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Heterogeneity — Multigroup
models (Tuesday)

e Is the magnitude of genetic influences on ADHD
the same in boys and girls?

e Do different genetic factors influence ADHD in
boys and girls?

e Multiple Group Models
- Sex differences: MZM, DZM, MZF, DZF, DOS

— Cohorts differences: MZyoung, DZyoung,
MZold, DZold



Heterogeneity — Moderation
models (Today)

e Some variables have many categories:
— Socioeconomic status (5 levels)

e Some variables are continuous:
- Age
— Parenting

e Grouping these variables into high/low
categories loses a lot of information



Gene-Environment Interaction

GXE:

e Genetic control of sensitivity to the
environment

e Environmental control of gene
expression

Examples:
v" Does the heritability of IQ depend on SES?
v" Does the heritability of ADHD depends on age?



Gene-Environment Correlation

rGE:

e Genetic control of exposure to the
environment

e Environmental control of gene
frequency

Examples:
v Active rGE: Children with high IQ read more books

v Passive rGE: Parents of children with high IQ take their
children more often to the library

v Reactive rGE: Children with ADHD are treated
differently by their parents



GXE: moderation models

Variance Components Models
for Gene—Environment Interaction

in Twin Analysis

Shaun Purcell

Social, Genetic and Developmental Psychiatry Research Centre, Institute of Psychiatry, King’s College, London, UK

Gene—environment interaction is likely to be a common and
important source of variation for complex behavioral traits.
Often conceptualized as the genetic control of sensitivity to
the environment, it can be incorporated in variance compo-
nents twin analyses by partitioning genetic effects into a mean
part, which is independent of the environment, and a part that
is a linear function of the environment. The model allows for
one or more environmental moderator variables (that possibly
interact with each other) that may i) be continuous or binary ii)
differ between twins within a pair iii) interact with residual
environmental as well as genetic effects iv) have nonlinear
moderating properties v) show scalar (different magnitudes) or
qualitative (different genes) interactions vi) be correlated with
genetic effects acting upon the trait, to allow for a test of
gene-environment interaction in the presence of gene-envi-
ronment correlation. Aspects and applications of a class of
models are explored by simulation, in the context of hoth indi-
vidual differences twin analysis and, in a companion paper
(Purcell & Sham, 2002) sibpair quantitative trait locus linkage
analysis. As well as elucidating environmental pathways, con-
sideration of gene-environment interaction in quantitative and
molecular studies will potentially direct and enhance gene-
manbina efforts.

bivariate twin distribution, where twin pair difference cor-
relates with twin pair sum (Jinks & Fulker, 1970).
However, as well as suffering from low power, this test also
is sensitive to non-normality in the trait. More importantly,
beyond indicating that semze form of interaction is occur-
ring, it sheds no light on underlying processes. Having
both G and E as measured variables provides the most
power for detecting G X E; the results will potentially be
very informative also, beginning to map onto the underly-
ing biology. For example, sex moderates the effect of the
APOE ¢4 allele on cognitive decline, where women show
higher e4-associated risk than men (Yaffe et al., 2000).
Additionally, the ¢4 allele moderates the impact of estrogen
in women on cognitive decline, as the estrogen use is asso-
ciated with less cognitive decline only in women without
the ¢4 risk allele.

In the present paper we consider the case of latent G X
measured £, which is most relevant to the classical owin
study. For example, ac( ) wireless Network Connection Xl)“

Twin
Research
2002



Application

PSYCHOLOGICAL SCIENCE

Research Article

SOCIOECONOMIC STATUS MODIFIES HERITABILITY OF 1Q
IN YOUNG CHILDREN

Eric Turkheimer, Andreana Haley, Mary Waldron, Brian D”Onofrio,

and Irving I. Gottesman
University of Virginia

Abstract—Scores on the Wechsler Intelligence Scale for Children
were analyzed in a sample of 7-vear-old twins from the National Col-
laborative Perinatal Project. A substantial proportion of the twins were

(raised in families living near or below the poverty level. Biometric
analyses were conducted using models allowing for components attrib-
utable to the additive effects of genotype, shared environment, and non-
shared environment to interact with socioeconomic status (SES) measured
as a continuous variable. Results demonstrate that the proportions of 1Q

=7

—

SES. The models suggest that in impoverished families, 60% of the vari-
ance in 1Q is accounted for by the shared environment, and the contri-
bution of genes is close fo zero; in affluent families, the result is almost
exactly the reverse.

