. Thirdly, in spite of the general development of the
statistical and computational methods appropriate to factor analysis towards
efficient estimation and tests of significance, most factor studies remain
content with techniques which yield estimates of unknown properties and
even the crudest statistical tests are seldom attempted.

Any problems of analysing phenotypic covariation apply, a fortiori, to
attempts to seek a factorial representation of genetical and environmental
covariation separately. The idea that genetical and environmental com-
ponents of covariation might be separated by a technique analogous to
factor analysis was formulated long ago in the context of behavioural
genetics (e.g. Loehlin and Vandenberg, 1968) but there have been few
significant advances in the practical problem of providing a general approach
to estimation and hypothesis testing in this context.

The main difficulty is that the experimental designs necessary for
resolving the different sources of gene action and environmental influence
are not appropriate for factor analysis because the information required
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to estimate the components of a genotype-environmental model usually
come from more than one type of family grouping, e.g. identical and fraternal
twins. Although there have been many suggestions for approximations,
e.g. using components estimated from variation within pairs of identical
and fraternal twins, such approaches suffer from several important de-
ficiencies. Foremost among these is the fact that such estimates may well
be biased by effects for the existence of which no statistical test is conducted.
Furthermore, such estimates are inefficient because they ignore information
contained, for example, in the variation between families. At best, most
existing methods throw away data and lead to estimates which are un-
necessarily imprecise. At worst, such methods are actually misleading
because they do not provide any test of the assumptions which are made
in deriving the estimates.

Although several authors (e.g. Jinks and Fulker, 1970; Eaves, 1975;
Eaves and Eysenck, 1975) have stressed the inadequacy of the ad hoc
approach characteristic of behavioural genetics in the univariate case, such
remains the approach of most behavioural geneticists to their data. Unfor-
tunately, all the problems of inefficient and misleading univariate methods
are exacerbated by their importation into the domain of multivariate
genetical analysis because crude methods of genetical analysis have been
combined with no less crude methods of factor analysis. Eaves and Gale
(1974) attempted to redress the balance somewhat by focusing the attention
of a multivariate genetical analysis on the genotype-environmental model
which was appropriate to the data before attempting to explain the genetic
covariation in factorial terms. They suggested analysing the data in two
stages; the first to determine the genetical and environmental model
appropriate to the multivariate data without reference to the factor structure
and the second attempting to test a simple factor model for the genetical
covariation.

Their approach was. based on weighted least squares, and therefore,
allowed various tests of hypotheses (including a test of goodness of fit) to
be conducted. However, their approach shared a common failing with
much of the previous work since the attempt at factor analysis was confined
to components of variance and covariance which need not have formed a
positive definite covariance matrix. It seems likely, therefore, that this
approach would not always yield satisfactory parameter estimates. Secondly,
as with every other approach, the method involved obtaining a genetical
covariance matrix first and then attempting factorisation. In our view the
structure of the trait covariation should be no less a matter of advance specifi-
cation than the basic formulation of the biometrical-genetical model. Thus,
the psychological constructs implicit in the choice of variables should be tested
at the same time as the causal model being examined in the particular
constellation of relatives chosen to be included in the study. We thus
need an approach which allows us to formulate both our biometrical-
genetical model and our model for the structure of the trait covariation in
advance of the analysis, to provide parameter estimates which make the
best use of the available data and, wherever possible, facilitate those tests
of significance which form the basis of further research.

Generally, geneticists are familiar with the methods of model-fitting but
less familiar with the principles of factor analysis. It will help the develop-
ment of our general model if we outline some of these here, for the classical
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case of the analysis of phenotypic variation and covariation of » correlated
variables. Our initial data summary is simply the » x » symmetric, positive
definite covariance matrix S. Factor analysis seeks to represent the variation
in each variable in terms of a contribution which is specific to that variable
(the “ specific variance *’) and contributions from f'< v sources (the “ common
factors ”’) which contribute to variation in more than one variable at the
same time. The contribution of each common factor to a particular
variable may be assessed from the factor loading which can be standardised
to represent the correlation between the variable in question and the
hypothesised factor. In a behavioural context the scales of measurement
are often arbitrary so psychologists usually prefer to work with correlation
matrices rather than covariance matrices. We shall consider only the
analysis of covariance matrices, however, because no appropriate scaling
of the genetical and environmental components can be suggested in advance
of the analysis of the causes of variation. The processes of scaling and
estimation are interdependent.

The factors may be constrained to be uncorrelated (orthogonal factors)
or a solution may be sought in which the factors are themselves assumed
to be correlated (“ oblique * factors). For a covariance matrix S, we may
represent the covariance matrix predicted in terms of the factor model
thus:

L =ADA'+P?

