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Basic quantitative genetic models of human behavioral variation have made clear that individual
differences in behavior cannot be understood without acknowledging the importance of genetic influ-
ences. Yet these basic models estimate average, population-level genetic and environmental influences,
obscuring differences that might exist within the population and masking systematic transactions between
specific genetic and environmental influences. This article discusses a newer, more sophisticated and
powerful quantitative genetic model that articulates these transactions. Results from this model highlight
the ways in which the gene–environment interaction and correlation are intertwined. They can be used
to integrate findings from quantitative and molecular genetic studies and to understand the roles of
genetic influences and social forces in manifested behaviors, even when DNA sequence variation is not
relevant.
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Harry unwrapped his chocolate frog and picked up the card. It showed
a man’s face. He wore half-moon glasses, had a long, crooked nose,
and flowing silver hair, beard, and mustache. Underneath the picture
was the name Albus Dumbledore.. . . Harry [looked at the picture
again] and saw, to his astonishment, that Dumbledore’s face had
disappeared.

‘He’s gone!’

‘Well, you can’t expect him to hang around all day,’ said Ron. ‘He’ll
be back.. . .’

‘. . .But in, you know, the Muggle world, people just stay put in
photos.’

‘Do they? What, they don’t move at all?’ Ron sounded amazed.
‘Weird!’ (Rowling, 1997, p. 103)

The question of how nature and nurture contribute to the man-
ifestation of behavior has been a source of fascination from time
immemorial. Though there have been extremists who have be-
lieved that either the genetic influences of nature or the environ-
mental influences of nurture predominate, most students of the
question have recognized that both are important and neither is
deterministic. It is only now, however, that we are coming to
understand that genetic and environmental influences are rarely
independent and static like subjects in Muggle photos. Instead, like
subjects in photos in Harry Potter’s world of wizards, they transact
or interplay with each other, sometimes strongly present, other
times asleep or even absent. This article discusses a newer, more

sophisticated and powerful quantitative genetic model that makes
it possible to define and quantify how these transactions are
intertwined for particular variables. Results from this model can be
used to integrate findings from quantitative and molecular genetic
studies and to understand the roles of genetic influences and social
forces in manifested behaviors, regardless of whether DNA se-
quence variation is relevant. Results from the model also suggest
ways of understanding the paradoxical observation of the perva-
siveness of genetic influences and the relative absence of consis-
tent main effects of specific genetic polymorphisms.

Behavioral scientists are beginning to realize that genetic dif-
ferences among individuals are commonly associated with differ-
ential sensitivities to the environments to which the individuals are
exposed and that genetic differences among individuals are also
commonly associated with differences in environmental exposure.
That is, any given environment may have different effects on
individuals who differ genetically, and genetic differences among
individuals may create differences in the environments to which
individuals are exposed. A simple Muggle camera will not do: We
need a wizard’s camera that can capture all of this interplay. Like
Harry, however, who knows that a Muggle photo is a static
representation of a dynamic situation, we are aware of the nature
of the interplay in concept, but the prospect of actually capturing
it is still surprising. The purpose of this article is to draw us into
the wizard’s world, where seeing it displayed is ordinary. There
are at least two well-known dynamic concepts to consider.

First, there is the gene–environment interaction (G � E) or the
association between differential environmental effects and genetic
differences. A well-understood example involves the recessive
alleles for phenylketonuria (PKU). These alleles prevent metabo-
lism of phenylalanine, an enzyme commonly found in food. In
children with two copies of these alleles, the metabolic products of
unprocessed phenylalanine build up and damage the developing
brain. Phenylalanine has no harmful effects on children who carry
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at least one copy of an allele that enables metabolism of phenyl-
alanine, and the brain damage associated with PKU can be pre-
vented through modification of the diet to eliminate foods con-
taining phenylalanine. Second, there is the gene–environment
correlation (rGE) or the association between genetic differences
and differential environmental exposure. A commonly used exam-
ple is intellectual enrichment for children. Brighter parents pass
their genes for intelligence on to their children and may also
provide them with more intellectually stimulating home environ-
ments. They may do this both because they are expressing their
own intellectual interests to their children and because they are
responding to their children’s expression of intellectual interests,
reinforcing their further development and expression in the chil-
dren.

The existence and importance of associations between genetic
and environmental influences is consistent with the concept that
natural selection governs the patterns of genetic influences within
and across populations. Over time, genes that facilitate reproduc-
tive fitness in a given environment increase in frequency and
ultimately reach fixation, whereas genes that impede reproductive
fitness are gradually eliminated. Differences in response to the
environment caused by genetic differences are the raw material for
this process (Ridley, 2003). But the environment is not a unitary,
constant set of circumstances, and individual efforts to seek or
create environments compatible with their genetic endowments are
fundamental to the process of evolution. There is a tendency to
think of evolution as a long-drawn-out process that took place
some time in the past, yet the day-to-day responses of individual
organisms to the environment and the adaptation of the environ-
ment to those responses are the stuff of which evolution is made.
Behavior takes place through genetic expression, yet genetic ex-
pression is dependent on the environment in which it takes place.
Given the wealth of accumulated evidence for genetic influences
on all other areas of biological, psychological, and behavioral
functioning, it is extremely unlikely that there are no genetic
influences on responsiveness to and selection of the environment.
For these reasons, we should expect G � E and rGE to be common
and fundamental means of genetic and environmental transactions
involving behavior, and identifying and measuring them and their
effects should be a fundamental research goal.

Epidemiology is the study of the incidence, distribution, and
control of diseases in the population. Focus is generally placed on
identifying risk factors that contribute to the incidence and spread
of diseases, which ultimately means understanding their etiologies.
This approach can be applied to many issues in psychology that
involve the study of patterns of behavior in the population. When
behaviors are maladaptive or disruptive to social organization, the
concept of disease may be relevant to this approach, regardless of
whether the patterns of behavior meet some diagnostic disease
category. The concept of disease, however, is not necessary to the
use of an epidemiological approach to the study of behavior. What
is necessary is the focus on distributional and etiological patterns
at the level of the population. Given that all behaviors show both
genetic and environmental influences, illuminating the role of
gene–environment interplay in patterns of behavior is a crucial
task in understanding those patterns. It is only through understand-
ing this role that we will be able to develop constructive interven-
tions to interrupt or prevent maladaptive or socially disruptive

behavior patterns or to enhance socially constructive behavior
patterns.

This emphasis on understanding patterns of behavior at the level
of the population, without identification of involved individuals, is
compatible with the use of both quantitative genetic and molecular
genetic techniques as used in genetic epidemiology. Quantitative
genetic techniques provide estimates of the relative magnitudes of
omnibus genetic and environmental influences without the neces-
sity of specifying the actual DNA sequences or environmental
circumstances that provide those influences. These quantitative
genetic techniques have been invaluable in demonstrating the
existence of genetic influences on behavior. Yet the ways in which
these techniques traditionally have been applied have been based
on the assumption that genetic and environmental influences are
independent, and, thus, they provide only a snapshot, still-life view
of their relative magnitudes. The population forces identified by an
epidemiological approach have their effects on individuals one at
a time in a changing world, and distributional and epidemiological
patterns have to reflect both the lack of independence between
genetic and environmental influences and the fact that these influ-
ences may not be static across environments, population groups, or
over time. Like wizards, we need a quantitative genetic snapshot
view that provides some sense of the dynamic nature of the subject
under study. A still-life Muggle photo will not do.

Two recent articles have dealt extensively with the role of
gene–environment interplay in psychopathology (Moffitt, Caspi,
& Rutter, 2006; Rutter, Moffitt, & Caspi, 2006), and their discus-
sion is relevant to patterns of behavior in populations more gen-
erally. These articles have defined the following four forms of
gene–environment interplay: variations in genetic influence ac-
cording to environmental circumstances (quantitative), epigenetic
programming (environmental effects on gene expression), G � E
correlation (rGE), and G � E between specific DNA sequences and
specific measured environments. This article addresses the rela-
tions among quantitative G � E, rGE, and G � E between specific
DNA sequences and specific measured environments, with partic-
ular emphasis on the information provided by the quantitative
genetic model of G � E and rGE. To accomplish this, I use the
classic epidemiological puzzle of the income–health gradient
(Adler et al., 1994; Antonovsky, 1967; Marmot et al., 1991) as an
example to illustrate the kinds of information provided by a
quantitative genetic approach that explicitly recognizes the possi-
bility of gene–environment interplay. The findings I describe are
documented in detail in Johnson and Krueger (2005) and are based
on data from the twin sample of the MacArthur Survey of Midlife
Development in the United States (MIDUS; Kendler, Thornton,
Gilman, & Kessler, 2000; Kessler, Gilman, Thornton, & Kendler,
2004). Many of the concepts I address are not new; they were
discussed in the classic work of Jinks and Fulker (1970). They
deserve fresh treatment, however, because of the explosion in
quantitative and molecular genetic methodological power and
knowledge in the nearly 40 years since that work was published.

To ensure that readers can interpret the example I use, the
current article begins with some background information about the
income–health gradient. I then introduce a quantitative genetic
model that includes provision for gene–environment interplay and
show how the existence of quantitative G � E implies the exis-
tence of corresponding kinds of rGE by using the income–health
gradient as an example. From there, I describe how the gene–
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environment interplay model can be used to operationalize the
investigation of the involvement of socially selective and causative
forces in the manifestation of associations between environmental
risk factors and outcomes, again with special focus on the income–
health gradient as an example. I then show how information about
G � E between specific DNA sequences and specific measured
environments fits within the context of this model and how op-
posing environmental forces and imprecise measurement may
complicate identification of underlying patterns of association. I
conclude with a discussion of how investigating the nature of
gene–environment interplay makes possible the articulation of
new and specific research questions that should illuminate difficult
issues in understanding patterns of behavior.

