Copy files

- Go to Faculty \marleen\Boulder2012\Multivariate
- Copy all files to your own directory
- Go to Faculty \kees\Boulder2012\Multivariate
- Copy all files to your own directory

I ntroduction to Multivariate Genetic Analysis (1)

Marleen de Moor, Kees-Jan Kan \& Nick Martin

Outline

- 11.00-12.30
- Lecture Bivariate Cholesky Decomposition
- Practical Bivariate analysis of IQ and attention problems
- 12.30-13.30 LUNCH
- 13.30-15.00
- Lecture Multivariate Cholesky Decomposition
- PCA versus Cholesky
- Practical Tri- and Four-variate analysis of IQ, educational attainment and attention problems

Outline

- 11.00-12.30
- Lecture Bivariate Cholesky Decomposition
- Practical Bivariate analysis of IQ and attention problems
- 12.30-13.30 LUNCH
- 13.30-15.00
- Lecture Multivariate Cholesky Decomposition
- PCA versus Cholesky
- Practical Tri- and Four-variate analysis of IQ, educational attainment and attention problems

Aim / Rationale multivariate models

Aim:

To examine the source of factors that make traits correlate or co-vary

Rationale:

- Traits may be correlated due to shared genetic factors (A or D) or shared environmental factors (C or E)
- Can use information on multiple traits from twin pairs to partition covariation into genetic and environmental components

Example

- Interested in relationship between ADHD and IQ
- How can we explain the association
- Additive genetic factors $\left(r_{G}\right)$
- Common environment (r_{C})
- Unique environment (r_{E})

Co-Occurrence of ADHD and Low IQ Has Genetic Origins

J. Kuntsi, ${ }^{1}$ T.C. Eley, ${ }^{1}$ A. Taylor, ${ }^{1}$ C. Hughes, ${ }^{2}$ P. Asherson, ${ }^{1}$ A. Caspi, ${ }^{1}$ and T.E. Moffitt ${ }^{1 *}$
${ }^{1}$ Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King's College London, London, United Kingdom
${ }^{2}$ Centre for Family Research, University of Cambridge, Cambridge, United Kingdom

Fig. 1. Genetic and environmental contributions to the negative phenotypic correlation between IQ and both ADHD symptom scores and ADHD diagnosis. [Colour figure can be viewed in the online issue, which is available at www.interscience.wiley.com.

Original articles

A longitudinal twin study on IQ, executive functioning, and attention problems during childhood and early adolescence

Tinca J. C. Polderman ${ }^{1.2}$, M. Florencia Gosso ${ }^{1,3}$, Danielle Posthuma ${ }^{1}$, Toos C.E.M. van Beijsterveldt ${ }^{1}$, Peter Heutink ${ }^{1,3,4}$, Frank C. Verhulst ${ }^{2}$ and Dorret I. Boomsma ${ }^{1,4}$
${ }^{1}$ Department of Biological Psychology, Vrije Universiteit Amsterdam ; ${ }^{2}$ Department of Child and Adolescent Psychiatry, Erasmus University Rotterdam ; ${ }^{3}$ Center for Neurogenomics and Cognitive Research - CNCR, Vrije Universiteit Amsterdam ; ${ }^{4}$ Section of Medical Genomics, Department of Clinical Genetics and Anthropogenetics, VU Medical Center, Amsterdam, The Netherlands

Fig. 3. - The bivariate (longitudinal) model represented for one individual
Bivariate Cholesky

Fig. 4. - The multivariate (Cholesky) model with 7 variables represented for one individual
Multivariate Cholesky

Sources of information

- Two traits measured in twin pairs
- Interested in:
- Cross-trait covariance within individuals = phenotypic covariance
- Cross-trait covariance between twins = cross-trait crosstwin covariance
- MZ:DZ ratio of cross-trait covariance between twins

Observed Covariance Matrix: 4x4

Twin 1
Twin 2

	Phenotype 1	Phenotype 2	Phenotype 1	Phenotype 2

Observed Covariance Matrix: 4x4

Twin 1
Twin 2

Observed Covariance Matrix: 4x4

Twin 1
Twin 2

Cholesky decomposition

Now let's do the path tracing!