We are using, as far as possible, the notation of Jéreskog (1973) whose
contributions to factor analysis will form a major component in the formula-
tion of our approach. A is a v X f matrix of factor loadings. The square
J>xf matrix @ contains the correlations between the hypothesised factors
and Y2 is a diagnoal matrix containing the » specific variances.

Formulated in this way the factor model is indeterminate. An infinite
number of solutions for A and ® may be found which give the same X.
Constraints have to be introduced to ensure a unique solution. Normally
these constraints are arbitrary, stemming from mathematical necessity
rather than from any psychological considerations about the anticipated
form of the factors. Most approaches begin by insisting that the factors be
orthogonal (i.e. that ® = I). This is insufficient to ensure a unique solution
so further constraints are required. The classical approach to maximum-
likelihood factor analysis requires that the loadings satisfy the constraints
that the matrix A"®-2A be diagonal. Because these and other constraints
imposed in obtaining a suitable definition of the factors are arbitrary, factor
analysts have usually attempted to improve the interpretation of factors

by ““rotation ”. This involves transforming the loadings according to a
criterion which might be a better reflection of the investigator’s expectations
for the outcome of his study. Thurstone suggested (e.g. 1945) that variables
might fall into groups having high loadings on relatively few factors and
small or zero loadings on the rest. This was the notion of *‘ simple structure .
Several numerical criteria have been suggested which might be used as a
basis for rotation to simple structure. In the course of rotation an investi-
gator may choose to retain the criterion of orthogonality, or he may prefer
to allow the factors to become oblique if the mterpretatlon is clarified by
doing so. Although significance tests may have been used in determmmg
the number of common factors and specifics (and even this is still the
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exception rather than the rule in practical applications) the choice of final
rotated solution has rarely rested upon any statistical test of the model.
In a psychological context Jéreskog (1973) has indicated that the investi-
gator who is bold enough to commit himself in advance to a precise model
for the covariance structure (specifying, for example, which loadings are
expected to take zero values) is in a position to proceed directly to the
maximum-likelihood solution providing he is able to specify sufficient
constraints on the parameters to ensure a determinate solution. Indeed,
such hypotheses are much stronger than those which merely involve a
guess about the likely number of common factors. In addition, it is possible
to construct a statistical test of the worthwhileness of relaxing the constraint
of orthogonality upon a set of loadings.

The work of Joreskog has been developed in many directions, for example
to the comparison of factor structure in several populations, but to our
knowledge no biometrical-genetical application of the approach has yet
been devised. This paper is intended to show how the method can be
adapted to the type of problem with which geneticists are often concerned.
‘We hope that this will form the basis of a definitive method for approaching
multivariate problems in biometrical genetics. As far as we can see, with
a little ingenuity, virtually any model which geneticists might formulate
for the relationships between variables could be tested using the approach
we outline. Thus, although our own primary interest is in behavioural
genetics, we feel that the approach may be worth considering by anyone
concerned with the genetical analysis of covariation.

Although we have chosen to illustrate the method with twin data
relating to a small set of human abilities we should not be misled into
believing that the method is specific to experimental designs involving only
twins or to variables for which a single common factor constitutes the
simplest explanation. The method is general. It will be most valuable
when data are available for many kinds of family grouping and when the
variables studied are carefully chosen for biological or psychological reasons.

Our treatment may be outlined as follows:

i. The general form, following Jéreskog (1973) of the covariance

structure of a single population.

ii. The adaptation of this model for the analysis of genotypic and environ-
mental covariance.

iii. The numerical and statistical procedure for estimating the para-
meters and for testing the model.

iv. The method for obtaining the covariances of the estimates.

v. The exposition of our treatment on published twin data relating to
human abilities.

Our aim is to provide an adequate method within which all the factors
of biological interest can be assessed: the components of gene action; .the
influence of the mating system; the sources of environmental variation and
genotype-environmental covariance. All these aspects of individual varia-
tion may come within the scope of a multivariate analysis given that the
components of a particular model are estimable with the data available.
The approach allows us to estimate such effects by methods which are
statistically efficient and enables us to decide which of them can be regarded
as beyond resolution with a given study.
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2. THE GENERAL MODEL

Following Joreskog (1973) we consider a single observed covariance
matrix, S, (v xv) of v variables and having N d.f. The expected covariance
matrix £ (2x0), is a function of various parameter matrices and has the
form:

I =B(A®A’ +¥%)B’'+ 03
For our purpose, A (vxf) is a matrix of factor loadings of the v variables
on f factors. ® (fxf) is the (positive definite) matrix of correlations
between the factors. W2 (v x ) and 82 (v X v) arediagonal matrices containing
the specific variances.

