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Copy files

• Go to Faculty\marleen\Boulder2012\Multivariate
• Copy all files to your own directory

• Go to Faculty\kees\Boulder2012\Multivariate
• Copy all files to your own directory



Introduction to Multivariate

Genetic Analysis (1)

Marleen de Moor, Kees-Jan Kan & Nick Martin 
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Outline

• 11.00-12.30
– Lecture Bivariate Cholesky Decomposition
– Practical Bivariate analysis of IQ and attention problems

• 12.30-13.30 LUNCH
• 13.30-15.00

– Lecture Multivariate Cholesky Decomposition
– PCA versus Cholesky
– Practical Tri- and Four-variate analysis of IQ, educational

attainment and attention problems
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– Lecture Multivariate Cholesky Decomposition
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– Practical Tri- and Four-variate analysis of IQ, educational
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Aim / Rationale multivariate models

Aim:
To examine the source of factors that make traits 
correlate or co-vary

Rationale:
• Traits may be correlated due to shared genetic 
factors (A or D) or shared environmental factors (C 
or E)
• Can use information on multiple traits from twin 
pairs to partition covariation into genetic and 
environmental components
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Example

• Interested in relationship
between ADHD and IQ

• How can we explain the 
association
– Additive genetic factors (rG)
– Common environment (rC)
– Unique environment (rE)
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Bivariate Cholesky

Multivariate Cholesky



Sources of information

• Two traits measured in twin pairs
• Interested in:

– Cross-trait covariance within individuals = phenotypic 
covariance

– Cross-trait covariance between twins = cross-trait cross-
twin covariance

– MZ:DZ ratio of cross-trait covariance between twins
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Observed Covariance Matrix: 4x4

Phenotype 1 Phenotype 2 Phenotype 1 Phenotype 2

Phenotype 1 Variance 
P1

Phenotype 2 Covariance 
P1-P2

Variance 
P2

Phenotype 1 Within-trait
P1

Cross-trait Variance 
P1

Phenotype 2 Cross-trait Within-trait
P2

Covariance 
P1-P2

Variance 
P2

Twin 1 Twin 2
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Cholesky decomposition
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Now let’s do the path tracing!
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Within-Twin Covariances (A)
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Within-Twin Covariances (C)
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Within-Twin Covariances (E)
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Cross-Twin Covariances (A)
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Cross-Twin Covariances (A)
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Cross-Twin Covariances (A)
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Cross-Twin Covariances (A)
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Cross-Twin Covariances (C)
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Predicted Model
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Predicted Model
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Example covariance matrix MZ

ADHD IQ ADHD IQ

ADHD 1

IQ -0.26 1

ADHD 0.64 -0.21 1

IQ -0.25 0.70 -0.31 1

Twin 1 Twin 2

Within-twin covariance

Within-twin covarianceCross-twin covariance



Example covariance matrix DZ

ADHD IQ ADHD IQ

ADHD 1

IQ -0.31 1

ADHD 0.20 -0.12 1

IQ -0.12 0.53 -0.27 1

Twin 1 Twin 2

Within-twin covariance

Within-twin covarianceCross-twin covariance



Kuntsi et al. study
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Summary

• Within-twin cross-trait covariance (phenotypic 
covariance) implies common aetiological
influences

• Cross-twin cross-trait covariances >0 implies 
common aetiological influences are familial

• Whether familial influences are genetic or 
common environmental is shown by MZ:DZ ratio 
of cross-twin cross-trait covariances



Specification in OpenMx?
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Within-Twin Covariance (A)

P1 P2

A
1

A
2

a11 a21 a22

11 Path Tracing:

Lower 2 x 2 matrix:

P1

P2

a1 a2

a11 a21 a22

A  a* aT

A =  a%*%t(a)



Within-Twin Covariance (A)

A  a* aT

A = a%*%t(a)

Vars <- c("FSIQ","AttProb")  
nv  <- length(Vars) 
aLabs <- c("a11“, "a21", "a22")

pathA <- mxMatrix(name = "a", type = "Lower", nrow = nv, ncol = nv, labels = aLabs)
covA <- mxAlgebra(name = "A", expression = a %*% t(a))

OpenMxOpenMx



Within-Twin Covariance (A+C+E)

Using matrix addition, the total within-twin covariance
for the phenotypes is defined as:

A = a %*% t(a) C = c %*% t(c)

E = e %*% t(e)

V

V



OpenMx Matrices & Algebra

Vars <- c("FSIQ","AttProb")  
nv <- length(Vars)

aLabs <- c("a11“, "a21", "a22")
cLabs <- c("c11", "c21", "c22")
eLabs <- c("e11", "e21", "e22")

# Matrices a, c, and e to store a, c, and e Path Coefficients
pathA <- mxMatrix(name = "a", type = "Lower", nrow = nv, ncol = nv, labels = aLabs)
pathC <- mxMatrix(name = "c", type = "Lower", nrow = nv, ncol = nv, labels = cLabs)
pathE <- mxMatrix(name = "e", type = "Lower", nrow = nv, ncol = nv, labels = eLabs)