Within-Twin Covariances (A)

Twin 1

	Phenotype 1	Phenotype 2
Phenotype 1		
Phenotype 2		

Within-Twin Covariances (A)

Twin 1

	Phenotype 1	Phenotype 2
Phenotype 1	$\mathrm{a}_{11}{ }^{2}$	

Within-Twin Covariances (A)

Twin 1

	Phenotype 1	Phenotype 2
$\underset{\sim}{c}$ Phenotype 1	$\mathrm{a}_{11}{ }^{2}$	
Phenotype 2	$\mathrm{a}_{11} \mathrm{a}_{21}$	

Within-Twin Covariances (A)

Twin 1

	Phenotype 1	Phenotype 2
$\underset{\sim}{c}$ Phenotype 1	$\mathrm{a}_{11}{ }^{2}$	
Phenotype 2	$\mathrm{a}_{11} \mathrm{a}_{21}$	$\mathrm{a}_{22}{ }^{2}+\mathrm{a}_{21}{ }^{2}$

Within-Twin Covariances (C)

Twin 1

	Phenotype 1	Phenotype 2
$\underset{\underset{\sim}{c}}{\tau}$Phenotype 1	$\mathrm{a}_{11}{ }^{2}+\mathrm{c}_{11}{ }^{2}$	
Phenotype 2	$\mathrm{a}_{11} \mathrm{a}_{21}+\mathrm{c}_{11} \mathrm{c}_{21}$	$\mathrm{a}_{22}{ }^{2}+\mathrm{a}_{21}{ }^{2}+\mathrm{c}_{22}{ }^{2}+\mathrm{c}_{21}{ }^{2}$

Within-Twin Covariances (E)

Twin 1

	Phenotype 1	Phenotype 2
$\underset{\underset{\sim}{c}}{\tau} \quad$ Phenotype 1	$\mathrm{a}_{11}{ }^{2}+\mathrm{c}_{11}{ }^{2}+\mathrm{e}_{11}{ }^{2}$	
Phenotype 2	$\mathrm{a}_{11} \mathrm{a}_{21}+\mathrm{c}_{11} \mathrm{c}_{21}+\mathrm{e}_{11} \mathrm{e}_{21}$	$\mathrm{a}_{22}{ }^{2}+\mathrm{a}_{21}{ }^{2}+\mathrm{c}_{22}{ }^{2}+\mathrm{c}_{21}{ }^{2}$ $+\mathrm{e}_{22}{ }^{2}+\mathrm{e}_{21}{ }^{2}$

Cross-Twin Covariances (A)

	Phenotype 1	Twin 1	Phenotype 2

Cross-Twin Covariances (A)

	Twin 1		
Phenotype 1	$1 / 0.5 \mathrm{a}_{11}{ }^{2}$		

Cross-Twin Covariances (A)

	Twin 1	
	Phenotype 1	Phenotype 2
\sim Phenotype 1	$1 / 0.5 a_{11}{ }^{2}$	
\sum Phenotype 2	$1 / 0.5 a_{11} a_{21}$	

Cross-Twin Covariances (A)

Cross-Twin Covariances (C)

Twin 1

	Phenotype 1	Twin 1
\sim		
\sim	Phenotype 1	$1 / 0.5 \mathrm{a}_{11}{ }^{2}+\mathrm{c}_{11}{ }^{2}$
$\stackrel{c}{<}$		
Phenotype 2	$1 / 0.5 \mathrm{a}_{11} \mathrm{a}_{21}+\mathrm{c}_{11} \mathrm{c}_{21}$	$1 / 0.5 \mathrm{a}_{22}{ }^{2}+1 / 0.5 \mathrm{a}_{21}{ }^{2}+\mathrm{c}_{22}{ }^{2}+\mathrm{c}_{21}{ }^{2}$