The matrix B allows the factors to be scaled and combined in a variety
of ways. We shall discuss its application in our context shortly. Joreskog
has illustrated the application of this model to a variety of problems. In
our case however, some extension is needed because the data we shall be
analysing will typically consist not just of one covariance matrix, but
several. These will be the covariance matrices obtained from the analysis
of many different groups of relatives. The classical twin study, for example,
will yield covariance matrices between and within pairs for identical and
non-identical twins, making four in all.

In the univariate case a genetical analysis attempts to partition the
phenotypic variation into contributions from several sources. Usually, the
contributions are written in the form of a linear model in which the ith
observed variance (or mean square) from a family study is predicted thus:

P

2
o, = CiiX i
j;l 7

¢y is the coefficient of the jth parameter of the genotype-environmental
model (the jth “source” x,) in the expectation of 67. Most of the co-
efficients can be obtained from genetical theory.

For the multivariate case in which p sources contribute to the variance
and covariance of v variables we have, generally,

P
Thus corresponding to each source of variation in the univariate case (e.g.
cultural, additive genetical, non-additive genetical etc.) there are cor-
responding parameter matrices B;, A;, ®,;, ¥; and @, in the multivariate
case. In our application B; will be used to permit factor loadings con-
tributing to one source (e.g. genetical covariation) to be simple scalar
functions of those arising due, for example, to environmental differences.
We are thus able to test hypotheses about the similarity of genetical and
environmental factors in this approach. For this reason, and because we
will usually have no reason to scale genetical and environmental specifics
relative to one another, we shall usually put ¥} = 0 and denote the various

specific sources of variation by ©7.

3. A SPECIFIC FORMULATION OF A MODEL FOR TWIN DATA

As a simple example we may consider how we might formulate a model
for the covariance structure of data on identical and fraternal twins on the
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assumptions that gene action is additive, mating is random and that members
of the same family are not made more alike by shared environmental
experiences. We stress that this is only an example, albeit of a model
which appears to be appropriate for individual differences for certain
dimensions of human personality (Eaves and Eysenck, 1975, 1976, 1977).
Ideally we would like more extensive data on other kinds of family, including
fostered individuals and further ancestral and collateral relationships. - Such
studies might expose additional sources of variation which are not subjected
to very powerful scrutiny in the usual twin study. Eaves and Eysenck (e.g.
1975) have discussed the assumptions in more detail and considered the
univariate consequences of their failure.

For a single variable we may write our expectation for the total pheno-
typic variance in terms of our hypothesised model thus:

0"2, = '}DR+E1

Mather and Jinks (1971) define Dg in terms of the effects and frequencies
of the alleles at many loci. It represents the additive portion of the genetical
variance. The contribution of environmental differences specific' to
individuals and not shared by members of the same family is denoted by
E,. This, we emphasise, is the simplest possible model for the joint action
of genetical and environmental influences. The model can be complicated
in a variety of ways to include, for example, the contribution of non-additive
genetical effects such as dominance, assortative mating, shared environ-
mental effects (E,;), genotype-environmental interaction and genotype-
environmental covariance (see e.g. Jinks and Fulker, 1970; Eaves, 1975;
1976a, b; Eaves et al. 1977). However, before we attempt explanations in
terms of more intricate effects we must satisfy ourselves by the appropriate
scaling tests that a simpler model for individual differences is unacceptable.

This simple model can be generalised to the multivariate case. We
may write for the phenotypic covariance matrix, given the above assump-
tions about gene action, mating system, and environmental causes:

I, = HAA'+D?)+HH' +E?

We use A to represent the loadings of the variables on the additive genetical
factors and H to represent the loadings of the same variables on the environ-
mental factors. D2 and E? respectively are used for the contributions of
genetical and environmental influences specific to the particular variables.
We may define the genotypic covariance matrix (given our assumptions
of additivity and random mating) as $(AA’+D?%). Similarly, the environ-
mental covariance matrix is HH'+E2 Thus, provided we can estimate
A, H, D and E, we are able to obtain genetic correlations and a variety
of other summary statistics. These will be illustrated later.

If we only have the phenotypic covariance matrix there is no possibility
of any analysis into genetical and environmental factors. Such analysis
requires data on more than one kind of family grouping. In the case of
identical and fraternal twins the data may be summarised in terms of four
matrices. For each of the two different groups of twins we have two distinct
matrices of mean products, between and within pairs, which can easily be
obtained from a multivariate analysis of variance of the twin pairs. The
expected contributions of the genetical and environmental factors to the
different matrices can be obtained from genetical theory and are given
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below in the univariate case of the four mean squares from a classical twin
study for Dpg, E, and also E,, the between families environmental component
which we are not considering in the present simple model:

D E, E

MSyzs 1 1 2
MSyzw 0 1 0
MSpzp 3 1 2
MSpzw } 1 0

The fact that the contributions of the different sources are not the same for
all the raw matrices provides the basis for estimation of the separate genetical
and environmental factors.

