# ----------------------------------------------------------------------- # Program: Measurement_invariance_practical.R # Author: Sanja Franic, 2012 # # Multivariate phenotypic model to test for measurement invariance with # regard to gender # Matrix style model input - Raw data input # # Datafile: Measurement_invariance_data.dat # Analyzing 180 unrelated individuals of age 18 # Phenotype: 4 subscales of the WAIS-III cognitive abilities test: # vci -- Verbal Comprehension Index # poi -- Perceptual Organization Index # wmi -- Working Memory Index # psi -- Processing Speed Index # Group variable: gender (1=male, 2=female) # # ----------------------------------------------------------------------- remove(list=ls()) require(OpenMx) require(psych) source('GenEpiHelperFunctions.R') #=======================================================================# # PREPARE DATA # #=======================================================================# nv <- 4 # number of phenotype variables to be analyzed nf <- 1 # number of common factors in the model selVars <- paste("scale",1:nv,sep="") # phenotype variables to be analyzed hetVars <- c('gender') # grouping variable data <- read.table(paste(getwd(),"/Measurement_invariance_data.dat",sep=""),header=TRUE) mData <- round(data[data$gender==1, selVars],2) fData <- round(data[data$gender==2, selVars],2) # Generate descriptive statistics colMeans(mData,na.rm=TRUE) colMeans(fData,na.rm=TRUE) cov(mData,use="complete") cov(fData,use="complete") # Test for a mean difference between males and females (MANOVA) summary(manova(cbind(scale1,scale2,scale3,scale4) ~ gender, data = data), test = "Pillai") #=======================================================================# # PREPARE MODEL # #=======================================================================# # Matrices to store factor loadings of the WAIS subscales on g loadings1 <- mxMatrix( type="Full", nrow=nv, ncol=nf, free=c(F, rep(T,nv-1)), values=1, label=paste("l_1", 1:nv, sep=""), name="load1" ) loadings2 <- mxMatrix( type="Full", nrow=nv, ncol=nf, free=c(F, rep(T,nv-1)), values=1, label=paste("l_2", 1:nv, sep=""), name="load2" ) # Matrices to store the residual variances of the WAIS subscales residuals1 <- mxMatrix( type="Diag", nrow=nv, free=T, values=2, label=paste("res_1", 1:nv, sep=""), name="res1" ) residuals2 <- mxMatrix( type="Diag", nrow=nv, free=T, values=2, label=paste("res_2", 1:nv, sep=""), name="res2" ) # Matrices to store the mean and variance of g (variance estimated, mean set to 0) latVariance1 <- mxMatrix( type="Symm", nrow=nf, ncol=nf, free=T, values=4, label=paste("lVar_1", 1:nf, sep=""), name="latVar1" ) latVariance2 <- mxMatrix( type="Symm", nrow=nf, ncol=nf, free=T, values=4, label=paste("lVar_2", 1:nf, sep=""), name="latVar2" ) latMean1 <- mxMatrix( type="Full", nrow=1, ncol=nf, free=F, values=0, label=paste("lMean_1",1:nf, sep=""), name="latM1" ) latMean2 <- mxMatrix( type="Full", nrow=1, ncol=nf, free=F, values=0, label=paste("lMean_2",1:nf, sep=""), name="latM2" ) # Vectors to store intercepts of the WAIS subscales intercepts1 <- mxMatrix( type="Full", nrow=nv, ncol=1, free=T, values=8, label=paste("int_1",1:nv,sep=""), name="int1" ) intercepts2 <- mxMatrix( type="Full", nrow=nv, ncol=1, free=T, values=8, label=paste("int_2",1:nv,sep=""), name="int2" ) # Algebra for the expected means and covariances of the WAIS scores means1 <- mxAlgebra( expression=t(int1 + load1%*%latM1), name="m1" ) means2 <- mxAlgebra( expression=t(int2 + load2%*%latM2), name="m2" ) variances1 <- mxAlgebra( expression=load1 %*% latVar1 %*% t(load1) + res1, name="v1" ) variances2 <- mxAlgebra( expression=load2 %*% latVar2 %*% t(load2) + res2, name="v2" ) # Data objects for the two groups data1 <- mxData( observed=mData, type="raw" ) data2 <- mxData( observed=fData, type="raw" ) # Objective objects for the two groups obj1 <- mxFIMLObjective( covariance="v1", means="m1", dimnames=selVars ) obj2 <- mxFIMLObjective( covariance="v2", means="m2", dimnames=selVars ) # Combine Groups modelMales <- mxModel( loadings1, residuals1, latVariance1, latMean1, intercepts1, means1, variances1, data1, obj1, name="males") modelFemales <- mxModel( loadings2, residuals2, latVariance2, latMean2, intercepts2, means2, variances2, data2, obj2, name="females") minus2ll <- mxAlgebra( expression=males.objective + females.objective, name="m2LL" ) obj <- mxAlgebraObjective( "m2LL" ) CImodel <- mxModel( "CI", modelMales, modelFemales, minus2ll, obj ) #=======================================================================# # RUN MODEL: CONFIGURAL INVARIANCE # # - equal configuration of factor loadings over the groups # #=======================================================================# CImodelFit <- mxRun(CImodel) CImodelSumm <- summary(CImodelFit) CImodelSumm #=======================================================================# # RUN MODEL: METRIC INVARIANCE # # - equal configuration of factor loadings over the groups # # - equal factor loadings over the groups # #=======================================================================# # Matrices to store factor loadings of the WAIS subscales on g loadings1 <- mxMatrix( type="Full", nrow=nv, ncol=nf, free=c(F, rep(T,nv-1)), values=1, label=paste("l_", 1:nv, sep=""), name="load1" ) loadings2 <- mxMatrix( type="Full", nrow=nv, ncol=nf, free=c(F, rep(T,nv-1)), values=1, label=paste("l_", 1:nv, sep=""), name="load2" ) # Combine Groups modelMales <- mxModel( loadings1, residuals1, latVariance1, latMean1, intercepts1, means1, variances1, data1, obj1, name="males") modelFemales <- mxModel( loadings2, residuals2, latVariance2, latMean2, intercepts2, means2, variances2, data2, obj2, name="females") minus2ll <- mxAlgebra( expression=males.objective + females.objective, name="m2LL" ) obj <- mxAlgebraObjective( "m2LL" ) MImodel <- mxModel( "MI", modelMales, modelFemales, minus2ll, obj ) MImodelFit <- mxRun(MImodel) MImodelSumm <- summary(MImodelFit) MImodelSumm #=======================================================================# # RUN MODEL: STRONG FACTORIAL INVARIANCE - YOUR TASK # # - equal configuration of factor loadings over the groups # # - equal factor loadings over the groups # # - equal intercepts over the groups # #=======================================================================# # Vectors to store intercepts of the WAIS subscales # ??? # ??? # ??? # ??? # Combine Groups modelMales <- mxModel( loadings1, residuals1, latVariance1, latMean1, intercepts1, means1, variances1, data1, obj1, name="males") modelFemales <- mxModel( loadings2, residuals2, latVariance2, latMean2, intercepts2, means2, variances2, data2, obj2, name="females") minus2ll <- mxAlgebra( expression=males.objective + females.objective, name="m2LL" ) obj <- mxAlgebraObjective( "m2LL" ) SFImodel <- mxModel( "SFI", modelMales, modelFemales, minus2ll, obj ) SFImodelFit <- mxRun(SFImodel) SFImodelSumm <- summary(SFImodelFit) SFImodelSumm #=======================================================================# # RUN MODEL: STRICT FACTORIAL INVARIANCE - YOUR TASK # # - equal configuration of factor loadings over the groups # # - equal factor loadings over the groups # # - equal intercepts over the groups # # - equal residuals over the groups # #=======================================================================# # ??? # ??? # ??? # ??? # ??? # ??? # ??? # ??? # ??? # ??? # ??? # ??? STFImodelFit <- mxRun(STFImodel) STFImodelSumm <- summary(STFImodelFit) STFImodelSumm #=======================================================================# # RUN BASELINE MODEL: 2-GROUP SATURATED MODEL # #=======================================================================# # Matrix to store variances/covariances startCov=cov(data[,selVars]) covariances1 <- mxMatrix( type="Symm", nrow=nv, ncol=nv, free=T, values=startCov, name="covs1" ) covariances2 <- mxMatrix( type="Symm", nrow=nv, ncol=nv, free=T, values=startCov, name="covs2" ) # Vector to store the means means1 <- mxMatrix( type="Full", nrow=1, ncol=4, free=T, values=8, labels=paste("mean_2",1:nv,sep=""), name="m1" ) means2 <- mxMatrix( type="Full", nrow=1, ncol=4, free=T, values=8, labels=paste("mean_1",1:nv,sep=""), name="m2" ) # Data object Data1 <- mxData( observed=mData[,selVars], type="raw" ) Data2 <- mxData( observed=fData[,selVars], type="raw" ) # Objective object obj1 <- mxFIMLObjective( covariance="covs1", means="m1", dimnames=selVars ) obj2 <- mxFIMLObjective( covariance="covs2", means="m2", dimnames=selVars ) # Combine the groups satModelMales <- mxModel( covariances1, means1, Data1, obj1, name="satMales") satModelFemales <- mxModel( covariances2, means2, Data2, obj2, name="satFemales") minus2ll <- mxAlgebra( expression=satMales.objective + satFemales.objective, name="m2LL" ) obj <- mxAlgebraObjective( "m2LL" ) satModel <- mxModel( "CI", satModelMales, satModelFemales, minus2ll, obj ) # Run the model satFit <- mxRun(satModel) satSumm <- summary(satFit) satSumm #=======================================================================# # COMPARE MODEL FIT # #=======================================================================# tableFitStatistics(satFit,CImodelFit) # test of configural invariance tableFitStatistics(CImodelFit,MImodelFit) # test of metric invariance tableFitStatistics(MImodelFit,SFImodelFit) # test of strong f. invariance tableFitStatistics(SFImodelFit,STFImodelFit) # test of strict f. invariance