The Income–Health Gradient

The income–health gradient is the name given to the robust
association between income and physical health. The same general
phenomenon is sometimes called the SES–health gradient, when
education and job status are combined with measurement of in-
come. People with greater financial resources tend to have better
physical health. The association is well established throughout
history. It transcends national boundaries, existing in wealthy and
developing nations alike (Adler et al., 1994; Antonovsky, 1967). It
also transcends political systems. In particular, it transcends sys-
tems of health care delivery and is observed in countries with
socialized medicine and national health care as well as in countries
with free-market systems (Adler & Snibbe, 2003). It may seem
obvious that people in severe poverty might have poorer physical
health because of the effects of poor nutrition, crowded and dirty
living conditions, and inadequate medical care. The association,
however, exists across the income range. Those in the highest
income levels have better health than those just below them, just as
those just above the poverty line have better health than those
actually in poverty (Marmot et al., 1991). The association also
transcends disease categories, including mental health, applying to
almost all known medical conditions (Adler & Snibbe, 2003).
Historically, in the few cases of diseases that have been more
prevalent among the wealthy than among the poor, the situation
has reversed with growth in knowledge of the etiology of the
disease. Gout, heart disease, and lung and breast cancer are exam-
ples of this (Gottfredson, 2004).

Adler et al. (1994) examined possible explanations for the
association. First, they addressed the possibility that the relation is
the result of common underlying genetic influences. If this were
the case, they claimed, physical size or intelligence, for example,
could contribute directly to both income and physical health,
resulting in a spurious association between them. Adler et al.
noted, however, that the association between job status and health
persists after adjustment for height and body mass index (Marmot
et al., 1991) and that intellectual capacity does not appear to be
reliably linked to health. Thus they deemed this explanation for the
association unlikely. By implication at least, Adler et al. rejected
the behavioral implications of this possibility. That is, if geneti-
cally influenced traits like intelligence and personality were to
contribute to both occupational development and health mainte-
nance behaviors or to both behaviors that confer health risks and
difficulties in maintaining income, it would be more difficult to
think of the association as socially driven. This is because it would

be likely that the association would involve expression of some
single volitional trait, such as personal control. This possibility is
known as social selection in the psychopathology literature.
Though research subsequent to Adler et al. (1994) has made clear
that substantive associations between intellectual capacity and
physical morbidity and mortality do exist (e.g., Deary, Whiteman,
Starr, Whalley, & Fox, 2004; Gottfredson, 2004), the social selec-
tion explanation for the income–health gradient has not been
actively pursued.

Alternatively, Adler et al. (1994) suggested that income influ-
ences biological functions that in turn affect health status. This
possibility has become the focus of most subsequent research in
this area. The basic conceptual framework for that research is that
lower income is associated with increasing demands and decreas-
ing resources for dealing with those demands (Adler & Snibbe,
2003). The mismatch between demands and resources at lower
income levels creates both greater exposure to stress and greater
psychological response to that stress. The resulting stress reactivity
among individuals of lower income increases biological dysregu-
lation, which, when chronic, may make these individuals more
vulnerable to disease (Cannon, 1942; Dohrenwend, 2000; Dohren-
wend, Shrout, Link, Skodol, & Martin, 1986; Gallo & Mathews,
2003). This possibility is known as social causation in the psy-
chopathology literature.

McEwen (1998) has suggested a way to operationalize the
notion of the presumed effects on physical health of chronic
biological disregulation brought on by stress. He compiled a com-
bination of indicators of these effects he termed allostatic load,
including systolic and diastolic blood pressure, waist-to-hip ratio,
HDL and LDL cholesterol, blood glycosylated hemoglobin (an
indicator of glucose levels over the past 2–3 months), and the
hormones cortisol, dehydroepiandrosterone, epinephrine, and nor-
epinephrine. Allostatic load appears to increase with decreasing
income among older adults and to be associated with general
physical and cognitive decline, cardiac events, and mortality (e.g.,
Karlamangla, Singer, McEwen, Rowe, & Seeman, 2002; Singer &
Ryff, 1999). The indicators involved in allostatic load as well as
most of the common chronically debilitating physical health con-
ditions, including heart disease, arthritis, many cancers, and dia-
betes, are generally acknowledged to be genetically influenced to
some significant degree (e.g., Komaroff, 1999). As the income–
health association tends to be strongest among these common
chronic illnesses (Adler & Snibbe, 2003), it is clear that gene–
environment interplay must be involved in some way in the asso-
ciation.

Data from humans and from studies of experimental animals
suggest the manner of involvement. Genes for metabolic efficiency
that enable adaptation to biologically stressful environments play a
primary role in affecting lifespan and, by implication, health
(Parsons, 2003). In the common fruit fly Drosophila melanogaster,
for example, genetic variability for fitness, and especially mortal-
ity, increases in situations of high biological stress (Parsons, 2002).
Tiret (2002) noted that genes for disease susceptibility also show
amplified effects in the presence of triggering environmental risk
factors. Possession of a specific gene in certain rats, for example,
is associated with significantly greater adiposity, glucose intoler-
ance, circulating leptin levels, and blood pressure during high-fat-
diet feeding but not during normal-diet feeding (Pauzova et al.,
2003). Genes associated with diabetes in humans have shown
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similar effects (Weiss, Brown, Shuldiner, & Hagberg, 2002).
These findings can be summarized as examples of the stress–
diathesis model, in which environmental stressors transact with
genetic vulnerabilities to produce illness and other decrements in
well-being (Gottesman & Shields, 1972; Rosenthal & Kety, 1968).
They can also be generalized to suggest that genetic influences on
physical health problems increase with the increasing stress asso-
ciated with decreasing income.

This was in fact the finding of Johnson and Krueger (2005) in a
study based on data from the twin sample of the MIDUS. In that
study, the model described in detail below was used to measure the
effects of income on genetic and environmental variance in phys-
ical health. Results indicated that genetic variance in two measures
of physical health, chronic illnesses and body mass index, de-
creased by roughly a factor or two across the range of income in
the sample. This was true after adjustment for participants’ levels
of education and the presence or absence of health insurance
coverage. Variance in both shared and nonshared environmental
influences remained constant. The changes in genetic variance
with income were associated with changes in the correlation be-
tween genetic influences on physical health and income as well:
When income was high, the correlation between genetic influences
on the two traits was high as well. When income was low, the
correlation between genetic influences was also low. I use the
results of the previous study as an example of how understanding
gene– environment interplay can help us to understand the
income–health gradient and, more generally, social processes of
interest.

The Full Quantitative Gene–Environment Interplay Model

Figure 1 shows the standard, most common model of genetic
and environmental influences on a measured phenotype or trait
(e.g., physical health problems [HP]) for a single individual, who
is usually, in most studies, one member of a twin pair (Jinks &
Fulker, 1970). The parameter estimates shown in the figure come

directly from the data used for the Johnson and Krueger (2005)
study I described above. In that study, standardized variables were
used, but this may not always be the optimal metric. Under this
model, latent genetic influences (denoted by “A” for genetic in-
fluences that are considered additive: Each gene involved presum-
ably contributes something to the manifestation of the trait inde-
pendently of the contributions of the other genes involved) on HP
are constant for all individuals in the population and independent
of both shared and nonshared environmental influences (denoted
by “C” for common environmental influences that act to make
members of twin pairs similar to each other, regardless of their
zygosity, and denoted by “E” for environmental influences and
measurement error that act to make members of twin pairs differ-
ent from each other, respectively). C and E are, like A, constant
across the population, and all three are independent of each other.
No specific genes or specific environmental effects are measured.
The model includes no provision for gene–environment interplay
and in fact is based on the assumption that no such interplay is
present (Jinks & Fulker, 1970). It is like a standard photograph: a
still-life snapshot of a constrained version of the genetic and
environmental situation.

Use of this model to study HP still provides important information,
even if gene–environment interplay is involved. The resulting esti-
mates are, however, applicable only on an overall, average
population-level basis, and they contain systematic distortions that are
due to any gene–environment interplay that does exist. These distor-
tions have different effects, depending on the nature of the gene–
environment interplay. Specifically, quantitative G � E between
genetic and shared environmental influences acts to increase estimates
of genetic influence; quantitative G � E between genetic and non-
shared environmental influences acts to increase estimates of non-
shared environmental influence (Jinks & Fulker, 1970; Purcell, 2002).
The rGE between genetic and shared environmental influences acts to
increase estimates of shared environmental influence; the rGE be-
tween genetic and nonshared environmental influences acts to in-
crease estimates of genetic influence (Jinks & Fulker, 1970; Purcell,
2002). In the constant model in Figure 1, the parameter estimates
indicate that 41% (.642/[.642 � .772]) of the variance in HP is under
genetic influence, and the remainder of the variance is under non-
shared environmental influence.

A single specific measured environment, household income
(HI), which shows the association with the measured phenotype of
HP in the income–health gradient, is introduced in Figure 2. The
figure shows that HI has a linear relation with HP, such that greater
HI is associated with fewer HP. There is no gene–environment
interplay involved in this model either, so the estimated genetic
and environmental influences remain subject to the limitations and
to the distortions described for the model in Figure 1. Consistent
with this, the parameter estimates of genetic and environmental
influences are the same as in Figure 1, but there is an additional
main effect of HI of �.13, indicating that less HI is associated with
more HP.

The model shown in Figure 3 adds provision for the possibility
that HI moderates the genetic and environmental influences on HP
that are independent of the main effect of HI (Purcell, 2002). That
is, these genetic and environmental influences on HP are no longer
limited to being constant. Instead, they vary with level of HI and
thus can move as in a wizard’s photo. The figure shows linear
relations: Each source of influence can be quantified as a constant

HP

C

E

A

a (.64)

c (.00)

e (.77)

Figure 1. Standard model of genetic and environmental influences on a
trait, such as health problems (HP). “A” refers to additive genetic influ-
ences, “C” to shared environmental influences, and “E” to nonshared
environmental influences. The open square represents the measured vari-
able of primary interest, and the open circles represent the latent variables.
Parameter estimates are in parentheses.
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plus some coefficient multiplied by HI (e.g., a � � � HI), but
there is no intrinsic reason that the relation must be linear. In
particular, quadratic terms can easily be added and tested for
statistical significance.

