### This is thew basic ordinal indicator latent factor model. ### it is an adaptation of the script on the openMX website ### The website contains many nice example scripts, this one ### i adapted to use the same syntax style as you are used to ### here at the boulder workshop. ############################### ### Read in the data ### ############################### alldata <- read.table("Boulder 2012 data.dat", header=T,sep="\t",na.string="-1") ## select the variables of intrest: Ordinal <- alldata[,c(6:8,10,14)] ## Tell R and OpenMx that these data are ordered factors: Ordinal <- mxFactor(Ordinal,levels=c(0:2)) ## create variables indicating the number of variables, Factors and Thresholds: nVariables<-5 nFactors<-1 nThresholds<-2 ############################### ### Matrices and algebra ### ############################### loadings <- mxMatrix( type="Full", nrow=nVariables, ncol=nFactors, free=T, values=.6, lbound=-.99, ubound=.99, name="facLoadings", labels=c("G1L1","G1L2","G1L3","G1L4","G1L5" ) ) FacVariance <- mxMatrix( type="Symm", nrow=nFactors, ncol=nFactors, free=F, values=1, name="facVar", labels="G1P" ) FacMean <- mxMatrix( type="Full", nrow=nFactors, ncol=nFactors, free=F, values=0, name="facMeans", label="G1FacMean" ) UnitVector <- mxMatrix( type="Unit", nrow=nVariables, ncol=1, name="vectorofOnes" ) Residuals <- mxAlgebra( expression=vectorofOnes - (diag2vec(facLoadings %*% facVar %*% t(facLoadings))) , name="resVariances" ) ExpCovariance <- mxAlgebra( expression=facLoadings %*% facVar %*% t(facLoadings) + vec2diag(resVariances), name="expCovariances" ) Intercepts <- mxMatrix( type="Full", nrow=1, ncol=nVariables, free=F, values=0, name="varMeans", label=c("G1M1","G1M2","G1M3","G1M4","G1M5") ) ThresholdDeviations <- mxMatrix( type="Full", nrow=nThresholds, ncol=nVariables, free=TRUE, values=.2, lbound=rep( c(-Inf,rep(.01,(nThresholds-1))) , nVariables), dimnames=list(c(), varNames), name="thresholdDeviations", labels=letters[1:(nThresholds*nVariables)] ) UnitLower <- mxMatrix( type="Lower", nrow=nThresholds, ncol=nThresholds, free=FALSE, values=1, name="unitLower" ) ExpThresholds <- mxAlgebra( expression=unitLower %*% thresholdDeviations, name="expThresholds" ) Data <- mxData( observed=MaleOrdinal, type='raw' ) ExpMeans <- mxAlgebra(expression= varMeans + t(facLoadings %*% facMeans), name="expMeans" ) Objective <- mxFIMLObjective( covariance="expCovariances", means="expMeans", dimnames=varNames, thresholds="expThresholds" ) ###################################################### ### Build the model from the Matrices and Algebras ### ###################################################### oneFactorModel <- mxModel("Male",loadings,FacVariance,FacMean,UnitVector, Residuals,ExpCovariance, Intercepts, ThresholdDeviations,UnitLower, ExpThresholds,Data,ExpMeans,Objective) ########### ### Run ### ########### ordinalModelFit <- mxRun(oneFactorModel)