# Matrices generated to hold A, C, and E computed Variance Components
covA <- mxAlgebra(name = "A", expression = a %*% t(a))
covC <- mxAlgebra(name = "C", expression = c %*% t(c))
covE <- mxAlgebra(name = "E", expression = e %*% t(e))

# Algebra to compute total variances and standard deviations (diagonal only)
covPh <- mxAlgebra(name = "V", expression = A+C+E)
matI <- mxMatrix(name= "I", type="Iden", nrow = nv, ncol = nv)
invSD <- mxAlgebra(name ="iSD", expression = solve(sqrt(I*V)))

OpenMxOpenMx



MZ Cross-Twin Covariance (A)
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DZ Cross-Twin Covariance (A)
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MZ/DZ Cross-Twin Covariance (C)
Twin 1 Twin 2
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Covariance Model for Twin Pairs

# Algebra for expected variance/covariance matrix in MZ
expCovMZ <- mxAlgebra(name = "expCovMZ", 

expression = rbind (cbind(A+C+E, A+C),
cbind(A+C,   A+C+E) ) )

# Algebra for expected variance/covariance matrix in DZ
expCovDZ <- mxAlgebra(name = "expCovDZ", 

expression = rbind (cbind(A+C+E,     0.5%x%A+C),
cbind(0.5%x%A+C, A+C+E) ) )

OpenMxOpenMx



Unstandardized vs standardized
solution
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Genetic correlation

• It is calculated by dividing the genetic covariance
by the square root of the product of the genetic
variances of the two variables
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Sqrt of the product 
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P12 P22
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Twin 1 Twin 2

gr

Standardized Solution = Correlated 
Factors Solution

gr



Genetic correlation – matrix algebra

corA <- mxAlgebra(name ="rA", expression = solve(sqrt(I*A))%*%A%*%solve(sqrt(I*A)))

OpenMxOpenMx



Contribution to phenotypic correlation

A1 A2

a11

P11 P21

a22

Twin 1

rg

If the rg = 1, the two 
sets of genes overlap 
completely

If however a11 and a22
are near to zero, genes 
do not contribute much 
to the phenotypic 
correlation

 The contribution to the phenotypic correlation is a function of both 
heritabilities and the rg



Contribution to phenotypic correlation
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Contribution to phenotypic correlation

ACEcovMatrices <- c("A","C","E","V","A/V","C/V","E/V")
ACEcovLabels <-
("covComp_A","covComp_C","covComp_E","Var","stCovComp_A","stCovComp_C","stCovComp_E")
formatOutputMatrices(CholACEFit,ACEcovMatrices,ACEcovLabels,Vars,4)

OpenMxOpenMx

Proportion of the phenotypic 
correlation due to genetic
effects

Proportion of the phenotypic 
correlation due to unshared 
environmental effects

Proportion of the phenotypic 
correlation due to shared 
environmental effects



Summary / Interpretation

• Genetic correlation (rg) = the correlation between 
two latent genetic factors
– High genetic correlation = large overlap in genetic 

effects on the two phenotypes

• Contribution of genes to phenotypic correlation = 
The proportion of the phenotypic correlation 
explained by the overlapping genetic factors
– This is a function of the rg and the heritabilities of the 

two traits 
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Outline

• 11.00-12.30
– Lecture Bivariate Cholesky Decomposition
– Practical Bivariate analysis of IQ and attention problems

• 12.30-13.30 LUNCH
• 13.30-15.00

– Lecture Multivariate Cholesky Decomposition
– Practical Tri- and Four-variate analysis of IQ, educational

attainment and attention problems



Practical

• Replicate findings from Kuntsi et al.

• 126 MZ and 126 DZ twin pairs from Netherlands
Twin Register

• Age 12

• FSIQ
• Attention Problems (AP) [mother-report] 
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Practical – exercise 1

• Script CholeskyBivariate.R
• Dataset Cholesky.dat

• Run script up to saturated model
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Practical – exercise 1
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MZ FSIQ1 AP1 FSIQ2 AP2
FSIQ1 1
AP1 1
FSIQ2 1
AP2 1

DZ FSIQ1 AP1 FSIQ2 AP2
FSIQ1 1
AP1 1
FSIQ2 1
AP2 1

• Fill in the table with correlations:



Practical – exercise 1 - Questions

• Are correlations similar to those reported by
Kuntsi et al.?

• What is the phenotypic correlation between FSIQ 
and AP?

• What are the MZ and DZ cross-twin cross-trait
correlations?

• What are your expectations for the common
aetiological influences?
– Are they familial?
– If yes, are they genetic or shared environmental?
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Practical – exercise 2

• Run Bivariate ACE model in the script
• Look whether you understand the output. If not, 

ask us!
• Adapt the first submodel such that you drop all C
• Compare fit of AE model with ACE model

Script: CholeskyBivariate.R
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Practical – exercise 2

• Fill in the table with fit statistics:

• Question:
– Is C significant?
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-2LL df chi2 ∆df P-value
ACE
model

- - -

AE model



Practical – exercise 3

• Now try to fill in the estimates for all paths in the 
path model (grey boxes):
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