N~

uous variable like socioeconomic status (SES) and latent genetic and
environmental influences on cognitive ability.

Nevertheless, several previous studies have addressed differential
heritability as a function of race, social class, or parental education. Scarr-
Salapatek (1971) obtained a sample of twins from the Philadelphia school
system and used standardized test scores as a measure of ability. SES was
estimated from census-tract information. A major limitation of the study
was that it did not include zygosity information about the twin pairs:
instead, analyses were based on comparisons of same-sex pairs (that
combined monozygotic, or MZ, twins and dizygotic, or DZ, twins) and
opposite-sex pairs (all DZ twins), a method with considerably less sta-
tistical power than the classical twin design (Eaves & Jinks, 1972). For
both Black and White children, estimated heritabilities were lower in
children from families in lower-SES census tracts than in those from

Turkheimer et al. 2003




Application

PSYCHOLOGICAL SCIENCE

E. Turkheimer et al.
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Fig. 3. Proportion of total Full-Scale IQ variance accounted for by A, C, and E plotted as a function of observed socioeconomic status (SES).
Shading indicates 95% confidence intervals.




Practical

Replicate findings of Turkheimer et al.

Sample of 5-yr old twins from
Netherlands Twin Register

Phenotype: FSIQ
Environmental/moderator variable:SES



‘Definition variables’ in OpenMx

e General definition: Definition variables
are variables that may vary per

pair/subject and that are not dependent
variables

e In OpenMx: The specific value of the def
var for a specific pair/individual is read
into an mxMatrix in OpenMx when
analyzing the data of that particular
pair/individual




‘Definition variables’ in OpenMx

Common uses:

1. As main effects on the means (e.g. age
and sex)

2. To model changes in variance
components as function of some variable
(e.g., age, SES, etc)



Cautionary note about definition
variables

o Def var should not be missing if
dependent is not missing

e Def var should not have the same
missing value as dependent variable
(e.g., use -2.00 for def var, -1.00 for
dep var)



Definition variables as main effects

General model with age and sex as main
effects:

Vi = a+ p(age) + £, (sex;) + g

Where

vy, is the observed score of individual i
> a is the intercept or grand mean

B . is the regression weight of age

> age,; is the age of individual i

> Is the deviation of females (if sex is coded 0= male;
1 emale)

% sex; is the sex of individual i

* &S the residual that is not explained by the definition
variables (and can be decomposed further into ACE etc)

L0 00

L)

00 00

0



Standard ACE model

> | Twin 1

Twin 2




Standard ACE model +
Main effect on Means

/1\\ > | Twin 1 Twin 2 //1\




Standard ACE model

e Means vector

(m m)

e Covariance matrix

a’+c’+e’
Za’+c¢c® a‘+ct+e’



Allowing for a main effect of X

e Means vector
(m_l_ﬂMXli m_l_lBMXZi)
e Covariance matrix

a’+c’+e’
Za’+c¢c®  a‘+ct+e’



Allowing for a main effect of X

(m_l_ﬂM ST m+:8MX2i)

S  OpenMx I

intercept <- mxMatrix( type="Full", nrow=1, ncol=nv, free=TRUE, values=.1, label="interc", name="int" )
PathM <- mxMatrix( type="Full", nrow=1, ncol=1, free=T, values=.6, label=c("m11"), name="m" )
mod <- mxMatrix( type="Full", nrow=1, ncol=1, free=FALSE, labels=c("data.ses"), name="D")

wmod <- mxAlgebra( expression=m %*% D, name="DR")
meanG <- mxAlgebra( expression= cbind((int + DR),(int + DR)), name="expMeanG")

(int)

(m) (int+ m*data.ses int+m* data.ses)

(data.ses)



‘Definition variables’ in OpenMx

Common uses:

1. As main effects on the means (e.g. age
and sex)

2. To model changes in variance
components as function of some variable
(e.g., age, SES, etc)



Standard ACE model +
Effect on Means

/1\\ > | Twin 1 Twin 2 //1\




Standard ACE model +
Effect on Means and “a” path

/1\\ > | Twin 1 Twin 2 //1\




Standard ACE model +
Effect on Means and “a/c/e” paths

| \ > | Twin 1 Twin 2 / |




Twin 1 Twin 21

- Effect on means:
% Main effects
% To account for gene-environment correlation

- Effect on a/c/e path loadings:
% Moderation effects
% To model gene-environment interaction
(and environment-environment interaction)



1.0 (MZ) /.5 (DZ) 1.0

e Classic Twin Model:

Var (P) = a? + c? + e?

e Moderation Model: OOOOOM
Var (P) = NN
(@ + BxM)? + (c + ByM)? + (e + B M)> K oo

Note: Variances of the latent factors are constrained to 1



Expected variance

Var (P) = (a + ByM)?2 + (c + ByM)? + (e + B,M)?
Where M is the value of the moderator and

» Significance of By indicates genetic moderation

» Significance of By indicates common environmental
moderation

» Significance of B, indicates unique environmental
moderation

Twin 1 Twin 21




Expected MZ / DZ covariances

Cov(Py,Py)wz = (a + ByM)? + (c + ByM)?

Cov(Py,Py)pz = 0.5%(a + ByM)? + (c + ByM)

Twin 1 Twin 21




Expected MZ covariance matrix

@+pM)* +(c+B,M)" +(e+ M)’ @+pM)* +(c+B M)
@+pM)" +(c+B,M)° @+p M) +(c+ /M) +(e+ M)’

S  OpenMx I
nv<-1

# Matrices to store a, ¢, and e Path Coefficients
pathA <- mxMatrix( type="Full", nrow=nv, ncol=nv, free=TRUE, values=.6, label="a11", name="a" )
pathC <- mxMatrix( type="Full", nrow=nv, ncol=nv, free=TRUE, values=.6, label="c11", name="c" )
pathE  <- mxMatrix( type="Full", nrow=nv, ncol=nv, free=TRUE, values=.6, label="e11", name="¢e"
# Matrices to store the moderated a, c, and e Path Coefficients
modPathA <- mxMatrix( type="Full’', nrow=nv, ncol=nv, free=TRUE, values=.6, label="aM11", name="aM" )
modPathC <- mxMatrix( type="'Full', nrow=nv, ncol=nv, free=TRUE, values=.6, label="cM11", name="cM" )
modPathE <- mxMatrix( type='Full', nrow=nv, ncol=nv, free=TRUE, values=.6, label="eM11", name="eM" )
# Matrix for the moderator variable
mod <- mxMatrix( type="Full", nrow=1, ncol=1, free=FALSE, labels=c("data.ses"), name="D")
# Matrices to compute the moderated A, C, and E variance components
covAmod <- mxAlgebra( expression=(a+ D%*%aM) %*% t(a+ D%*%aM), name="A")
covCmod <- mxAlgebra( expression=(c+ D%*%cM) %*% t(c+ D%*%cM), name="C" )
covEmod <- mxAlgebra( expression=(e+ D%*%eM) %*% t(e+ D%*%eM), name="E" )
# Algebra for the expected mean vector and expected variance/covariance matrices and in MZ and DZ
covMZ <- mxAlgebra( expression= rbind ( cbind(A+C+E , A+C),

cbind(A+C, A+C+E)), name="expCovMZ" )




Expected MZ covariance matrix

S  OpenMx IS
nv<-1 e ————— R

# Matrices to store a, ¢, and e Path Coefficients

pathA <- mxMatrix( type="Full", nrow=nv, ncol=nv, free=TRUE, values=.6, label="a11", name="a" )
pathC <- mxMatrix( type="Full", nrow=nv, ncol=nv, free=TRUE, values=.6, label="c11", name="c" )
pathE  <- mxMatrix( type="Full", nrow=nv, ncol=nv, free=TRUE, values=.6, label="e11", name="e" )

# Matrices to store the moderated a, c, and e Path Coefficients

modPathA <- mxMatrix( type='Full', nrow=nv, ncol=nv, free=TRUE, values=.6, label="aM11", name="aM" )
modPathC <- mxMatrix( type="Full', nrow=nv, ncol=nv, free=TRUE, values=.6, label="cM11", name="cM" )
modPathE <- mxMatrix( type="Full', nrow=nv, ncol=nv, free=TRUE, values=.6, label="eM11", name="eM" )

a=(all) aM =(aM11)
c=(ct1)  cM =(cM11)

e=(ell) eM =(eMI11)