Predicted Model

Twin 1
Twin 2

		Phenotype 1	Phenotype 2	Phenotype 1	Phenotype 2
$\stackrel{\Gamma}{\stackrel{c}{3}}$		Within-tw	covariance		
	Phenotype 1	$\mathrm{a}_{11}{ }^{2}+\mathrm{c}_{11}{ }^{2}+\mathrm{e}_{11}{ }^{2}$			
	Phenotype 2	$\begin{gathered} \mathrm{a}_{11} \mathrm{a}_{21}+\mathrm{c}_{11} \mathrm{c}_{21}{ }^{+} \\ \mathrm{e}_{11} \mathrm{e}_{21} \end{gathered}$	$\begin{aligned} & \mathrm{a}_{22}{ }^{2}{ }^{2}+\mathrm{a}_{21}{ }^{2}+\mathrm{c}_{22}{ }^{2+} \\ & \mathrm{c}_{21}{ }^{2}+\mathrm{e}_{22}{ }^{2}+\mathrm{e}_{21}{ }^{2} \end{aligned}$		
		Cross-twi	covariance	Within-twin	covariance
$\begin{aligned} & N \\ & \underset{3}{n} \end{aligned}$	Phenotype 1	$1 / .5 \mathrm{a}_{11}{ }^{2}+\mathrm{c}_{11}{ }^{2}$		$\mathrm{a}_{11}{ }^{2}+\mathrm{c}_{11}{ }^{2}+\mathrm{e}_{11}{ }^{2}$	
	Phenotype 2	$\begin{gathered} 1 / .5 \mathrm{a}_{11} \mathrm{a}_{21}+ \\ \mathrm{c}_{11} \mathrm{c}_{21} \end{gathered}$	$\begin{aligned} & 1 / .5 \mathrm{a}_{22}{ }^{2}+1 / .5 \\ & \mathrm{a}_{21}{ }^{2}+\mathrm{c}_{22}{ }^{2}+\mathrm{c}_{21}{ }^{2} \end{aligned}$	$\begin{gathered} \mathrm{a}_{11} \mathrm{a}_{21}+\mathrm{c}_{11} \mathrm{c}_{21}+ \\ \mathrm{e}_{11} \mathrm{e}_{21} \end{gathered}$	$\begin{aligned} & \mathrm{a}_{22}{ }^{2}+\mathrm{a}_{21}{ }^{2}+\mathrm{c}_{22}{ }^{2} \\ & +\mathrm{c}_{21}{ }^{2}+\mathrm{e}_{22}{ }^{2}+\mathrm{e}_{21} \end{aligned}$

Predicted Model

Twin 1
Twin 2

Example covariance matrix MZ

Twin 1

Example covariance matrix DZ

Twin 1

Kuntsi et al. study

44 Kuntsi et al.

TABLE IA. Within-Pair Pearson Correlations: ADHD Symptom Scores and IQ

	Twin 1 ADHD symptoms	Twin 1 IQ	Twin 2 ADHD symptoms	Twin 2 IQ
MZ twins				
Twin 1 ADHD symptoms	1.00			
Twin 1 IQ	-0.26	1.00		
Twin 2 ADHD symptoms	0.64	-0.21	1.00	
Twin 2 IQ	-0.25	0.70	-0.31	1.00
Mean (SD)	15.46 (11.52) ${ }^{\text {a }}$	96.81 (13.64)	14.99 (11.12) ${ }^{\text {a }}$	97.15 (14.32)
DZ twins				
Twin 1 ADHD symptoms	1.00			
Twin 1 IQ	-0.31	1.00		
Twin 2 ADHD symptoms	0.20	-0.12	1.00	
Twin 2 IQ	-0.12	0.53	-0.27	1.00
Mean (SD)	16.93 (11.86) ${ }^{\text {a }}$	98.88 (14.61)	$14.30(11.00)^{\text {a }}$	98.44 (15.07)

${ }^{\text {a }}$ Prior to transformation.