Here, the possibility of one kind of quantitative G � E, along
with analogous possibilities of interactions between environmental
influences, is recognized, and the model thus seems very sophis-
ticated. In particular, we see that genetic influences on HP vary
with level of HI. When HI is two standard deviations below the
mean, genetic variance in HP is .52 (.46 � .13 � 2)2. Nonshared
environmental variance here is .55 (.74 � 0 � �2)2, so genetic
variance is 49% (.52/[.52 � .55]) of the total. In contrast, when HI
is two standard deviations above the mean, genetic variance in HP
is .04 (.46 � .13 � 2)2. Nonshared environmental variance is again

.55, so genetic variance is 7% (.04/[.04 � .55]) of the total. At
mean HI, genetic variance is .21 (.46 � .13 � 0), or 28%
(.21/[.21 � .55]) of the total. The way in which the interactive
effects are recognized, however, is so limited that we really learn
little about the nature of the association between HI and HP,
regardless of whether the model indicates the presence of any of
these interactive effects.

This is because the model still includes provision for a main
effect of HI on HP, yet it does not explain the genetic and
environmental influences on that main effect. We can see this
because the variance components, both genetic and environmental
but especially genetic, are much smaller in this model than in the
models in Figures 1 and 2. This is not so apparent from examina-
tion of the proportions of variances involved, but it is very appar-
ent from examination of the raw variance components. The model
in Figure 3 does not explicitly quantify the variance common to
HP and HI. From this model alone, we therefore do not know how
much of the variance in HP is unique to HP and how much is
common to HP and HI—or how the common and unique portions
of the variance can be attributed to genetic and environmental
influences—because only the variance unique to HP is measured.
For this reason, I have put a rectangle around the main effect
parameter in Figure 3. We do learn something about the original
main effect: The parameter estimates for this case indicate that the
G � E that the model picks up reduces the undecomposed main
effect from �.13 to �.03 (Figure 3 vs. Figure 2). Estimation of the
main effect of HI is necessary in this model in order to guarantee
that we do not estimate interactive effects that are not actually
present (Purcell, 2002), and it provides comparative information
about the extent to which the estimated G � E accounts for the
observed main effect. Some portion of the income–health gradient
remains to be explained, however, and this portion must be bound
up in the influences common to HI and HP.

Figure 4 shows the full quantitative gene–environment interplay

HP

C

E
HI

A

a + βa*HI (.46,-.13)

µ + βM*HI (-.03) 

c + βc*HI (.00,.00) 

e + βe*HI (.74,.00)

Figure 3. Model of genetic and environmental influences on health prob-
lems (HP), allowing for the possibility that household income (HI) moderates
the influences unique to HP. “A” refers to additive genetic influences, “C” to
shared environmental influences, and “E” to nonshared environmental influ-
ences. Parameter estimates are in parentheses. The first number in the pairs is
the estimate for A, C, or E, and the second is the estimate for the associated
beta. The open triangle represents the measured variable acting as moderator,
the open square reflects the measured variable of primary interest, and the open
circles represent the latent variables. The rectangle indicates that this pathway
is not fully articulated in the model.

Physical
Health

C

E

A

aH + βaH*HI
(.46,-.13)

cH + βcH*HI
(.00,.00) 

eH + βeH*HI
(.74,.00) 

Household
Income

C

EA

aC + βaC*HI
(.33,.00)

cC + βcC*HI
(.00,.00) eC + βeC*HI

(.08,.00) 
aC
(.73)

cC
(.00) 

eC
(.76) 

Figure 4. Full model of genetic and environmental influences on health
problems (HP), allowing for the possibility that household income (HI)
moderates both the influences common to HP and HI and the influences
unique to HP. “A” refers to additive genetic influences, “C” to shared
environmental influences, and “E” to nonshared environmental influences.
Parameter estimates are in parentheses. The open squares reflect the
measured variables of primary interest, and the open circles represent the
latent variables.

HP

C

E
HI

A

a (.64)

c (.00) 

µ - βM*I (-.13) 

e (.77)

Figure 2. Model of genetic and environmental influences on health prob-
lems (HP), including the negative main effect of household income (HI) on
HP. “A” refers to additive genetic influences, “C” to shared environmental
influences, and “E” to nonshared environmental influences. The open triangle
represents the measured variable acting as moderator, the open square reflects
the measured variable of primary interest, and the open circles represent the
latent variables. Parameter estimates are in parentheses.
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model (FQGEIM). This is the full model of the possible ways in
which HI may be associated with HP (Purcell, 2002). “Full model
of the possible ways” may seem like a strong claim, but it is
appropriate. This is because the model articulates all reasonable
possibilities, at least with respect to these two admittedly highly
complex variables and the overall distinction between unspecified
genetic and environmental influences at the quantitative level at a
single point in time. The model I am terming full can be enhanced
still further by considering the possibilities of nonadditive as well
as the additive genetic influences and assortative mating, but
provisions for these introduce model identification problems in
most samples and at best refine the overall picture provided by the
model, so I have omitted them here to simplify presentation. Under
this model, the main effect of HI on HP that was shown in the
rectangle in Figure 3 is decomposed into its genetic and environ-
mental components. This allows for the estimation of genetic and
environmental influences common to both HI and HP so that we
can see their size relative to those that are unique to HP. This also
allows for the possibility that HI moderates these common genetic
and environmental influences as well as those unique to HP. Of
course, not all of these interactive effects need to be present, and
in this example they are not: The only interactive effect is quan-
titative G � E on the variance that is unique to HP, so the betas
associated with all but the genetic variance unique to HP are 0. The
model simply allows for their measurement to the extent that they
are present. Because of this, this model is like a wizard’s photo:
The subjects in it can move about at will.

There is another major point that this model makes clear: HI is
not just a measure of an external environmental effect on the
individual. It is a trait of the individual, like HP, and is subject to
genetic and environmental influences in the same ways. Like the
influences on HP, some of these influences on HI may be shared
with HP (and with those on other traits), but some may be unique
to HI. I have specified the model so that HP is the trait of interest
and HI is the moderator, but there is no reason that the situation
could not be reversed. In fact, this is another major feature of the
FQGEIM. As I have specified it, with HP as the trait of interest and
HI as the moderator, I am using it to examine the effects of HI on
HP. Research involving the income–health gradient has indicated
that most of the effects appear to flow in this direction (Adler &
Snibbe, 2003), but there is evidence for smaller effects of HP on
HI as well (Adler & Snibbe, 2003). The nature of the genetic and
environmental influences involved in these effects could be ex-
plored with the FQGEIM in the same way, simply by reversing the
order of entry of the variables in the model.

This full model also provides estimates of rGE as well as
estimates of correlations among environmental influences. The
model makes clear the intrinsic relationship between quantitative
G � E and rGE at the quantitative genetic level. From the terms in
the model, rGE is calculated as follows:

rGE �
aC � �aC � HI

�(aC � �aC � HI)2�(aHP � �HP � HI)2. (1)

Analogous formulas can be written for the correlations between
the environmental influences, which are termed shared or non-
shared environmental correlations. The formula looks messy, but it
is analogous to the conceptualization of the ordinary correlation as
the square root of the proportion of the variance common to the

two variables being correlated. The notation is the same as in the
figures, so the “a”s refer to the parameters for genetic influences.
The subscript “C”s on the “a”s indicate that these genetic influ-
ences are common to both HI and HP. The subscript HPs indicate
that these genetic influences are unique to HP. The numerator in
the formula is the square root of the portion of variance in HP
common to HI and HP. The denominator in the formula is the
square root of the full variance in HP; its first squared term
represents the portion of variance in HP common to HI and HP,
and its second represents the portion of variance unique to HP. The
formula generates amounts that range from –1 to 1 in the manner
usual to correlations. The formula also points out that the term rGE

is something of a misnomer: It is shorthand for what is usually
referred to as gene–environment correlation, but the mathematical
expression really refers to the extent to which there are genetic
influences common to a trait and some other variable that could be
considered the environment in which the trait occurs. Another
shorthand term sometimes used is ra, and I use this term in
referring to specific calculated values.

Examination of Equation 1 makes clear that rGE and G � E are
inextricably linked. It also shows that the linkages between them
function lawfully. If there are no genetic influences common to HP
and HI, there is no rGE. But whenever there are genetic influences
common to HP and to HI, rGE will be more substantial at some
parts of the range of HI than at others, most often at one end of the
range. The parts of the range of HI in which rGE is most substantial
will not always be the same. Rather, it will depend on several
factors. The most important is the relative magnitudes of genetic
influences common to HP and HI and unique to HP across the
range of HI, that is, the maximum possible magnitude of rGE. But
factors related to the G � E effect are also important. These factors
include its magnitude, whether it expands or contracts variance
with increases in HI, and whether it affects the genetic variance
common to HP and HI or the genetic variance unique to HP.

When there is no moderation by HI on genetic influences
common to HI and HP, the numerator and the first term of the
denominator are constant, so the formula reduces to the following:

rGE �
aC

�aC
2 � (aHP��HP � HI)2. (2)

In this case, the direction of the moderation by HI on the genetic
variance unique to HP determines what happens to rGE. If the beta
parameter is positive, so that genetic influences on HP expand when
HI is high, then the genetic correlation is lower in high-HI environ-
ments than in low-HI environments. This has to be true: It is a direct
result of the relations among the parts of the model and is dictated by
the terms of the correlation formula. In contrast, if the beta parameter
is negative (as is the case here) so that genetic influences on HP
expand when HI is low, then the genetic correlation is higher in
high-HI environments than in low-HI environments. Again, this has to
be true: The genetic correlation is linked directly to the nature of the
quantitative G � E effect of the moderator HI. Figure 5 summarizes
the parameter estimates that actually resulted from the model for HP
and HI in the MIDUS data (Johnson & Krueger, 2005). These results
indicate that the simplified models that did not include provision for
gene–environment interplay actually did not produce overall esti-
mates of genetic and environmental influences that were substantively
distorted. That is, at two standard deviations above mean HI, genetic
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variance in HP was .10; and at two standard deviations below mean
HI it was .62. Somewhere in the middle of the distribution, not far
from the mean of HI, it was .41, just as in the model shown in
Figure 1. This is because the overstatement of average nonshared
environmental influences caused by the G � E between genetic and
nonshared environmental influences was offset by the overstatement
of average genetic influences caused by the rGE between the same
genetic and environmental influences. This kind of situation is likely
common, but it should be measured rather than assumed.