For the mean squares and mean products derived from pairs of twins
we have, by analogy with the univariate case for our simplest model with
only two sources of variation (see ¢.g. Eaves and Eysenck, 1977)

Tiuz = AA'+D?*+HH' +E?
Twuz = HH' +E?
oz = #AA’+D?)+HH +E?
Zwpz = }(AA'+D?)+HH' +E?

The matrices Zpyz, Zwyz, Lppzs Zwpz represent the mean products
between (B) and within (W) pairs of monozygotic (MZ) and dizygotic
(DR) twins respectively. Obviously the model can be easily extended to
include the statistics derived from other family groupings, or to incorporate
further subtleties of genetic and environmental action and interaction if
the data should warrant such complications.

We may now relate the terms of our model for twin data to the general
model above. We have four matrices (m = 4) and our model involves
two sources of variation in the univariate case ( = 2). We may now put

A = A; the matrix of additive genetical loadings

A; = H;  the matrix of within family environmental loadings

@®? =D?; the diagonal matrix of specific additive genetical variances

@} =E?; the diagonal matrix of specific within family environmental
variances.

We shall set ¥Z and W2 to zero. Indeed, if we have sufficient reason
(either because of our advance expectations, or because certain parameters
have been shown to be non-significant) we may set certain of the loadings
to zero at this stage. If we wish, we can introduce matrices of factor correla-
tions, ®; and @, to denote the correlations of genetical and environmental
correlations. These may be fixed to be identity matrices for the orthogonal
solution, or the off-diagonal elements may be fixed to specify a desired
degree of obliquity, or allowed to vary (within the constraints that the ®’s
should be positive definite) to obtain the oblique solution which yields the
best fit. The advantages of fixing certain loadings in advance for the
multiple factor solution are that we can test directly particular hypotheses



86 N.G. MARTIN AND L. J. EAVES

about the factor structure. Our coefficients (¢,;) are the coefficients of the
genetical and environmental factors in the expectations of the four matrices.
Thus, cy; is the coefficient of (AA*'+D?) in the expectation of Zppz for
example, (i.e. §) and ¢y, is the coefficient of (HH'+E?) in the expectation
of Zparz. It is quite likely that we shall want to test the hypothesis that
the genetical loadings (for example) are simply scaled versions of the environ-
mental loadings. This would imply that the genetical and environmental
structures are identical, apart from specific factors, and that genetical and
environmental factors are affecting the same aspects of the organism in a
consistent manner. Thus, to incorporate such a constraint in our model
we simply insist that A = 6H by defining A, = B, A; where B; = bl and
writing B, = I in the éxpectations above.

4. ESTIMATING THE PARAMETERS AND TESTING THE MODEL

In Joreskog’s treatment the maximum likelihood estimates of the para-
meters of the model are obtained by maximising the log-likelihood numeric-
ally, which is given by

log L = —4N[log | ¥ |+tr (SE~1)]
The constant term is omitted. Maximising log L is equivalent to minimising

F =3{log | E |+tr (SE~1)]

In our problem, given that the observations are multivariate normal, we
may write the log-likelihood of obtaining the m observed independent
mean products matrices (S;) as

logL=—3 3 N[log|E,|+tr (S "]

(once again, omitting the constant term).
We actually minimise —log L, or

F=4% ,i, Nilog | & | +tr (SZiY)]

For a given model we require the parameter estimates which minimise F.
There are many ways of doing this, some of which have been implemented
by Jéreskog for a variety of different applications of his model. We chose,
however, to develop our own program for genetical applications using sub-
routines written by the Numerical Algorithms Group (1974). From their
many routines for minimisation we chose EO4HATF for constrained minimisa-
tion as the basis of our numerical method, in conjunction with several
accurate routines written for the matrix operations necessary for function
evaluation etc. EO4HAF has the advantage of allowing certain flexibility
in the choice of method for minimisation in that the user can specify whether
first or second derivatives need be evaluated and whether this should be
done numerically by difference or by substitution in coded formulae. In
view of the complexity of the functions, in most cases we chose to base
the minimisation on the Powell 64 method which did not require any
differentiation but relied solely on evaluation of the functions themselves
for a variety of parameter values. We found that this method gave satis-
factory results for our example problem and for a number of similar problems
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still unpublished. EO4HAF uses a penalty function technique (Lootsma,
1972) for constraining estimates to lie within a particular region. Classical
factor analysis often ran into difficulties because the maximum likelihood
solution required that one or more specific variances take negative values.
By conducting the analysis in terms of © rather than @2 for the specifics
we were able to reduce the number of constraints specified and therefore
to minimise the amount of computer time required to find the best solution.

For our relatively simple case of a single common genetical factor and
a single environmental factor we were able to avoid the specification of
any constraints, though we envisage that these would be necessary to obtain
multiple factor solutions, for example to constrain the ®’s to be positive
definite.