Summary

- Within-twin cross-trait covariance (phenotypic covariance) implies common aetiological influences
- Cross-twin cross-trait covariances >0 implies common aetiological influences are familial
- Whether familial influences are genetic or common environmental is shown by MZ:DZ ratio of cross-twin cross-trait covariances

Specification in OpenMx?

Within-Twin Covariance (A)

Path Tracing:
$\Sigma_{A}=\left[\begin{array}{cc}a_{11}^{2} & a_{11} a_{21} \\ a_{21} a_{11} & a_{21}^{2}+a_{22}^{2}\end{array}\right]$
Lower 2×2 matrix:

$$
\begin{aligned}
& \Sigma_{A}=a * a^{T} \\
& \Sigma_{A}=a \% * \% t(a)=\left[\begin{array}{cc}
& 0 \\
a_{21} & a_{22}
\end{array}\right] *\left[\begin{array}{ll}
& a_{21} \\
0 & a_{22}
\end{array}\right] \\
&=\left[\begin{array}{cc}
a_{11}^{2}+0 \times 0 & a_{11} a_{21}+0 \times a_{22} \\
a_{21} a_{11}+0 \times a_{22} & a_{21}^{2}+a_{22}^{2}
\end{array}\right]
\end{aligned}
$$

Within-Twin Covariance (A)

$$
\begin{aligned}
\begin{array}{l}
\Sigma_{A}=a^{*} a^{T} \\
\Sigma_{A}=a \% * \% t(a)
\end{array} & =\left[\begin{array}{cc}
& 0 \\
a_{21} & a_{22}
\end{array}\right] *\left[\begin{array}{ll}
& a_{21} \\
0 & a_{22}
\end{array}\right] \\
& =\left[\begin{array}{cc}
a_{11}^{2}+0 \times 0 & a_{11} a_{21}+0 \times a_{22} \\
a_{21} a_{11}+0 \times a_{22} & a_{21}^{2}+a_{22}^{2}
\end{array}\right]
\end{aligned}
$$

```
pathA <- mxMatrix(name = "a", type = "Lower", nrow = nv, ncol = nv, labels = aLabs)
covA <- mxAlgebra(name = "A", expression = a %*% t(a))
```


Within-Twin Covariance ($A+C+E$)

$$
\Sigma_{A}=\mathrm{a} \% * \% \mathrm{t}(\mathrm{a})
$$

$$
\Sigma_{C}=c \% * \% \mathrm{t}(\mathrm{c})=\left[\begin{array}{cc}
c_{11}^{2} & c_{11} c_{21} \\
c_{21} c_{11} & c_{21}^{2}+c_{22}^{2}
\end{array}\right]
$$

$$
\Sigma_{E}=\mathrm{e} \% * \% \mathrm{t}(\mathrm{e})=\left[\begin{array}{cc}
e_{11}^{2} & e_{11} e_{21} \\
e_{21} e_{11} & e_{21}^{2}+e_{22}^{2}
\end{array}\right]
$$

Using matrix addition, the total within-twin covariance for the phenotypes is defined as:

$$
\Sigma_{V}=\square+\Sigma_{C}+\Sigma_{E}
$$

$$
\left.\left.\Sigma_{V}=\left[\begin{array}{cc}
+c_{11}^{2}+e_{11}^{2} & +c_{11} c_{21}+e_{11} e_{21} \\
+c_{21} c_{11}+e_{11} e_{21}
\end{array}\right]+c_{21}^{21}+c_{22}^{2}+e_{21}^{21}+e_{22}^{2}\right] .\right]
$$