When there is no moderation of the genetic influences that are
unique to HP, the second term in the denominator of Equation 1 is
constant, so the formula reduces to the following:

rGE �
aC � �aC � HI

�(aC � �aC � HI)2 � aHP
2. (3)

Again, the direction of the moderation by HI on the genetic
variance common to HI and HP determines what happens to rGE.
If the beta parameter is positive, so that the common genetic
variance expands when HI is high, then the genetic and environ-
mental correlation is higher when HI is high than in low-HI
environments. If the beta parameter is negative, so that the com-
mon genetic variance expands when HI is low, then the genetic and
environmental correlation is higher when HI is low than in high-HI
environments. Of course, if there is quantitative G � E on both the
genetic variance common to HI and HP and unique to HP, all bets
are off as to how the rGE will move. It depends on the relative sizes
of the common and unique genetic variances and the relative
strengths and directions of the quantitative G � E effects. Addi-
tional complications also arise if HI moderates the environmental
variance in HP. The important points are, however, that these
factors do determine the links between quantitative G � E and rGE

at the quantitative genetic level and that the single model shown in
Figure 4 will illuminate these associations.

Table 1 shows how the relations between quantitative G � E
and rGE vary with different combinations of common and unique
genetic and environmental variance components and different
strengths and directions of quantitative G � E effects. Column 1
of the table shows all the parameters from the full model of log of

chronic physical illnesses (HP) moderated by log of household
income (HI) from the MIDUS data, modified slightly from John-
son and Krueger (2005) to simplify presentation because that
model included a provision for nonadditive genetic variance. In
addition to the model parameters, column 1 shows the correlations
between genetic and environmental influences on HP and HI
derived from the model parameters. Because these correlations
differ across the range of HI when quantitative G � E is present,
the derived correlations are shown at two standard deviations
below mean HI, at the mean of HI, and two standard deviations
above the mean of HI. Column 1 also shows the raw components
of variance in HP attributable to genetic and environmental influ-
ences derived from the model parameters. Because quantitative
G � E alters the components of variance in HP with level of HI,
the variance components are also shown at three levels of HI. To
find the proportions of variance commonly used, one would divide
one component by the sum of the two. So, for example, at two
standard deviations below mean HI, genetic influences account for
52% (.62/[.62�.57]) of total variance in HP, whereas at two
standard deviations above mean HI, genetic influences account for
only 15% (.10/[.10�.57]) of HP. Finally, column 1 shows the
overall main effect (the correlation between HP and HI) and the
parts of this overall main effect attributable to G � E, involving
common and unique genetic influences.

In the actual data, the G � E effect involved only genetic
influences unique to HP, and the effect acted to increase genetic
influences on HP in the presence of lower HI. At the same time,
there were some genetic influences common to HP and HI, and
these influences were constant across the range of HI. This meant
that rGE was higher in the presence of higher HI. It also implied
that the genes likely primarily influencing HP in low-HI situations
were not the same as the genes likely primarily influencing HP in
high-HI situations. Because there was no income moderation of
environmental influences, the full main effect was mediated ge-
netically. About one quarter of the variance was due to common
genetic influences and the other three quarters was due to envi-
ronmental effects of HI on unique genetic variance in HP. Figure 5
provides a graph of the actual data situation.

To provide a sense of how the parts of the model fit together, the
remaining columns of Table 1 show what happens to the model
parameters and derived statistics when the nature of the quantitative
G � E is arbitrarily manipulated. All of the model parameters and
derived statistics are shown, regardless of whether they vary in any of
the manipulations, because it helps to make clear exactly what varies
and what does not with each manipulation. I have limited the manip-
ulations to trading moderation of genetic influences for moderation of
nonshared environmental influences in order to keep the examples
reasonably straightforward, but in real life there is no reason that there
could not be moderation of both genetic and nonshared environmental
influences, nor is there any reason that the direction of moderation of
the two kinds of influence would necessarily be in the same direction.
Furthermore, I have not addressed the possibility of moderation of
shared environmental influences, again only in order to keep the
examples reasonably straightforward, as moderation of this kind can
also take place. The FQGEIM can estimate all of these forms of
moderation as well. As with any quantitative genetic model, the
power to do so in a given sample will vary with the kinds of genetic
relatedness present in the sample, the relative magnitudes of the
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Figure 5. Variance in chronic health problems over range of income, by
source of variance, from actual MacArthur Survey of Midlife Development
in the United States data. The circle shows the location of higher gene–
environment correlation.
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Table 1
Actual and Hypothetical Results From Quantitative Genetic Model of Income–Health Gradient

Parameter or derived
result

Actual
data
(1)

Place G � E
effect on common
instead of unique

(2)

Reverse direction
of G � E effect

(3)

Place G � E
effect on E

instead of A
(4) (2) & (3) (2) & (4) (3) & (4) (2), (3), & (4)

Influences on HI

aHI .73 .73 .73 .73 .73 .73 .73 .73
cHI .00 .00 .00 .00 .00 .00 .00 .00
eHI .76 .76 .76 .76 .76 .76 .76 .76

Influences on HP that are common to HI

aC .20 .20 .20 .20 .20 .20 .20 .20
cC .00 .00 .00 .00 .00 .00 .00 .00
eC �.08 �.08 �.08 �.08 �.08 �.08 .08 .08

Influences on HP that are unique to HP

aHP .50 .50 .50 .50 .50 .50 .50 .50
cHP .00 .00 .00 .00 .00 .00 .00 .00
eHP .75 .75 .75 .75 .75 .75 .75 .75

Moderating parameters on influences on HP that are common to HI

�aC .00 �.13 .00 .00 .13 .00 .00 .00
�cC .00 .00 .00 .00 .00 .00 .00 .00
�eC .00 .00 .00 .00 .00 �.13 .00 .13

Moderating parameters on influences on HP that are unique to HP

�aHP .13 .00 .13 .00 .00 .00 .00 .00
�cHP .00 .00 .00 .00 .00 .00 .00 .00
�eHP .00 .00 .00 �.13 .00 .00 .13 .00

Correlations between genetic influences on HI and HP

ra at �2SDHI �.25 �.68 �.64 �.37 .12 �.37 �.37 �.37
ra at mean HI �.37 �.37 �.37 �.37 �.37 �.37 �.37 �.37
ra at 2SDHI �.64 .12 �.25 �.37 �.68 �.37 �.37 �.37

Correlations between nonshared environmental influences on HI and HP

re at �2SDHI �.11 �.11 �.11 �.16 �.11 �.41 �.08 .23
re at mean HI �.11 �.11 �.11 �.11 �.11 �.11 �.11 �.11
re at 2 SDHI �.11 �.11 �.11 �.08 �.11 .23 �.16 �.41

Genetic variance in HP

AHP
2 at �2SDHI .62 .46 .10 .29 .25 .29 .29 .29

AHP
2 at mean HI .29 .29 .29 .29 .29 .29 .29 .29

AHP
2 at 2SDHI .10 .25 .62 .29 .46 .29 .29 .29

Nonshared environmental variance in HP

EHP
2 at �2SDHI .57 .57 .57 .25 .57 .68 1.03 .59

EHP
2 at mean HI .57 .57 .57 .57 .57 .57 .57 .57

EHP
2 at 2SDHI .57 .57 .57 1.03 .57 .59 .25 .68

Main effects

Overall �.13 �.13 �.13 �.13 �.13 �.13 �.13 �.13
Common �.03 �.10 �.03 �.02 �.10 �.09 �.03 �.02
Unique �.10 �.03 �.10 �.11 �.03 �.04 �.10 �.11

Note. The genetic (G) and environmental (E) influences are variance components, not proportions of variance. The parameters altered, in each scenario
are indicated in bold. As in the text “a” and “A” refer to genetic influences; “c” and “C” refer to shared environmental influences; “e” and “E” refer to
environmental influences. In subscript, C refers to influences common to household income (HI) and chronic health problems (HP); � refers to the
moderating parameters in the model. Thus, for example, �cC refers to the moderating parameter on shared environmental influences common to HI and
HP; ra at 2 SDHI refers to the extent to which genetic influences on HP are common to those on HI at two standard deviations below mean HI; EHP

2 at
�2SDHI refers to nonshared environmental variance unique to HP at two standard deviations below mean HI. The genetic correlations differ from those
shown in Johnson and Krueger (2005) because I made a simplifying assumption that there was only additive genetic variance in HP for this presentation.
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relevant components of variance, and the degrees of moderation
present.

In the first manipulation, in column 2 of Table 1, the only
manipulation is that the quantitative G � E is moved from the
genetic variance unique to HP to the genetic variance common to
HI and HP. The magnitude of the moderation by HI remains the
same. As the table shows, this has two effects on rGE: It increases
the change in rGEs across the range of HI because the effect is
greater in relation to the smaller genetic variance common to HP
and HI than that unique to HP. Much more important, it reverses
the direction of the moderating effect so that rGE is lower in higher
HI than in lower HI situations. This takes place because modera-
tion of the genetic influences common to HP and HI affects the
numerator of the formula for rGE as well as the denominator. Note
that genetic influences on HP at mean HI remain constant, and the
overall change in genetic influences with change in HI is smaller
than when HI moderates the genetic influences unique to HP. As
with the change in rGE, this takes place because fewer of the
genetic influences on HP are common to both HP and HI than are
unique to HP. In this situation, the main effect is still completely
genetically mediated, but about three quarters is due to genetic
influences common to HI and HP, whereas only one quarter is due
to environmental effects on genetic influences unique to HP.
Figure 6 provides a graph of this situation.