In some cases we found that minimisation by the Powell 64 method
failed when matrices became singular during the course of minimisation.
We managed to get around this problem by using another option of the sub-
routine EO4HAF which employs numerical approximations to the first
derivatives of F with respect to the parameter estimates.

Given that we have obtained the maximume-likelihood estimates of our
parameters we may test the hypothesis that a less restricting model does
not significantly improve the fit by computing (2L,— L,), which is distributed
as x2 when L, is the log likelihood obtained under the restricted hypothesis
(H,) and L, is the log likelihood obtained under the less demanding hypo-
thesis (Hy). The H, we shall adopt in practice is one which assumes that
as many free parameters are required to explain the data as there are
independent mean squares and mean products in the first place i.e. &; = S;
for every i—a ‘ perfect fit * solution. In this case we have simply

Lo=-% -21 Ny[log | S;|+v]

When we have m matrices and v variables, the x* has mv(v+ 1) —¢ where ¢
is the total number of free parameters estimated under Hj.

5. COVARIANCES OF THE ESTIMATES

In order that the parameter estimates of a satisfactory model might be
interpreted more rigorously we would like their covariance matrix. This
is the inverse of the matrix of second derivatives of the log likelihood with
respect to the maximum likelihood estimates of the free parameters. Joreskog
(1973) gives second derivatives of the log likelihood for problems involving
models for single covariance matrices. We followed his approach, construc-
ting first the matrix of second derivatives with respect to all the parameters,
fixed and free, then striking out the rows and columns corresponding to
fixed parameters, and finally combining the information on those para-
meters which are constrained to be equal.

To evaluate the second derivatives we need to know the form of the
first derivatives. For any given source j, of the genetical model, we have
parameter matrices B,, A; etc. and the first derivatives of F with respect to
these are:—

CFCB; =

4

IRgE

Nle QBAD A +¥]]
et
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6F/3Aj = g;l N‘[CIIB}‘!;B]AJ-(DJ’]
aFIan = lzl N‘[CU}A;B}‘IIBJAJ]
aF/a‘Fj = izl Ni[ciijiBj‘l’j]

aF/aej = ‘zl N,[c,-_,-ﬂlej]

where @, = X7 1(,~S)E;!

We now obtain the second derivatives by using the following theorem,
proved by Joreskog (1973):

Let the elements of Z; be functions of two parameter matrices M, =
(irey) and N; = (7y,5) and let

FM,, N)) =1 ‘Zl N[log | & |+tr (SE )]

Then if
m m
OF oM, = Z N(ULQX) and OF/oN,= Z N(VAQ.Z)
1=1 i=1
where U;, X, V,, Z are independent of the S, and 2, is defined above, we
have asymptotically

m

E(CPF g ,Crign) = _ Z: NIGE YD (XL )+ (UETT ) (XETTV) ]

Since U; and V, both contain the scalar constant ¢;; from the genotype-
environmental model, we shall have to calculate these matrices afresh for
each expected covariance matrix X;. However, if we define

W= _Ug
Cu

Y= i V,
€y

then we may write

E(azF / aﬂkcfa vlgh)

= 3 Newll(WE ') (K5 Dt (WET D)X 1Y)y, ]

which facilitates computation.

We can now calculate the whole information matrix for all elements
of the k sets of matrices B;, A;, ®;, ¥; and @, where there are k parameters
in the genetical model. However, it is obvious that much computer time
can be saved by not computing those elements

E(azF / ay,‘, ,av,,,,)
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where either p,,; or v, has been fixed. This is equivalent to striking
out from the total information matrix those rows and columns corresponding
to fixed parameters.

We now wish to reduce the information matrix still further by combining
rows and columns of information about the same free parameter. Joreskog
suggests the following procedure. Let the remaining free parameters from
a vector ¥ = (¥1, Vg ... 7;) and among these there are some distinct
parameters m, mg, ..., 7, Let k, = 1ify; = =, and k;; = 0 otherwise
andlet K = (k,),i=1,2,...l;g=1,2,...,m. Then we have

oOF|ox = K'0F oy

and
E(azF [onon") = K'E(0*F/oydy)K.

The elements of the information matrix on the right-hand side are obtained
as described above. The reduced information matrix on the left-hand side
can be inverted to give the variance-covariance matrix of the free parameter
estimates.

The expressions given above for the first and second derivatives could
be programmed to assist the minimisation of F by other methods and such
options are available with the routine we employ.

6. AN EXAMPLE

To illustrate the method we shall use some twin data given by Loehlin
and Vandenberg (1968) for the covariation of five of Thurstone’s Primary
Mental Abilities—Numerical ability (N), Verbal comprehension (V),
Spatial ability (S), Word fluency (W) and Reasoning ability (R). These
data have already been used to illustrate the method of Eaves and Gale
(1974) who discuss the limitations of the data and of the classical twin
study. A comparison with their analysis will make clear the conceptual
and analytical advantages of the present approach.