Expected MZ covariance matrix

S  OpenMx IS
nv<-1 e ————— R

# Matrix for the moderator variable

mod <- mxMatrix( type="Full", nrow=1, ncol=1, free=FALSE, labels=c("data.ses"), name="D")
# Matrices to compute the moderated A, C, and E variance components

covAmod <- mxAlgebra( expression=(a+ D%*%aM) %*% t(a+ D%*%aM), name="A" )
covCmod <- mxAlgebra( expression=(c+ D%*%cM) %*% t(c+ D%*%cM), name="C" )
covEmod <- mxAlgebra( expression=(e+ D%*%eM) %*% t(e+ D%*%eM), name="E" )

D = (data.ses)

a=(all)aM =(aM11) (al 1+ data.ses*aM1 1)2

(c11+data.ses*cM11)’

A
c=(ct1) cM =(cm11) C
E =(el1+data.ses*eM11)

e=(ell) eM =(eM11)




Expected MZ covariance matrix
p S  OpenMx IR

# Algebra for expected variance/covariance matrix and expected mean vector in MZ

mxAlgebra( expression= rbind ( cbind(A+C+E , A+C),
cbind(A+C , A+C+E)), name="expCovMZ" ),

A=(all+datases*aM11)’

C =(cl1+data.ses*cM11)

E =(el1+data.ses*eM11)

(al1+datases*aM11) +(cl1+data.ses*cM11)’ J

all+datases*aM11) +(cl1+datases*cM11) + (el 1+datases*eM11)’
(al1+datases*aM11) +(cl1+data.ses*cM11) + (el 1+ data.ses*eM11)°

(all+datases*aM11) +(c11+data.sescM11)’

 E—
———

expCovMZ = {(

@+pM)* +(c+ /M) +(e+ M)’ @+ M) +(c+p,M)°
@+pM)* +(c+p,M)° @+pM) +(c+B M) +(e+5,M)’



Expected DZ covariance matrix

(@+B,M)Y +(c+B,M) +(e+B,M) 0.5(@+ B,M)> +(c+B,M)’
0.5@+B,M) +(c+LM) @+pB,M)> +(c+BM) +(+L,M)’

S  OpenMx I
nv<-1

# Matrices to store a, ¢, and e Path Coefficients
pathA <- mxMatrix( type="Full", nrow=nv, ncol=nv, free=TRUE, values=.6, label="a11", name="a" )
pathC <- mxMatrix( type="Full", nrow=nv, ncol=nv, free=TRUE, values=.6, label="c11", name="c" )
pathE  <- mxMatrix( type="Full", nrow=nv, ncol=nv, free=TRUE, values=.6, label="e11", name="¢e"
# Matrices to store the moderated a, c, and e Path Coefficients
modPathA <- mxMatrix( type="Full’', nrow=nv, ncol=nv, free=TRUE, values=.6, label="aM11", name="aM" )
modPathC <- mxMatrix( type="'Full', nrow=nv, ncol=nv, free=TRUE, values=.6, label="cM11", name="cM" )
modPathE <- mxMatrix( type='Full', nrow=nv, ncol=nv, free=TRUE, values=.6, label="eM11", name="eM" )
# Matrix for the moderator variable
mod <- mxMatrix( type="Full", nrow=1, ncol=1, free=FALSE, labels=c("data.ses"), name="D")
# Matrices to compute the moderated A, C, and E variance components
covAmod <- mxAlgebra( expression=(a+ D%*%aM) %*% t(a+ D%*%aM), name="A")
covCmod <- mxAlgebra( expression=(c+ D%*%cM) %*% t(c+ D%*%cM), name="C" )
covEmod <- mxAlgebra( expression=(e+ D%*%eM) %*% t(e+ D%*%eM), name="E" )
# Algebra for the expected mean vector and expected variance/covariance matrices and in MZ and DZ
covMZ <- mxAlgebra( expression= rbind ( cbind(A+C+E , 0.5%x%A+C),

cbind(0.5%x%A+C, A+C+E)), name="expCovDZ" )