The second manipulation, shown in column 3 of Table 1,
changes only the direction of the moderating effect of HI on the
genetic influences unique to HP. This reverses the effects on both
the genetic variance and rGE: Genetic variance is now higher in
high-HI environments than in low-HI environments, and rGE is
higher in low-HI environments than in high-HI environments.
There is no overall effect on the magnitudes of genetic or envi-
ronmental influences, and the main effect is the same as in the
actual data. This is shown in Figure 7. Column 4 of Table 1 and
Figure 8 show what happens when the moderating effect is moved
from the genetic variance unique to HP to the nonshared environ-
mental variance unique to HP. Now both the genetic variance and
rGE are constant across the range of HI, but the nonshared envi-
ronmental variance increases sharply. As proportions of total vari-

ance, genetic influences go down as HI goes up. Though of the
same strength, the moderating effect on the nonshared environ-
mental variance unique to HP has a greater effect on total non-
shared environmental variance than was the case with the moder-
ating effect on the genetic variance in the actual data because the
nonshared environmental variance unique to HP is a greater pro-
portion of the total nonshared environmental variance in HP than
is the case with the genetic variance. In this situation, the main
effect is mediated environmentally.

The remaining columns of Table 1 show combinations of the first
three manipulations. When the moderating effect is moved from the
genetic variance unique to HP to the genetic variance common to HP
and HI and the direction of effect is reversed (Table 1, column 5), the
moderating effect on total genetic variance is dampened, and genetic
variance and rGE are both higher in high-HI environments than in
low-HI environments. The main effect is again mediated genetically
and much more strongly through the genetic variance common to HP
and HI. This situation is shown in Figure 9. Moving the moderating
effect to the nonshared environmental variance common to HP and HI
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Figure 6. Variance in chronic health problems over range of income, by
source of variance, with the quantitative gene–environment interaction
moved from genetic variance unique to health problems to genetic variance
common to health problems and income. The circle shows the location of
higher gene–environment correlation.
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Figure 7. Variance in chronic health problems over range of income, by
source of variance, with the direction of quantitative gene–environment
interaction reversed. The circle shows the location of higher gene–
environment correlation.
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Figure 8. Variance in chronic health problems over range of income, by
source of variance, with the moderating effect moved to unique, nonshared
environmental variance. The gene–environment correlation is constant
over range of income.
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has a more surprising result, shown in column 6 of Table 1 and in
Figure 10. As expected, genetic variance and rGE are now constant,
but nonshared environmental variance takes a quadratic form in which
it is greater in both low-HI and high-HI environments than in mid-HI
environments. The overall effect, however, is rather small. This takes
place because nonshared environmental variance common to HP and
HI is such a small proportion of total nonshared environmental vari-
ance. Once again, the main effect is mediated environmentally and the
majority of it acts through the variance common to HP and HI.
Reversing the directions of the effects in the situations shown in
Figures 8 and 10 has the results one would anticipate: As shown in
columns 7 and 8 of Table 1 and Figures 11 and 12, everything is
essentially reversed.

These manipulations make clear that the system of relations
among genetic and environmental influences on HI and HP is very
sensitive to the location of moderating effects of HI on variance in
HP. It would, of course, be conceptually possible for HI to affect
HP uniformly, with each dollar of additional household income

acting to reduce HP by a fixed amount that has no effect on
variance in HP. If this were the case, total as well as genetic and
nonshared environmental variance in HP would be constant across
the range of HI, and rGE would be a constant function of the
relative amounts of genetic variance in HP common to HP and HI
and unique to HP. But the existence of rGE, which is an inevitable
result of any genetic variance common to HP and HI, implies that
such a system will not be static over time. This is because indi-
viduals who differ genetically in ways that influence both HP and
HI will actively seek out as well as passively receive different
environmental experiences involving HI, but they will do this with
varying degrees of success over time. This introduces the likeli-
hood that genetic differences in HP will be expressed to differing
degrees in the different HI environments experienced. This, of
course, is G � E, with consequences for variance in HP of the
kinds shown in the manipulations presented here. Thus, as long as
there is genetic variance common to two traits, the presence of

.0

.4

.8

1.2

1.6

2.0

-3 -2 -1 0 1 2 3

Income in Standard Deviation Units

V
ar

ia
nc

e Genetic

Nonshared
Environment

Figure 9. Variance in chronic health problems over range of income, by
source of variance, with the quantitative gene–environment interaction
effect moved from genetic variance unique to health problems to genetic
variance common to health problems and income, direction reversed. The
circle shows the location of higher gene–environment correlation.
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Figure 10. Variance in chronic health problems over range of income, by
source of variance, with the moderating effect moved to nonshared envi-
ronmental variance common to health problems and income. The gene–
environment correlation is constant over range of income.
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Figure 11. Variance in chronic health problems over range of income, by
source of variance, with the moderating effect moved to nonshared envi-
ronmental variance unique to health problems and income, direction of
effect reversed. The gene–environment correlation is constant over range
of income.
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Figure 12. Variance in chronic health problems over range of income, by
source of variance, with the moderating effect moved to nonshared envi-
ronmental variance common to health problems and income, direction of
effect reversed. The gene–environment correlation is constant over range
of income.
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both G � E and rGE is likely, and they will be related in lawfully
constrained ways.

At the same time, it should be clear that the balance among these
relations may be rather fragile. That is, the balance among the
relations in which any two variables are involved may shift de-
pending on associations with other personal or environmental
variables that vary from place to place or over time. This may
affect the replicability of results from the model without implying
in any way that the results of any particular application of the
model were not accurate and relevant to the data from which they
were derived. This simply implies the need to identify and under-
stand the operative associations with whatever other variables are
relevant. I next discuss the theoretical and practical implications of
the system of relations among genetic and environmental influ-
ences on HI and HP.

Theoretical and Practical Implications of Results From
the FQGEIM

Parameter estimates from the FQGEIM provide important evi-
dence relevant to major theories of the incidence and consequences
of phenomena of interest. For example, one major and long-
standing theoretical debate concerns whether mental illness and
behavioral problems, such as antisocial behavior, arise from poor
social conditions such as poverty and maltreatment in childhood
(social causation) or whether they are caused by preexisting,
biologically based vulnerabilities that also result in drift into or
creation of unpleasant environmental conditions (social selection).
Social selection can occur through shared or nonshared environ-
mental as well as genetic influences, but I focus this discussion on
genetically influenced social selection because it is probably the
one most commonly considered. The concepts involved in envi-
ronmentally influenced social selection are the same, and the
FQGEIM can estimate their involvement as well. To simplify
discussion of genetically influenced social selection, I continue to
use the shorthand HP to refer to the manifested trait of concern, be
it health problems, mental illness, or behavioral problems. I also
continue to use the shorthand HI to refer to unfavorable environ-
mental conditions, be they poverty or maltreatment of any form.

In order for genetically influenced social selection to operate at
all, there must be genetic influences common to HP and HI, and
the FQGEIM provides an estimate of the degree to which this is
true. But genetic influences common to HP and HI are not suffi-
cient to render genetically influenced social selection the primary
explanation. This is because genetically influenced social selection
can only be taking place where there is some meaningful variation
in genetic influences on outcome HP. If genetic variance in HP is
constant across the range of HI, rGE must be high across that range,
but as discussed above, high rGE implies movement within the
range of HI over time, and thus constant genetic variance in HP
over HI is unlikely to be a stable situation. If genetic variance in
HP is not constant across the range of HI, then of course we have
G � E. Genetically influenced selection takes place when rGE is
high, and the part of the range in which this is true characterizes
the predominant direction of selection. If rGE and genetic variance
are both high at the same end of the environmental range, this
suggests that social selection predominates. If rGE is low in the part
of the range of HI in which there is greatest genetic variance (or
vice versa), then the more reasonable interpretation is that envi-

ronmental conditions are triggering expression of genetic influ-
ences unique to HP, which can be summarized as an example of
social causation.

Of course this is exactly what the FQGEIM measures. In fact,
the model makes possible an important insight about the social
process we label social causation. To the extent that social forces
actually exert effects on the people who experience them, very
commonly the most we can say is that they have effects on mean
levels or incidence rates of the trait involved, but they do not affect
all individuals who experience them in the same way. That is,
penetrance is incomplete. For example, poverty may cause greater
HP, but not everyone who lives in any given degree of poverty has
HP. When penetrance is incomplete in this way, the FQGEIM
shows us that, however direct the effects may be on the individuals
who experience them, it is not the effect on the mean level that is
important in understanding the social causation process involved.
Rather, the social causation process will exert differential effects
on the variance in the trait that depend on the level and nature of
the social processes experienced, and it is the nature of these
differential effects on the variance that really provides insight into
the specific mechanisms involved. Social causation may involve
differential effects on genetic or shared or nonshared environmen-
tal variance or any combination of the three, so the process
described above, which involves only genetic variance, is but one
example of a social causation process. The primary marker of a
social causation process is that it involves moderation of genetic
and/or environmental variance unique to the trait rather than ge-
netic and/or environmental variance common to the trait of the
social cause.

Table 1 can be used to illustrate how to interpret various kinds
of results from the model in terms of social selection versus social
causation. The actual HP and HI data (modified slightly as noted
above), shown in column 1 of Table 1 and Figure 5, indicate that
there are some genetic influences common to HP and HI and that
genetic variance unique to HP decreases with increasing HI. Thus
genetic variance is greatest in low-HI environments, but these are
also the environments in which rGE is lowest. Selection, to the
extent it is occurring, restricts genetic expression, and something
about the low-HI environment triggers genetic expression. So
social selection operates to some degree, but it operates to sort
people into higher HI environments, thus restricting the deleterious
expression of genetic influences unique to HP. The larger effect,
however, is from the action of social causation to enhance delete-
rious genetic expression. In contrast, if the G � E effect is on
genetic variance common to HP and HI, as shown in column 2 in
Table 1 and in Figure 6, then the situation is reversed and social
selection operates to sort people into lower HI environments.
When HI moderates the nonshared environmental rather than the
genetic influences, and rGE is therefore constant and of moderate
strength throughout the range of HI, as shown in columns 6, 7, and
8 of Table 1 and Figures 10, 11, and 12, then social selection can
be said to be operating to the extent of the magnitude of the genetic
correlation. Because nonshared environmental variance in HP also
changes with HI in these situations, however, we would say that
social causation is important as well.