OpenMx Matrices \& Algebra

Vars <- c("FSIQ","AttProb")
nv <- length(Vars)
aLabs <- c("a11", "a21", "a22")
cLabs <- c("c11", "c21", "c22")
eLabs <- c("e11", "e21", "e22")
\# Matrices a, c, and e to store a, c, and e Path Coefficients
pathA <- mxMatrix(name = "a", type = "Lower", nrow = nv, ncol = nv, labels = aLabs)
pathC <- mxMatrix(name = "c", type = "Lower", nrow = nv, ncol = nv, labels = cLabs)
pathE <- mxMatrix(name = "e", type = "Lower", nrow = nv, ncol = nv, labels = eLabs)
\# Matrices generated to hold A, C, and E computed Variance Components
covA <- mxAlgebra(name = "A", expression = a \%*\% t(a))
covC <- mxAlgebra(name = "C", expression = c $\% * \% ~ t(c))$
covE <- mxAlgebra(name = "E", expression = e $\% * \% ~ t(e))$
\# Algebra to compute total variances and standard deviations (diagonal only)
covPh <- mxAlgebra(name = "V", expression = A+C+E)
matl <- mxMatrix(name= "I", type="Iden", nrow = nv, ncol = nv)
invSD <- mxAlgebra(name ="iSD", expression = solve(sqrt(I*V)))

MZ Cross-Twin Covariance (A)

Twin 1
Twin 2

Cross-twin within-trait:
P1-P1 $=1 * a_{11}{ }^{2}$
P2-P2 $=1 * \mathrm{a}_{22}{ }^{2}+1 * \mathrm{a}_{21}{ }^{2}$
Cross-twin cross-trait:
$=\left[\begin{array}{cc}A=a \% * \% t(a) \\ a_{11}^{2} & a_{11} a_{21} \\ a_{21} a_{11} & \left(a_{21}^{2}+a_{22}^{2}\right)\end{array}\right]$
P1-P2 = 1* ${ }_{11} a_{21}$
P2-P1 = 1* ${ }_{21} a_{11}$

DZ Cross-Twin Covariance (A)

Twin 1

Cross-twin within-trait:
P1-P1 $=0.5 \mathrm{a}_{11}{ }^{2}$
$P 2-P 2=0.5 \mathrm{a}_{22}{ }^{2}+0.5 \mathrm{a}_{21}{ }^{2}$
Cross-twin cross-trait:
P1-P2 $=0.5 \mathrm{a}_{11} \mathrm{a}_{21}$
$P 2-P 1=0.5 a_{21} a_{11}$

MZ/DZ Cross-Twin Covariance (C)

$$
\text { Twin } 1
$$

Twin 2

Cross-twin within-trait:
P1-P1 $=1{ }^{*} \mathrm{C}_{11}{ }^{2}$
P2-P2 $=1^{*} \mathrm{C}_{22}{ }^{2}+1^{*} \mathrm{C}_{21}{ }^{2}$
Cross-twin cross-trait:
P1-P2 $=1^{*} \mathrm{C}_{11} \mathrm{C}_{21}$
P2-P1 $=1^{*} \mathrm{C}_{21} \mathrm{C}_{11}$

Covariance Model for Twin Pairs

```
                                    OpenMx
# Algebra for expected variance/covariance matrix in MZ
expCovMZ <- mxAlgebra(name = "expCovMZ",
    expression = rbind (cbind(A+C+E, A+C),
    cbind(A+C, A+C+E)))
# Algebra for expected variance/covariance matrix in DZ
expCovDZ <- mxAlgebra(name = "expCovDZ",
\[
\begin{array}{r}
\text { expression = rbind }(\operatorname{cbind}(\mathrm{A}+\mathrm{C}+\mathrm{E}, \quad 0.5 \% \times \% \mathrm{~A}+\mathrm{C}), \\
\\
\operatorname{cbind}(0.5 \% \times \% \mathrm{~A}+\mathrm{C}, \mathrm{~A}+\mathrm{C}+\mathrm{E})))
\end{array}
\]
```


Unstandardized vs standardized solution

Genetic correlation

- It is calculated by dividing the genetic covariance by the square root of the product of the genetic variances of the two variables