Measurements were made on 123 pairs of MZ twins and 75 pairs of
DZ twins, the members of each pair having been raised together. Loehlin
and Vandenberg (1968) discuss in detail the structure of their sample and
conclude that their M and DX twins can be regarded as sub-samples
from the same population. They give the between-pair and within-pair
mean products matrices for both MZ and DZ twins as Appendices A-D
of their paper. Each 5x5 matrix contains 15 unique statistics, providing
a total of 60 d.f.

We shall first see whether we can adequately account for the data with
the simple model developed in Section 3 above. This contains factor loadings
and specific variances corresponding to only Dg and E;. We thus estimate
five Ajs and five 0’s for each of the two sources of variation, being 20
parameters in all. We place no bounds on these during the estimation

procedure since the expected values are functions of AA’ and &2 so sign
is immaterial.

The log likelihood on this hypothesis is —7311:-14 whereas the log
likelihood on the hypothesis of a perfect fit solution is —7274-89. Twice
the difference between the log likelihood values, 2(L,—L,) yields a chi-
square of 72-50 for 40 d.f. (since we have 60 unique statistics which we have
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tried to summarise with reference to 20 independent parameters). This
model fails badly (P <0-001). We also tried to fit the corresponding model
with factor loadings and specifics corresponding to E; and E; only i.c.
omitting genetical factors, but this model gives an even worse failure
(220 = 127-50). The maximum likelihood parameter estimates from these
two models are given in tables 1 and 2.

Clearly we must try a more complex model if we are to provide a satis-
factory explanation of the data. If we extend the model to include factor
loadings and specific variances corresponding to all three sources of variation,
E,, E; and Dp, we now have a total of 30 free parameters. The log likelihood
on this model is —7291-39 corresponding to x2o = 33:0, an excellent fit.

TAsBLE 1
Parameter estimates of the E\Dg model. The Amy’s are loadings on the E, factor and fg,’s are square
roots of the specific E, variances -
XBI 031 XDR 01;.8
N 0-528 19-201 49-447 34-617
| 4 10-265 7-315 36-991 22-114
S 1210 20-717 32-451 54-677
w 5-751 12-830 23-187 22-507
R 6614 8-588 25-082 15-163
Xio = 725
TABLE 2
Parameter estimates of the E\Ey model
XEJ, atl h. HE’
N 11-359 25-515 31-115 23-523
| 4 10-420 10-753 27-227 13:759
S 8-824 24-856 19-384 37-662
w 9799 14-376 14-581 14-155
R 8462 8-589 17-419 10-863
x:o = 1275

The maximum likelihood estimates of the 30 parameters and their standard
errors, calculated as in Section 5, are shown in table 3.

We should be cautious in accepting that only additive genetic and the
two types of environmental effect are present, however. (See e.g. Eaves,
1975). When this kind of model is fitted in the classical twin study the E,
estimate tends to be a conglomeration of certain other between-family
effects which may be present. If assortative mating is present for example,
and the population is in equilibrium then any supposed E, is really

A
E;+3——.D
2+1 7 D
where A is the correlation between the breeding values of spouses, E; is
the *“ true »’ environmental variance between families, and $Dpg is the * true ”
additive genetical variance obtained by randomly mating a population with
the same gene frequencies.
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This immediately suggests a possible reduction of our 30 parameter
model. Suppose, for a given variable ¢ the component of variance cor-
responding to the E, factor loading, €?, were a simple function of an 4,
and the corresponding component of variance arising from the additive
genetical factor loading, 67. Then if there were no contributions of between-
families environmental effects (‘“‘real” E,) to the communality of the
variables, we should expect 4, to be the same for all i and €,/d; to be a
constant.

Tasre 3
Estimates, standard errors and significance of parameters of full E,E,Dr model
Az s.e. ¢ 05, s.e. c
N 1-159 1-989 0-58 19-216 1-218 15-78
vV 10-201 1-:525 6-69 7-821 1-746 448
S 2-123 2-132 1-00 21-094 1-346 1567
w 6-580 1-376 478 12:706 0918 13-85
R 6-629 1-150 5-77 8-853 0-845 10-48
Az, se. c 0Ors se. c
N 19-463 5-287 3-72 1-761 70-668 0-02
| 4 26-662 3-182 8-51 2x10-¢ 2x 107 0-00
S 11-918 4-887 2-44 27-504 5-664 486
w 12-453 2-434 512 1x10-% 3x 108 0-00
R 14-720 2-333 6-31 11-414 2-012 5-67
x”n s c bp, se.
N 50-897 7-710 6-60 20-972 18:219 1-15
|4 16-830 4-461 877 17-114 4167 411
31-027 6-352 4-88 37-647 8-339 4-51
w 14-686 3-433 4-28 22-926 4-552 504
R 14-451 3-140 4-60 1-628 26-125 0-06
x3 = 330