The stress–diathesis model is another example of a well-known
theoretical or conceptual framework that can be operationalized
and measured with the use of the FQGEIM. According to the
stress–diathesis model, the presence of environmental stressors
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triggers expression of some trait for which latent predispositions
exist. The trait expressed can be positive, for example immune
response in reaction to vaccination, but the stress–diathesis model
has most commonly been applied to explain maladaptive vulner-
abilities to illness, disease states, or lack of well-being. These
kinds of traits are generally under genetic influence to some
degree; it is clear that genetic vulnerabilities likely are important
for some if not most outcomes (Rende & Plomin, 1992). The
stress–diathesis model is relevant when genetic and/or environ-
mental variance expands when the environment is poor (i.e., stress-
ful). Expansion of genetic variance with changes in level of an
environmental measure is also an example of epigenetic effects,
though of course the subject of epigenetics transcends much more
than this kind of example. Thus, as noted above, stress–diathesis
could be said to generate the actual data from MIDUS for the
income–health gradient, shown in column 1 of Table 1 and in
Figure 5. It could also be said to generate the situations shown in
columns 2 and 7 of Table 1 and in Figures 6 and 11. Note that the
implications for the proportion of total variance attributable to
genetic influence in HP are completely different, depending on the
source of the change in variance in HP with HI. When the source
is genetic, the proportion of variance in HP attributable to genetic
influence is higher in low-HI environments. When the source is
environmental, the reverse is the case. The stress–diathesis model
has nothing specific to say about rGE or whether HI moderates the
genetic variance common to HP and HI or unique to HP, but of
course the FQGEIM measures all this, so it provides additional
information to help articulate the social forces resulting in the
manifestation of the stress–diathesis relation.

In their fine article on social context in gene–environment
interactions, Shanahan and Hofer (2005) described two variations
of the stress–diathesis model. They termed the first of these two
variations social context as compensation. This variation is rele-
vant when a positive environmental situation acts to suppress the
expression of a genetic diathesis. For individuals or categorical
measures of environment and trait, the distinction between this
variant and the more common version of the stress–diathesis
model can be important. For example, we may compare the prev-
alence of diabetes in populations below the poverty level to that in
populations above the poverty level and attribute the difference to
the operation of the most common version of the stress–diathesis
model. In contrast, we may compare the social adjustment of
autistic children placed in an intensive program of early instruction
in social functioning to those not placed in such a program and
attribute the difference to the operation of the social context as
compensation model. When the environmental measure is contin-
uous, however, and the trait in question is highly polygenic and
measured at the level of the population so that there are so many
individuals involved that the incidence of the trait will vary con-
tinuously over the range of the environment, even if the trait is
measured categorically, the stress–diathesis and social context as
compensation models are equivalent. For example, it is very rea-
sonable to think of the income–health gradient as a manifestation
of the stress–diathesis model as described above, but it is just as
easy to think of it as a manifestation of social context as compen-
sation in which the benefits of higher income make possible the
suppression of genetic diathesis for poor health.

Shanahan and Hofer (2005) called the second of their two
variations on the stress–diathesis model social context as social

control. This variant is relevant when some form of social norm or
institutional constraint that restrains people’s behavior and limits
their choices prevents or minimizes expression of a genetic dia-
thesis. If the relative presence of social control is considered to be
the positive environment and the lack of social control is consid-
ered to impose stress of some kind, the result with respect to
genetic variance is the same as in the stress–diathesis situation:
Genetic variance is greatest in the environment in which social
control is relatively absent and is smallest in the socially controlled
environment. This model highlights the existence of an unstated
assumption underlying the FQGEIM: In conceptualizing these
models, we assume that the environmental measure (stress, some
form of compensation or enrichment, or social control) has the
same kind of main effect on all who experience it. But what if this
is not the case? For example, the social context as social control
model has been used to account for the existence of greater genetic
influences on disinhibitory behavior among teenagers in urban
than in rural settings (Boomsma, de Geus, van Baal, & Koopmans,
1999; Dick, Rose, Viken, Kaprio, & Koskenvuo, 2001; Legrand,
2004; Rose, Dick, Viken, & Kaprio, 2001). These studies have
observed similar prevalences of teen disinhibitory behavior in
urban and rural environments but have not investigated whether
genetic influences are common to both degree of urbanity of the
environment and disinhibitory behavior or are unique to disinhibi-
tory behavior. In addition, the average prevalence of disinhibitory
behavior in rural areas may reflect very different mixes of disin-
hibitory behavior from rural community to rural community. That
is, more rural areas may restrict social access, introducing social
control of a form that enhances expression of genetic tendencies to
behave in a disinhibitory way in some rural areas and suppresses
it in others. Such a situation would involve the interaction of two
environmental moderators: the restriction of social access due to
geographic isolation and the prevailing level of disinhibitory be-
havior to which social access is available. These kinds of situations
may not be unusual.

Shanahan and Hofer (2005) described one additional theoretical
or conceptual model involving G � E. They termed this model
social context as enhancement, but it has also been termed the
bioecological model (Bronfenbrenner & Ceci, 1994). This model
is effectively the opposite of the stress–diathesis model and its two
variations. When it is relevant, some positive environmental fea-
ture enhances genetic expression of positive or adaptive charac-
teristics. This is another example of the same limited kind of
epigenetic programming as the stress–diathesis model. Again, the
positive characteristics can be personal qualities under environ-
mental as well as genetic influences, but because personal qualities
are under genetic influences to at least some degree, genetic
influences will generally be involved. Like the stress–diathesis
model, this model says nothing about the relative importance of
genetic influences common to the positive environment and to the
trait of interest, and thus it says nothing about rGE, but social
causation and selection explanations for the links between the
positive environment and the trait of interest are determined by
measurement of the relative magnitudes of these influences.

Columns 3, 4, and 5 in Table 1 and Figures 7, 8, and 9 illustrate
possible examples of the social context as enhancement model. In
discussing these examples, I continue to use HP and HI to describe
the trait of interest and the environmental moderator for conve-
nience and consistency. It is not quite accurate, however, as HP
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cannot be reasonably considered positive or adaptive characteris-
tics. Most examples of this model in the literature have involved
education and intelligence (Guo & Stearns, 2002; Heath et al.,
1985; Rowe, Jacobson, & van den Oord, 1999; Turkheimer, Haley,
Waldron, D’Onofrio, & Gottesman, 2003) as the positive charac-
teristic, so think of HP as “higher performance” for the purpose of
these examples. Turkheimer et al.’s (2003) observation that both
children’s IQ’s and the genetic influences on them increased with
increasing parental socioeconomic status is typical of the social
context as enhancement model.

In column 3 of Table 1 and in Figure 7, genetic variance in HP
increases with increasing HI. Because the G � E effect is on the
genetic variance unique to HP, rGE is high when both HI and
genetic variance are low, and most of the effect would be attributed
to social causation rather than social selection. The only difference
between this situation and the situation shown in column 5 of
Table 1 and in Figure 9 is that the G � E effect falls on genetic
variance common to HP and HI. This makes rGE high when HI is
high and both genetic variance in HP and proportion of total
variance attributable to genetic influences are high. Now most of
the effect would be attributed to social selection rather than to
social causation. Finally, the situation in which the nonshared
environmental variance in HP increases with increasing HI is
shown in column 4 of Table 1 and in Figure 8. As noted above, the
effect on proportions of variance attributable to genetic and envi-
ronmental influences is reversed. Because genetic variance in HP
is constant across the range of HI, the proportion of total variance
due to genetic influences is lower in the high-HI environment than
in the low-HI environment.

Fitting G � E Between Specific DNA Sequences and
Specific Measured Environments Into the FQGEIM

In the past 5 years or so, there have been many reports of G �
E involving specific DNA sequences, psychopathologies or prob-
lem behaviors, and measured environments of interest. These
reports have been summarized well by Moffitt et al. (2006) and
Rutter et al. (2006). All of the reports to date of which I am aware
can be thought of as examples of the (generalized) stress–diathesis
model. That is, exposure to some environmental pathogen in-
creases the likelihood that a genetic vulnerability to psychopathol-
ogy will be expressed. This implies that individuals carrying one
commonly occurring allele of a gene will develop psychopathol-
ogy or problem behavior more often in the presence of the envi-
ronmental pathogen than will individuals carrying another com-
monly occurring allele of the same gene. In none of these reports,
however, does possession of any allele of the gene mean that an
individual will automatically develop the deleterious condition,
even in the presence of the environmental pathogen; in quantitative
genetic terms, penetrance is generally rather low. In fact, in many
cases there is no overall association between the possession of any
particular allele of the gene and development of the deleterious
condition at all. In all of these reports, however, there is a main
effect of the environmental pathogen and it is clear that some
individuals who do not carry the higher risk allele of the gene still
do develop the deleterious condition. Thus, it is clear that these are
dynamic situations dealing with exactly the kinds of forces the
FQGEIM measures. Because all of these reports follow the same

basic pattern, I select one of them to describe in sufficient detail to
show how it fits within the FQGEIM.

Caspi et al. (2003) noted that there was substantial evidence that
serotonin plays a role in risk of depression and that risk of adult
depression also has been reliably associated with childhood mal-
treatment and the prior experience of stressful life events in early
adulthood. At the same time, they noted that there had been several
failures to replicate the single report (Lesch et al., 1996) of a main
effect that the short allele of a functional polymorphism in the
promotor region of the serotonin transporter gene was associated
with risk of depression. At the same time, they noted that the
experience of stressful life events appeared to confer greater prob-
ability of experiencing depression when genetic vulnerability was
greater (Kendler et al., 1995). Caspi et al. hypothesized that the
inconsistency of the observation of the main effect occurred be-
cause the serotonin transporter gene moderates the effect of stress-
ful life events on risk for depression. That is, the short allele
increases the risk of depression by restricting gene expression
relative to that of the long allele, but only in the presence of
stressful life events including childhood maltreatment, which is a
classic example of specific DNA sequence G � E. This could
explain both the initial reported association and the failures to
replicate because the samples may have varied considerably in the
degree to which their members had experienced stressful life
events, and only those with sufficient exposure would show the
genetic association. In the Dunedin Longitudinal Study (Silva,
1990), this proved to be the case (Caspi et al., 2003). The finding
appears to be reasonably robust, though the size of the effect is
very small and there are possible scaling issues (Eaves, 2006).
There have been several replications (Eley et al., 2004; Grabe et
al., 2005; Kaufman et al., 2004; Kendler, Kuhn, Vittum, Prescott,
& Riley, 2005; Wilhelm et al., 2006; Zalsman et al., 2006), as well
as two failures to replicate (Gillepsie, Whitfield, Williams, Heath,
& Martin, 2005; Surtees et al., 2006). Since the Caspi et al. (2003)
G � E study, there has also been a replication of the original Lesch
et al. (1996) study that showed a main effect of the short allele on
depression (Hoefgen et al., 2005), but the effect size was so small
that it probably does not invalidate Caspi et al.’s (2003) argument.