Expected DZ covariance matrix
p S  OpenMx IR

# Algebra for the expected mean vector and expected variance/covariance matrices and in MZ and DZ

covMZ <- mxAlgebra( expression= rbind ( cbind(A+C+E , 0.5%x%A+C),
cbind(0.5%x%A+C, A+C+E)), name="expCovDZ" )

A=(all+datases*aM11)’

2
C =(cl1+data.ses*cM11)
2
E =(el1+data.ses*eM11)
(al1+datases*aM11) +(cl1+data.ses*cM11) + (el 1+ data.ses*eM11)’ 0.5*(al1+data.ses*aM11) +(cl1+data.ses*cM11)’
expCovDZ = 5 5 5 5 §
0.5*(al1+datases*aM11)° +(cl1+data.sescM11) (al1+datases*aM11) +(c11+data.ses*cM11)° +(el 1+ datases*eM11)
———1
——1

@+ p,M)> +(c+L M) +(e+L,M)’ 0.5@+B,M)> +(c+B,M)’
0.5@+ S, M)2 +(C+ A M) @+ B,M)2+(C+ B M) +(e+5,M)



Making plots

e Linear effect of SES on path loadings

e Non-linear effect of SES on unstandardized
variance components

e Non-linear effect of SES on standardized
variance components



Example Turkheimer study

Moderation of unstandardized Moderation of standardized
variance components: variance components:

FS I Q PSYCHOLOGICAL SCIENCE

E. Turkheimer et al.
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Calculate it yourself, or plot it in R!

e Moderation of the additive genetic VC:
- From OpenMx: a=0.5 ; aM=-0.2
- Range moderator: -2 to 2

SES |[(a+SES*aM)*  |(a+SES*aM)?

2 (0.5+(-2*%-0.2))>  |0.81 g Zji
1.5 [(0.5+(-1.5%-0.2))2 |0.73 \

+2 [(0.5+(2*%-0.2)  [0.01




Path model vs. OpenMx
matrices

a—|—BXM c+ Ses %*% cM / a—|—BXM2 c+ Ses %*% cM /

1
a+ Ses %*% aM / e+B7M1 a+ Ses %*% aM e+B7.M7
e+ Ses %*% eM e+ Ses %*% eM

/1\\ "1 Twin 1 Twin 2 | //1\

m+f3,, M m-+f3,,M>

int + Ses%*%m int +Ses%*%m




More advanced models

e Nonlinear moderation
o GXE for categorical data
e GXE in the context of rGE



Nonlinear moderation

Add quadratic terms
See Purcell 2002




GXE for categorical data

e Continuous data
— Moderation of means and variances

e Ordinal data
— Moderation of thresholds and variances

Behav Genet (2009) 39:220-229
DOI 10.1007/s10519-008-9247-7

BRIEF COMMUNICATION
A Note on the Parameterization of Purcell’s G X E Model
for Ordinal and Binary Data

Sarah E. Medland - Michael C. Neale -
Lindon J. Eaves - Benjamin M. Neale



GXE in the context of rGE

o If there is a correlation between the
moderator (environment) of interest and
the outcome, and you find a GXE effect,
it's not clear if:

— The environment is moderating the effects of
genes

Or:

— Trait-influencing genes are simply more likely
to be present in that environment



Ways to deal with rGE

Limit study to moderators that aren’t correlated with
outcome

— Pro: easy
— Con: not very satisfying

Moderator in means model will remove from the
covariance genetic effects shared by trait and
moderator

— Pro: Any interaction detected will be moderation of the
trait specific genetic effects

— Con: Will fail to detect GXE interaction if the moderated
genetic component is shared by the outcome and
moderator

Explicitly model rGE using a bivariate framework



Bivariate model

Bxs indicates moderation
of shared genetic effects

By indicates moderation
of unique genetic effects
on trait of interest

See Johnson, 2007

NOTE: this model is not
informative for family-level
variables (e.g., ses,
parenting, etc)




Practical

Replicate findings from Turkheimer et
al. with twin data from NTR

Phenotype: FSIQ
Moderator: SES

Data: 205 MZ and 225 DZ twin pairs
5 years old