Genetic correlation

Standardized Solution = Correlated Factors Solution

Genetic correlation - matrix algebra

$\Sigma_{A}=$	$\begin{aligned} & {\left[\begin{array}{cc} a_{11}^{2} & a_{11} a_{21} \\ a_{21} a_{11} & a_{21}^{2}+a_{22}^{2} \\ {\left[\begin{array}{cc} \sigma_{A_{11}}^{2} & \sigma_{A_{12}}^{2} \\ \sigma_{A_{21}}^{2} & \sigma_{A_{22}}^{2} \end{array}\right]} \end{array} .\right.} \end{aligned}$
$\left[\begin{array}{cc}1 & r_{G} \\ r_{G} & 1\end{array}\right]=\left[\begin{array}{c}\frac{1}{\sqrt{\sigma_{11}^{2}}} \\ 0\end{array}\right.$	

Contribution to phenotypic correlation

If the $r_{g}=1$, the two sets of genes overlap completely

If however a_{11} and a_{22}
are near to zero, genes do not contribute much to the phenotypic correlation

Twin 1
$>$ The contribution to the phenotypic correlation is a function of both heritabilities and the r_{g}

Contribution to phenotypic correlation

Proportion of $\mathrm{r}_{\mathrm{P} 1, \mathrm{P} 2}$ due to additive genetic factors:

$$
\frac{\left(\sqrt{a_{P 1}^{2}} * r_{g} * \sqrt{a_{P 2}^{2}}\right)}{r_{P 1, P 2}}
$$

a21a11
$a 21 a 11+c 21 c 11+e 21 e 11$

Contribution to phenotypic correlation

```
OpenMx
ACEcovMatrices <- c("A","C","E","V","AN","C/N","E/V")
ACEcovLabels <-
("covComp_A","covComp_C","covComp_E","Var","stCovComp_A","stCovComp_C","stCovComp_E")
formatOutputMatrices(CholACEFit,ACEcovMatrices,ACEcovLabels,Vars,4)
```


Summary / Interpretation

- Genetic correlation $\left(r_{g}\right)=$ the correlation between two latent genetic factors
- High genetic correlation = large overlap in genetic effects on the two phenotypes
- Contribution of genes to phenotypic correlation $=$ The proportion of the phenotypic correlation explained by the overlapping genetic factors
- This is a function of the r_{g} and the heritabilities of the two traits

Outline

- 11.00-12.30
- Lecture Bivariate Cholesky Decomposition
- Practical Bivariate analysis of IQ and attention problems
- 12.30-13.30 LUNCH
- 13.30-15.00
- Lecture Multivariate Cholesky Decomposition
- Practical Tri- and Four-variate analysis of IQ, educational attainment and attention problems

Practical

- Replicate findings from Kuntsi et al.
- 126 MZ and 126 DZ twin pairs from Netherlands Twin Register
- Age 12
- FSIQ
- Attention Problems (AP) [mother-report]

Practical - exercise 1

- Script CholeskyBivariate.R
- Dataset Cholesky.dat
- Run script up to saturated model

Practical - exercise 1

- Fill in the table with correlations:

MZ	FSIQ1	AP1	FSIQ2	AP2
FSIQ1	1			
AP1		1		
FSIQ2			1	
AP2				1

DZ	FSIQ1	AP1	FSIQ2	AP2
FSIQ1	1			
AP1		1		
FSIQ2			1	
AP2				1

Practical - exercise 1 - Questions

- Are correlations similar to those reported by Kuntsi et al.?
- What is the phenotypic correlation between FSIQ and AP?
- What are the MZ and DZ cross-twin cross-trait correlations?
- What are your expectations for the common aetiological influences?
- Are they familial?
- If yes, are they genetic or shared environmental?

Practical - exercise 2

- Run Bivariate ACE model in the script
- Look whether you understand the output. If not, ask us!
- Adapt the first submodel such that you drop all C
- Compare fit of AE model with ACE model

Script: CholeskyBivariate.R

Practical - exercise 2

- Fill in the table with fit statistics:

	-2 LL	df	chi2	$\Delta \mathrm{df}$	P-value
ACE model			-	-	-
AE model					

- Question:
- Is C significant?

Practical - exercise 3

- Now try to fill in the estimates for all paths in the path model (grey boxes):