The results of the Caspi et al. (2003) study indicated that the
serotonin transporter genotype had no real effect on risk of de-
pression in the absence of stressful life events. In the presence of
prior stressful life events, however, risk of depression increased,
and the increase was greater the more copies of the short allele of
the serotonin transporter gene an individual possessed. More spe-
cifically, the effect of stressful life events on risk of depression in
adulthood was over twice as great in individuals with one copy of
the short allele of the serotonin transporter gene than in those with
none and over three times as great in individuals with two copies
of that allele. Thus, in the presence of prior stressful life events, the
probability of depression increased with each copy of the short
allele of the serotonin transporter gene an individual possessed,
and the degree to which the probability of depression increased
also increased with the extent of prior exposure to stressful life
events. The effect did not apply to stressful events that occurred
after the onset of depression. Thus this provides an example of the
inference from the results of the FQGEIM for the income–health
gradient that the genes contributing to genetic variance in depres-
sion at one end of the range of the environmental moderator would
not be the same as those contributing to genetic variance at the
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other end of that range. The G � E effect apparently results from
differential genetic expression of a gene that does not influence the
occurrence of stressful events directly.

This situation can be described by a binomial probability dis-
tribution, in which probability of depression increases both across
the rows of a matrix defined by numbers of copies of the short
allele of the serotonin transporter gene that restricts the gene
expression that buffers against depression, and down the columns
of that matrix defined by numbers of prior stressful life events
experienced. Thus mean levels of depression markers (be they
symptom counts or diagnoses) are greater across the rows of the
matrix as well as down the columns. But when data are distributed
binomially, the variance of the distribution is a function of the
mean of the distribution (� � np, � � np[1 � p]), where n is
sample size and p is the probability of depression. In particular, the
variance of the distribution increases with the probability of de-
pression (at least until p � .50), which increases with numbers of
prior stressful life events experienced. This means that, in keeping
with the stress–diathesis model, as the mean level of depression
incidence increases with prior exposure to stressful life events in
each serotonin transporter allele row of the matrix, so too does the
variance. And because the rows of the matrix vary only geneti-
cally, genetic variance increases as well. Of course the same thing
happens with the environmental variance associated with the ex-
perience of stressful life events, but the important point is that
genetic variance increases in the predicted way, with the predicted
effect on rGE.

Though the G � E effect involving the serotonin transporter
gene explains only a small portion of either the total or the genetic
variance in the occurrence of depression (Caspi et al., 2003), the
genetic variance that it does explain acts exactly as predicted by
the FQGEIM for a miniaturized version of the stress–diathesis
model: Genetic variance and thus depression increase in the pres-
ence of greater stress. If allelic variation of the serotonin trans-
porter gene also contributes to the probability of having experi-
enced stressful life events, then the genetic variance is common to
both the experience of stressful life events and depression, with the
expected consequences for rGE as outlined above. If not, then the
genetic variance is unique to depression, and the expected conse-
quences for rGE are different. If many genes affect stressful life
events and depression according to such miniaturized versions of
the stress–diathesis model, then the effects accumulate to the kind
of quantitative results described above for the income–health
gradient. It is of course possible, however, that some of the genes
involved in depression may operate in other ways, burying the
effects of the serotonin transporter gene within the overall accu-
mulation of effects. Nonetheless, if we had knowledge of all the
genes involved in depression, it should be possible to state each of
their individual effects within the FQGEIM and to accumulate
them to arrive at a picture of the overall effects. This means that,
in situations in which a specific gene has been shown to be
showing G � E in some measured environment, the FQGEIM can
be used to test the idea that the process involved in the specific
identified G � E more generally explains the association between
the environmental variable and the phenotype. If so, the search for
additional genes operating in similar ways is warranted. If not, the
specific observation may not be important in explaining the phe-
notype, though it could still be important in developing further
understanding of some of the biological pathways involved.

Measurement Issues Involving the FQGEIM

Like any model, the FQGEIM provides the most replicable and
interpretable results when measurement of the constructs involved
is valid, reliable, and accurate. Because the model is complex, it is
sensitive to specific sample particularities that may be very small
in magnitude. This makes issues of appropriate measurement es-
pecially important in the use of this model. There are several
measurement issues that should be discussed. All are rather subtle
and do not have straightforward solutions.

Perhaps the most important of these issues involves the fact that
the FQGEIM is probably most easily implemented in a sample of
twins. At the same time, many of the most interesting associations
between environmental variables and behavioral outcomes to
which the FQGEIM might be applied involve children, including
the environmental effects of socioeconomic status, neighborhood
characteristics, and aspects of parenting on child behaviors of all
kinds. Many of these environmental variables are most easily
measured at the level of the twin pair, so that both members of
each pair share the same value for the environmental measure. This
provides no opportunity to distinguish shared environmental influ-
ences from genetic ones (Purcell & Koenen, 2005; Turkheimer,
D’Onofrio, Maes, & Eaves, 2005), which limits the ability of the
FQGEIM to provide fully interpretable results.

This problem can be circumvented by collecting environmental
information relevant to each twin individually. For example, par-
ents can provide information on how they treat each twin sepa-
rately, and twins (if old enough) can each provide information on
how they perceive they are treated. For some kinds of parenting
variables, such as parental support, the child’s perception may be
the critical variable anyway. Similarly, each member of a twin pair
can provide information on how they perceive their neighborhood
or their family’s financial circumstances and attitude toward edu-
cation. Of course, this requires that a twin study be designed with
this issue in mind, and many existing twin studies with otherwise
excellent data resources simply may not have access to this level
of information. In addition, the underlying issue with most of these
variables is that the parents are providing both genetic heritage and
environmental circumstances to the children, and the twin design
offers no way to disentangle the genetic and environmental influ-
ences affecting this intergenerational transmission process. For
example, monozygotic (MZ) twins might perceive their family’s
financial circumstances more similarly than might dizogotic (DZ)
twins, but the fact remains that both kinds of twins are perceiving
the financial circumstances of the same homes, introducing an
apparent shared environmental influence on the effect of perceived
financial circumstances. The offspring-of-twins design may prove
useful in measuring the intergenerational transmission process
(D’Onofrio et al., 2003; Gottesman & Bertelsen, 1989) because it
relies on the relative similarity between the different environments
that grown MZ and DZ twins provide to their children, who also
differ in degree of genetic relatedness.

The issue of measurement scaling is also important. The treat-
ment of measurement scaling has tricky implications, even when
there is a clearly objective connection between scale and trait, as
in the case of physical size. Most measures of behavioral charac-
teristics, however, do not have such an objective connection,
which introduces further complexities. It is tempting to think that
each trait has a natural scale that expresses the biological processes
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involved. For example, growth in weight would appear to be a
geometric rather than an arithmetic process in that a gain of 1 g in
the weight of a 20-g mouse is relatively insignificant in relation to
the same gain in a 2-g mouse, but a 5% weight gain has the same
consequences for each. This would suggest that, rather than weight
in grams, the appropriate scale would be the logarithm of the
weight in grams. Even for physical size, however, this may be true
with respect to some research questions but not others. Such
judgments about natural scale are much more difficult when the
trait in question is antisocial behavior, depression, or health prob-
lems.

Despite the difficulty, the appropriateness of the measurement
scale is critical to interpretation of results on the basis of the
FQGEIM. This is because the use of an inappropriate measurement
scale can introduce spurious interaction effects involving G � E
(Eaves, 2006; Falconer & Mackay, 1996). In fact, removal or
reduction of G � E is a common reason for the use of scale
transformation. This does not, however, mean that G � E is purely
an artifact of the scale. Rather, it means that there should be some
objective rationale for the measurement scale chosen. Probably the
best guidelines available are that the distribution of the trait should
be relatively normal, and the variance of the trait should be
independent of its mean (Falconer & Mackay, 1996). In addition,
data plots should be examined for spurious associations, and the
possibility of outlying or highly leveraged points should be con-
sidered. The sensitivity of the results to the specific form of
measurement should also be tested. This may mean evaluating
other transformation functions or other measurement scales, such
as continuous and categorical approaches. Fortunately, these are
the same general conceptual guidelines as recommended for most
commonly used statistical procedures.

Another relevant measurement issue is the possibility that en-
vironmental influences as well as genetic influences may vary
across the range of an environmental measure. The relation be-
tween stressful home environments and antisocial behavior pro-
vides an example of the kinds of complexities that can result.
Raine (2002) reviewed the literature in this area and noted that
results from adoption studies provide clear evidence that adoptees
at genetic risk for antisocial behavior (because they had antisocial
biological parents) were more likely to become antisocial them-
selves if their adoptive parents provided stressful home environ-
ments, according to any of a number of standards. This is consis-
tent with the stress–diathesis version of the FQGEIM and suggests
that genetic variance in antisocial behavior increases in the more
stressful environment. At the same time, Raine noted that the
literature suggests that certain biological, presumably genetically
influenced markers, such as low skin conductance and low resting
heart rate, are related to antisocial behavior only in benign social
environments. This might appear to indicate that genetic variance
increases in more benign social environments, but a more likely
explanation is that there are many genetic influences that contrib-
ute biological markers of vulnerability to antisocial behavior.
Some of these genetic influences may remain constant across the
range of social environments, whereas others may decrease in
more benign environments and increase in more stressful environ-
ments. If, at the same time, environmental influences at least do
not increase in more benign environments, those genetic influences
that remain constant across the range of environments will be more
apparent in the more benign environments than in the more stress-

ful environments. This of course requires thorough measurement
and testing. The FQGEIM potentially has the power to disentangle
these complex processes, but only if the measures are distinct and
accurate in the relevant ways.