We can test this hypothesis by constraining the E, and Dpg factor loadings
to be related by a scalar constant such that €,/6; = b, for all i. In terms
of Joreskog’s model, if E, is the second basic source of variation then:

b 0O O (

Bz-_— =bI

(== = =)
QOO >
(=2~ =)
OO
(= R )

0 0 b/

From our 30 parameter model we can thus remove five factor loadings
and substitute a single scalar parameter b, leaving 26 parameters in all.
The log likelihood in this model was —7301-09, corresponding to a chi-
square of 524 on 34 d.f. (0-01 <P<0-02). The estimates of this model
are shown in table 4. The failure of this model indicates that, while there
may be assortative mating based upon the common genetical variance
components, this alone cannot explain the so-called common E, components
and that in addition there must be some * cultural > common factor whose
factor pattern need not follow that of the genetical loadings.
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TABLE 4
Parameter estimates of E\E,Dr model with loadings on Eq and Dy factors related by a constant, b
Xxg 931 Xx.‘ DE: XDR GDR
N 0-893 19-349 25-210 1x10-% 35-948 35-025
4 10-127 7-447 18-998 8-226 27-090 18-903
S 1-292 21-104 16-821 25-983 23-985 41-523
w 5927 12-862 11-731 5x10-¢ 16-727 22-574
R 6-341 8913 12-874 10-754 18-358 2x10-¢

* The Ag,’s are the product of § = 0-7013 and the corresponding Xpn

However, as an exercise it is interesting to calculate the degree of
assortative mating which would be implied if the model fitted. We have

A

and
e = b25?

A

——— =2b?

1-4
Our maximum likelihood estimate of 4 is 0-7013 giving an estimate of
A = 0-4958. This is somewhat higher than other estimates of 4 for IQ
(Eaves, 1973, 1975) probably reflecting once again the presence of a genuine
E; common factor.

Attempting in a similar way to relate the loadings on either the E, or
Dp, factors to the loadings on the E, factor would clearly be inappropriate
since two of the variables make only specific contributions to E, (table 3).

Since this attempt to reduce the model failed, we must accept the 30
parameter model as the most appropriate although we may strike out any
non-significant parameters to obtain our final solution. We calculate the
covariance matrix of the estimates and use a ¢-test to assess the significance
of each parameter (table 3). The factor loadings can either be positive
or negative so a two-tailed test should be used for these (¢<1-96) but the
specific variances are constrained to be positive so only a one-tailed test
should be used for the 8;’s (¢ <1-65).

If we now fix to zero all non-significant parameters our reduced model
contains 23 free parameters and our final x3;=3501. Thus the seven
non-significant parameters account for a chi-square of only 2-01, although
the increased significance of the remaining parameters partly reflects our
post-hoc reduction of the model. The final values of the parameters and
their recalculated standard errors are given in table 5.

We are now in a position to summarise the contribution of each of the
six sources of variation to the total variance of each variable. This is done
in table 6, along with the sub-totals of variation attributable to E,, E; and
to $Dr which would be the heritability if we could ignore assortative
mating and non-additive genetical effects. From these proportions we can
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calculate any other desired ratios such as the heritabilities of the general
or specific variation and the relative contributions of common and specific
factors to genetical and environmental variation.

A breakdown of the total variation such as this must be one of the end
products of a genetical analysis of covariance structures. Our analysis

TAaBLE 5
Estimates, standard errors and significance of parameters of reduced E,EJDn model with non-significant

