Unmodeled GxE and $\mathbf{r}_{\text {GE }}$

[Purcell, S. (2002). Variance components models for gene-environment interaction in twin analysis. Twin Research, 5(6), 554-571.]

How do unmodeled GxE and $r_{\text {GE }}$ bias parameter estimates in standard twin models?
E.g.: If the additive genotype (A) interacts with common environment (C; environmental influences that increase phenotypic similarity between family members), then the phenotypic value may be decomposed as follows:

$$
P=a A+c C+i A C+e E,
$$

and its expected variance is
$\mathrm{V}_{\mathrm{P}}=\mathrm{a}^{2}+\mathrm{c}^{2}+\mathrm{i}^{2}+\mathrm{e}^{2}$

(assuming the variances of the latent variables are scaled to 1). The expected twin covariances are

$$
\begin{aligned}
\operatorname{Cov}\left(P_{1}, P_{2}\right) & =a^{2} \operatorname{Cov}\left(A_{1}, A_{2}\right)+c^{2} \operatorname{Cov}\left(C_{1}, C_{2}\right)+e^{2} \operatorname{Cov}\left(E_{1}, E_{2}\right)+i^{2} \operatorname{Cov}\left(A_{1} C_{1}, A_{2} C_{2}\right) \\
& =a^{2}+c^{2}+i^{2} \text { for MZ twins } \\
& =a^{2} / 2+c^{2}+i^{2} / 2 \text { for } D Z \text { twins }
\end{aligned}
$$

as $\operatorname{Cov}\left(A_{1}, A_{2}\right)$ is 1 for $M Z$ twins and 0.5 for $D Z$ twins; $\operatorname{Cov}\left(C_{1}, C_{2}\right)=1$ and $\operatorname{Cov}\left(E_{1}, E_{2}\right)=0$ for all twins; also $\operatorname{Cov}\left(A_{1} C_{1}, A_{2} C_{2}\right)=\operatorname{Cov}\left(A_{1}, A_{2}\right) \operatorname{Cov}\left(C_{1}, C_{2}\right)=\operatorname{Cov}\left(A_{1}, A_{2}\right)$. Similar covariance algebra can show that $A x E$ interaction contributes to the E component.

Unmodeled GxE and $\mathbf{r}_{\text {GE }}$

[Purcell, S. (2002). Variance components models for gene-environment interaction in twin analysis. Twin Research, 5(6), 554-571.]

How do unmodeled GxE and $r_{\text {GE }}$ bias parameter estimates in standard twin models?

If A is correlated with an environmental variable, say C, then the expected phenotypic variance is
$V_{P}=a^{2}+c^{2}+2 a c * r_{A C}+e^{2}$
and the expected twin covariances are

$$
\begin{aligned}
\operatorname{Cov}\left(P_{1}, P_{2}\right)= & a^{2} \operatorname{Cov}\left(A_{1}, A_{2}\right)+c^{2} \operatorname{Cov}\left(C_{1}, C_{2}\right)+e^{2} \operatorname{Cov}\left(E_{1}, E_{2}\right)+ \\
& \operatorname{acCov}\left(A_{1}, C_{2}\right)+\operatorname{acCov}\left(A_{2}, C_{1}\right) \\
= & a^{2}+c^{2}+2 a c * r A C \text { for } M Z \text { twins } \\
= & a^{2} / 2+c^{2}+2 a c * r A C \text { for } D Z \text { twins }
\end{aligned}
$$

as $\operatorname{Cov}\left(A_{1}, C_{2}\right)=\operatorname{Cov}\left(A_{2}, C_{1}\right)=r A C$. Similarly, if A and E are non-independent then
$\operatorname{Cov}\left(P_{1}, P_{2}\right)=a^{2}+c^{2}+2 a e * r A E$ forMZ twins

$$
=a^{2} / 2+c^{2}+a e \times r A E \text { for } D Z \text { twins }
$$

Thus: Interaction between A and C acts in the same way as A; interaction between A and E acts like E. Correlation between A and C acts like C; correlation between A and E acts like A.