The stress–diathesis and social context as enhancement variations
of the FQGEIM suggest a generalized mechanism that may describe
how genetic influences change under measured environments. It is
reasonable to hypothesize that genetic variance in maladaptive traits
increases in poorer, more stressful environmental conditions, whereas
genetic variance in adaptive traits increases in better environments.
This hypothesis has great potential to offer a powerful and unifying
explanation for a broad range of social phenomena, and the FQGEIM
can be used directly to test its range of applicability. Although elegant,
this statement of the hypothesis glosses over important complications
in what is meant by maladaptive and adaptive traits. The process of
testing the hypothesis is confounded with the process of understand-
ing these complications.

The simplest complication is that it may be possible to reverse
the definition of a trait and thereby reverse the nature of its
adaptiveness. For example, high IQ could be considered an adap-
tive trait, but low IQ could be considered a maladaptive trait. More
subtly, the assignment of adaptive status to traits raises the ques-
tion of the role of their genetic variance in natural selection and
evolution. For the individual, adaptation is the process of coping
with one’s environment. Within a population, an adaptation is also
a genetically influenced trait resulting from natural selection that
gives individuals who possess it a reproductive (and therefore
gene-transmitting) advantage over individuals who do not. Over
time, if such traits reliably confer reproductive advantage, the
genes according the advantage gradually increase in frequency in
the population precisely because of the reproductive advantage
they bestow. Eventually, they become fixed, and genetic variation
disappears. The existence of two eyes across many animal species
is an example of such a trait. The problem is, however, that
environments are not necessarily static over either time or space,
and many traits may confer reproductive advantages in some
situations but not in others. When a trait goes to fixation, the
individuals in the population lose some ability to adapt to different
environmental conditions. Evolution would appear to have two
major ways of dealing with this.

First, genetic variation may remain in the population. In this
case, within a population in which some mobility is possible,
individuals with one kind of genotype better suited to one aspect of
the environment will tend to seek that aspect of the environment,
whereas individuals with another genotype may seek another as-
pect of the environment. This means, however, that a trait that is
adaptive in some environments may be maladaptive in other en-
vironments. For example, the tendency to be bold, hasty, and
aggressive may confer reproductive advantage when population
density is high and the food supply is plentiful, but caution,
withdrawal, and thoroughness may serve better when population
density is low and the food supply is uncertain (Korte, Koolhaas,
Wingfield, & McEwen, 2005). In fact, within the two environ-
ments, behavioral traits may not be dependent on the same phys-
iological and neurological processes. For example, aggressiveness
may result from motivation to establish status in a conspecific
hierarchy when population density is high and food is plentiful but
may result from desperation when the food supply is uncertain.
The neurological pathways involved in the differing motivations
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and thus the genes involved in the two situations may be very
different. That adaptability is conditional on circumstances that
may complicate identification and measurement of the environ-
ment that is actually relevant to changes in genetic variance.

Second, genetic variation may disappear through the process of
natural selection, but phenotypic variation may remain because of
the existence of conditional adaptations. Conditional adaptations
involve different behavioral tactics that are displayed in response
to specific features of the environment. Individuals do not vary
genetically in their tendencies to express these different behavioral
tactics; naturally selected genes influence all individuals to vary
their behavior in response to cues that confer advantages to one
behavior over another. In this event, there may be a main effect of
the environment on the trait but little or no variation in trait
response, given the level of the environment. This will likely
introduce dependencies between mean and variance, making scale
transformation necessary.

Presuming genetic variation remains in the population, there is
some evidence in generalities drawn from selective breeding ex-
periments in nonhuman animals for the hypothesis that genetic
variance in maladaptive human traits increases in socially con-
structed poorer, more stressful environmental conditions, whereas
genetic variance in adaptive traits increases in better environments.
In these experiments, selective breeding for positive characteristics
in a good environment tends to pick animals that are highly
sensitive to the environment, as does selective breeding for nega-
tive characteristics in a bad environment (Falconer & Mackay,
1996). Of course, we do not conduct selective breeding on humans,
but this suggests that even in situations in which selective breeding
is not being practiced, including those in humans, there may be
more observable genetic variation in positive characteristics in
good environments and in negative characteristics in bad environ-
ments. The contrasting observation regarding selective breeding in
nonhuman animals, that is, selective breeding for positive charac-
teristics in a bad environment and for negative characteristics in a
good environment tends to pick animals that are relatively imper-
vious to the environment, would appear to be corroborative. Fa-
cilitated variation (Kirschner & Gerhart, 2005), or the evolution of
flexibility of genetic expression, may underlie these observations.

Conclusion: The Importance of the FQGEIM to Questions
Involving Patterns of Behavior

I began this article noting that an epidemiological approach involv-
ing the study of the incidence, distribution, and control of problematic
or disordered as well as constructive behavior patterns in the popu-
lation can be useful in psychology. Research in psychology that has
used this approach has tended to focus on the identification of envi-
ronmental factors conferring risks and benefits and estimates of the
magnitudes of average environmental effects across the people ex-
posed to them. As behavioral genetic findings have made it clear that
genetic influences play important roles in all patterns of behavior, the
field has turned increasingly to articulation of the ways in which these
genetic influences are manifested and to the identification of the
specific DNA sequences involved. Recent reports of G � E that
involve specific DNA sequences suggest that there are large differ-
ences among individuals in the effects of environmental exposures
and point out the need to identify who is at greatest risk from
environmental pathogens as well as who can benefit most from

environmental advantages. Even once genotyping becomes truly in-
expensive, practical implementation of these results will, however,
still require knowledge of the genotypes of individuals, a situation
with problematic privacy implications. The FQGEIM can be used to
provide pilot data, before any DNA is actually collected, indicating
whether genetic variance varies with exposure to specific environ-
ments in the manner hypothesized if the candidate gene is functioning
as expected.

In addition, each specific DNA sequence identified to date that
has shown G � E in a measured environment has explained very
little of the overall incidence of the problem behavior, and the
probability that individuals carrying the identified DNA sequence
will actually manifest the identified problem behavior has been
low. This means that research strategies focused on specific DNA
sequences may be slow to accumulate results that can address the
kinds of broad social issues raised in studying environmental
influences on complex patterns of behavior such as the incidence
and prevalence of smoking, drinking, drug abuse, criminal behav-
ior, educational failure, parental neglect and abuse, and the asso-
ciations between socioeconomic status and a host of variables
ranging from physical health to IQ. Because there are likely so
many ways that individuals can come to manifest these kinds of
behaviors, there may be situations in which DNA sequence vari-
ation does not explain the genetic variance involved because the
mechanism is an environmental influence on expression of genetic
alleles that do not vary in the population. It may always be
necessary to make use of statistical models such as the FQGEIM
to complement identification of the specific DNA sequences in-
volved in these behaviors in order to understand the behaviors with
any degree of completeness.

As I noted at the beginning of this article, we need a wizard’s
camera that can capture all its subject’s interplay. That is, we need
techniques that can evaluate the dynamic situations involved and
disentangle the ways in which genetic influences transact with
both specific environmental influences and broader social forces to
create differential effects on behavior in different segments of the
population. Implemented with careful measurement, the FQGEIM
is surely one of the most powerful techniques available. Its focus
on the relations among sources of genetic and environmental
variation may make it possible to reconcile the paradox that
genetic influences on behavior are pervasive, yet main effects of
specific genetic polymorphisms are rare and inconsistently ob-
served.

It is perhaps surprising that the FQGEIM’s power to clarify
dynamic social and environmental processes without specifying
the specific genes involved suggests a way in which it can also be
used to assist in the identification of specific candidate DNA
sequences involved in patterns of behavior that differ with envi-
ronmental exposure. Because the FQGEIM reveals specific envi-
ronments in which there is greater expression of the genes in-
volved in certain traits, it indicates sources of sample participants
that may be more likely to reveal meaningful results in molecular
genetic association and linkage studies. Moreover, though the
FQGEIM does not require the identification of DNA sequences
and specific environmental characteristics that may influence the
trait of interest, the model does not limit the specificity of mea-
surement of the traits involved in any way. For example, as
knowledge of the neurological mechanisms linking serotonin pro-
duction and responsivity in the brain, and thus the experience of
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stressful life events and depression improves, it should become
possible to use this model to evaluate genetic and environmental
variance associated with specific aspects of the serotonin expres-
sion in depressive symptomatology across the range of specific
biological responses to the experience of life stress. This should
help to identify additional specific DNA sequences that may be
involved.

The associations among genetic and environmental influences
on measured environments and behavioral patterns that the
FQGEIM illuminates indicate that in addition to identifying who is
at greatest risk from environmental pathogens and who can benefit
most from environmental advantages, we need to determine the
location of the genetic correlation that underlies all G � E situa-
tions that involve genetic influences common to both environment
and behavior patterns. We then need to ask how we can use that
knowledge to decrease expression of genetic vulnerabilities and
support the expression of genetic influences on socially construc-
tive adaptive traits. For example, when the stress–diathesis model
is relevant to a dysfunctional trait and the higher genetic correla-
tion is in the better environment, what are the specific traits under
common genetic influence, and can we teach them to people even
in the at-risk environment? How do we break down genetic cor-
relations when they are higher in the at-risk environment? Where
is the genetic correlation when social context enhances genetic
expression and what specific traits are involved? Is it more socially
desirable to try to break the correlation down or to try to build it
up, and how can we go about doing either one? How stable are the
patterns of genetic correlation and interaction across population
groups, and what accounts for any differences observed? These are
questions involving broad social policy, and the FQGEIM can
address them in a way that knowledge of the specific DNA
sequences involved cannot.

Addressing these questions will also help to refine our under-
standing of the etiology of both problematic and constructive
patterns of behavior and will point out areas in which we need to
refine and improve the ways we measure both the environmental
factors and the associated patterns of behavior. Our answers to
these questions have the potential to generate new treatment pos-
sibilities involving specific genes and suggest segments of the
population most likely to benefit from these new treatment possi-
bilities. Accumulations of results from investigations of the effects
of specific DNA sequences in measured environments and results
from increasingly finely specified traits and moderators from the
FQGEIM should come together over time, but, for now, the two
approaches complement each other directly.
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