Factor model of Ordered-Categorical Measures: Measurement Invariance

Michel Nivard
Sanja Franic
Dorret Boomsma

Special thanks:
Conor Dolan
OpenMx "team"

Ordinal factor model

- This model works for ordered categorical indicators.
- It assumes these indicators are indicators of an underlying continuous (and normally distributed) trait.

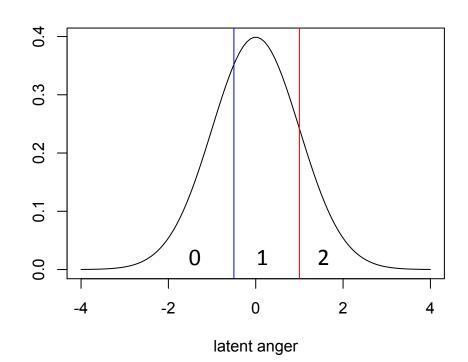
Ordinal indicators

Q: do you get angry?

- 0: Never

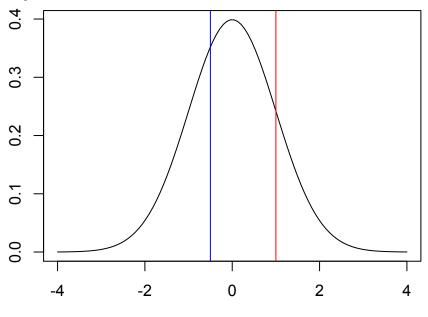
- 1: Sometimes

- 2: Often



Ordinal indicators

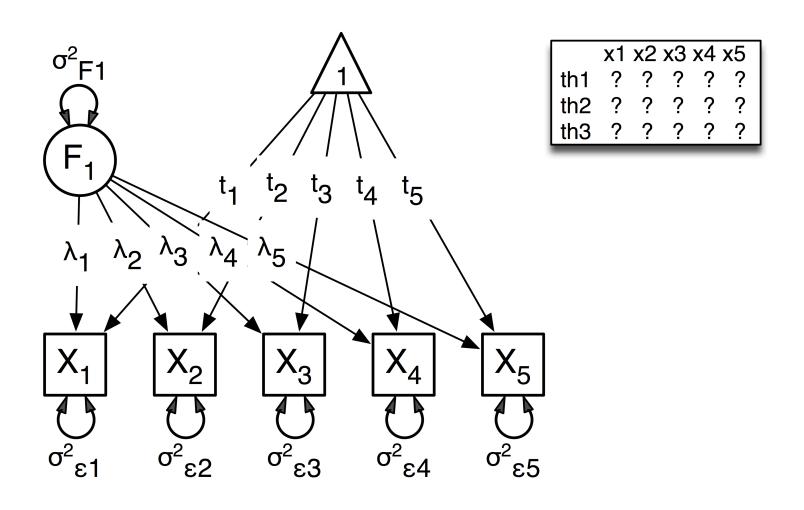
 The latent distribution is restricted too mean=0 and variance = 1. Given these constraints we can estimate the the threshold parameters indicated in red and blue here.



latent anger

Either: $\mu \ \text{and} \ \Sigma$ Or: $the \ Thresholds \ \text{are identified}.$

Ordinal indicators factor model.



Ordinal indicators factor model.

- Expected (polychoric) covariance:
 - $Cov(X_i) = \Sigma = \Lambda_i \Psi \Lambda_i^t + \Theta_i$
- Expected means/threshold:
 - $E(X_i) = \mu = \tau_i + \Lambda_i \kappa$

 Λ = factor loadings

 Ψ = factor (co)variance matrix

 Θ = residual variances ε_1 to ε_n

 τ = intercepts

к = factor mean

- Restrictions for identification (alternatives, Millsap 2004)
 - 1. $\Psi = 1$
 - 2. diag($\Lambda_2 \Lambda_2 t + \Theta_2$)=diag(I)
 - 3. $\mu = 0 = \tau_i + \Lambda_i \kappa$

- Configural invariance:
- Group 1:

$$-P_1 = \Lambda_1 \Psi_1 \Lambda_1 t + \Theta_1$$

• Group 2:

$$-P_2 = \Lambda_2 \Psi_2 \Lambda_2 t + \Theta_2$$

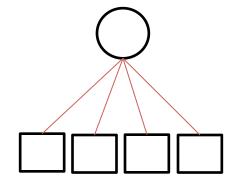
- Restrictions:
 - Thresholds are equal over groups.
 - $diag(\Lambda_1 \Lambda_1 t + \Theta_1) = diag(\Lambda_2 \Lambda_2 t + \Theta_2) = diag(I)$
 - Indicator means: Group1: 0 Group2: FREE
 - $-\Psi_{2} = \Psi_{1} = 1$

- metric invariance:
- Group 1:

$$- P_1 = \Lambda \Psi_1 \Lambda t + \Theta_1$$

• Group 2:

$$- P_2 = \Lambda \Psi_2 \Lambda t + \Theta_2$$



- Restrictions:
- Thresholds are equal over groups.
 - $diag(\Lambda_1 \Lambda_1 t + \Theta 1) = diag(\Lambda_2 \Lambda_2 t + \Theta_2) = diag(I)$
 - τ : group1: 0 group2: FREE
 - K: set to 0
 - $-\Psi_1$ = 1 (however Ψ_2 = FREE)

Strong invariance:

- This concerns the means model.
- $-E(X_i)=\mu_1=0$
- $-E(X_i)=\mu_2=\Lambda\kappa$ and $\tau_2=0$
- Thresholds are equal over groups.
 - $diag(\Lambda_1 \Lambda_1 t + \Theta_1) = diag(\Lambda_2 \Lambda_2 t + \Theta_2) = diag(I)$
 - $-\tau$: group1: 0 group2: 0
 - K: set to 0, free in group 2.
 - $-\Psi_1$ = 1 (however Ψ_2 = FREE)

Strict invariance:

- Can we equate the matrix Θ over groups.
- However at this point Θ is not a free parameter:
- $-diag(\Lambda_1 \Lambda_1 t + \Theta 1) = diag(\Lambda_2 \Lambda_2 t + \Theta_2) = diag(I)$
- So we must chose arbitrary values for Θ that are equal for both groups.
- Replace the residuals algebra (diag($\Lambda_2 \Lambda_2 t + \Theta_2$)=diag(I)) with a residuals matrix.