parameters fixed to zero

A se. ¢ Oz, s.e. ¢
N 0-0 - —_ 19-343 1-183 16-35
| 4 10-582 1-579 6-70 7-281 2-069 3-52
S 0-0 —_ — 21-202 1-338 15-85
w 6-481 1-352 4-80 12-795 0-885 14-46
R 6-410 1-103 5-81 9-052 0-730 12-41
Ass s.e. ¢ Oy s.e. ¢
N 17-768 5156 3-45 0-0 - —_
| 4 26-560 2-502 10-61 0-0 - —_—
s 12-990 4-389 2-96 27-316 5-685 4-81
w 12-534 2-189 573 0-0 — —_
R 14-761 1-983 74 11-527 1-041 11-07
Xpn se. c o, sie. c
N 56-142 3653 1537 00 — —
4 17211 3992 431 17-063 3-433 497
S 28914 4694 616 39.003 7-720 505
w 14-279 2.793 511 23-016 1-752 13135
R 14-263 2:559 557 00 - —
TasLe 6
Contributipns of general and specific camponenis to tatal variances of five PMA variables
E; Es tog
ik, bp, Toral g, Oy, Tow Up,  p,  Totl  Grand Total
—_— 37414 37414 315-60 o 31560 1575397 e 137597 2265-71
e 0165 0155 0139 —_— 0-139 0-606 —_ 0-696 1-000
11168 53-02 165-00 705-44 e 705-44 14811 145.57 29368 1164-12
096 0-046 0142 0605 — 0-606 0127 0125 252 1-000
o 449-52 44952 168-72 746-19 91491 41801 760-39 117860 2543-03
—_— 0177 3177 0066 0-294 0360 0164 G299 463 1-000
4200 16372 20572 15709 — 157-09 101-98 204-36 36681 729-62
0-058 0-224 0282 Q-215 — 0-215 0140 (-363 G303 1-000
41119 5145 12304 217-88 13287 35075 101-70 — 10470 575-49
0073 0-142 G213 0-379 0231 0-610 0177 —_ 0177 1-000

shows that although there is common genetical variation contributing to
variance in each of the five sub-tests, in three of the sub-tests specific genetical
variation is equally or more important. While others (Nichols, 1965;
Eaves and Gale, 1974; Martin, 1975) have had to be content with detecting
the presence of specific genetical variation in different ability traits we
have been able to provide maximum likelihood estimates of these and all
the other components.

It can also be seen that although there is a hint of a small E, factor
corresponding to the verbal traits, nearly all the E, variance is specific and
this is what we should expect of a source which comprises error and environ-
mental experiences specific to individuals.
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Clearly the most unsatisfactory aspect of this particular example is our
inability to separate the common factor variance due to assortative mating
from a genuine cultural factor. However, this is a failing of the classical
twin design rather than our analytical method and a more elaborate con-
stellation of relatives would allow us to make this separation.

A further aim of the genetical analysis of covariation might be to compare
and contrast the patterns of correlation of the different sources of variation.
Clearly, if all the variation from a given source is due to a common factor
then all the correlations between variables for that source will be unity.
If all the variation from a source is specific, then all the intercorrelations
will be zero. Table 7 shows the intercorrelations of the five variables for

TAsLE 7
Correlations for By, E2 and Dy sources of variation

the three sources of variation. For instance, we obtain the maximum
likelihood estimate of the genetical correlation matrix, given that our
model is correct, by calculating (AA’+D?3) and scaling each off-diagonal
term by the square root of the products of the corresponding diagonal
terms:

- 6:9;
V(& +d})o] +d))

As expected, all the E, intercorrelations are zero or low, while those for
E, and Dr, are higher reflecting the greater importance of common factors
in those two sources.

e.g. rDR,-, j

7. CoNcLUSIONS

We should not allow a specific application to obscure the generality of
our approach. Given an adequate set of family groupings or generations
and a sufficiently strong biological and psychological theory it is possible
to formulate and test a model of individual differences which embodies
the biological and cultural sources of variation and specifies precisely the
way these are expected to affect a number of correlated traits.

Although we have been content to fit a single common factor, because
this was inherent in our choice of measurements, the approach can be
extended to the estimation of additional correlated or uncorrelated factors
as long as appropriate constraints are specified or fixed values are assigned
to certain of the factor loadings (Joreskog, 1973).

In our case we have shown that the multivariate structure of five different
ability measures is consistent with a causal explanation in terms of additive
gene action and. within and between families environmental effects. Al-
though we are unable to determine how much of the latter source may be

Ey E, Dg
N Vv S W R N Vv S W R N Vv § W R
100 000 000 000 000 N 100 100 043 100 079 N 100 071 060 053 100
— 100 000 037 048 vV — 100 069 100 079 v — 100 042 037 071
— — 100 000 000 S — — 100 043 034 S — — 100 031 060
— — — 100 026 W — — — 100 079 W - - — 0-53
—_ - = = 100 R — — — = 100 R — — — = 100



COVARIANCE STRUCTURE 95

due to assortative mating the failure of the model which attempted to
estimate all the E; factor loadings as a simple multiple of the Dg loadings
indicated that there must be some common cultural factor.

As well as yielding maximum likelihood estimates of the factor loadings
and specific variances, with all their desirable properties, the approach
enables us to test the adequacy of the fitted model and provides us with
standard errors of the parameter estimates so that the margin of error
attached to the individual estimates can be assessed.

With data on relatives other than twins it would be possible to study
in still greater subtlety the mechanisms underlying the multivariate structure
of individual differences. With organisms other than man, of course, this
is not difficult. Providing the investigator possesses the ingenuity to write
the appropriate model and collect the right data the possibilities for the
causal analysis of trait covariation in quantitative genetical terms seem
extensive.
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