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Introduction.  
 Psychometrics concerns the study of the relationship between latent 
variables (or traits) and their manifest indicators. Psychometrics has 
focused largely on the development of statistical models of this 
relationship. Well known models that relate observed dichotomous indicators 
to continuous latent variables include the Rasch model and the Birmbaum 
model. Similarly, there are several well known models for observed polytomous 
items, such as the graded response model and the partial credit model, and 
model for continuous items, such as the linear factor model.    
 Psychometric models (or measurement models) may be viewed as regression 
models in which we define a single continuous latent trait (e.g., 
"depression", "perceptual speed", "working memory", "extroversion") as the 
independent variable, and the observed indicators responses ("do you like to 
meet new people?" [y/n]; "i find it hard to concentrate" [often / sometimes / 
seldom / never]) as the dependent variables. If the dependent variable is 
discrete (dichotomous or polytomous), then the regression model will be (say) 
a logistic regression model rather than a linear regression model.  
 As mentioned, psychometric model, which relates a continuous latent 
variable or trait to continuous indicators, is the linear factor model. 
Again, the factor model may be viewed as a regression model, but as now both 
the latent trait and the indicators are continuous, the regression is linear. 
As such it is very familiar to the standard regression model (see below). 
There are psychometric models that are suitable to relate discrete latent 
variables or traits to observed discrete or continuous indicators, but we 
will not consider these (e.g., latent class model). A taxonomy of 
psychometric model is provided by the following table 1-1. 
 
Table 1-1 Taxonomy of psychometric models.  
 Latent variable / trait / common factor 

 discrete continuous 
discrete latent class 

model 
IRT: Rasch, 
Birmbaum, 
Discrete factor 
model  

 
 
 
observed 
indicators 

continuous latent profile 
model 

linear factor 
model 

We will consider the underlined models. However, subject to certain 
assumptions, the discrete factor model is equivalent to the Birmbaum model 
and the Rasch model.  
   

                                                 
1 Conor V. Dolan c.v.dolan@uva.nl. RM20. MI: continuous & discrete factor 
models.  
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Box 1-1: Psychometric modeling: what is an indicator? 
The latent variable or trait is the variable that we would like to measure. 
But because it is latent, we cannot measure it directly. However we can 
observe the effect of the latent trait on indicators of the trait. What 
counts as an indicator? From the perspective of the psychometric model, we 
consider an indicators an observable variable, which is directly and causally 
dependent on the latent trait. This is simple in theory, but actually 
difficult in practice. Here psychological theory plays (or should play) an 
important role. The nature of the latent trait should be theoretically 
sufficiently developed to inform a choice of indicators. For instance, 
suppose we want to measure dysthymia. A clinical psychologist should be able 
to identify for potential indicators ("In the morning, I often feel that I 
will not be able to cope with the day's events"). The collection of 
indicators constitutes the items of the psychometric test.    

 
 Psychometric modeling serves mainly to demonstrate that the observed 
item responses are consistent with a single underlying trait. Specifically, 
this means that the observed item responses covary in a manner that is 
consistent with the presence of a single latent trait. Equivalently we 
hypothesize that the item responses covary because they are all influences by 
the same causal underlying latent trait. If a given model fits the data, we 
can derive from the fitted model useful information about the quality of the 
items in the test.  
 Below we first outline the linear common factor as a measurement model 
for continuous indicators. With this model place, we shall present the 
definition of measurement invariance (MI). MI in the linear factor model can 
be investigated easily in programs like LISREL.    
 
The linear factor model as a measurement model. 
 We consider the factor model for a single group. First recall the LISREL 
model without the means. Let yi denote the zero mean ny-vector of observed 

variable, observed in subject i. Let i denote the zero mean ne-vector of 
latent variables or common factors. The regression of observed y on latent :  
 

yi = i + i,       eq. 1-1 
 

where  is the ny x ne matrix of factor loadings, and i is a zero mean ny 
vector or residuals (i.e., in the regression of y on ). The regression of 

components of  on components of  


i= i,        eq. 1-2 
 

where  is the ne x ne matrix of regression coefficients. The derivation of 
this is: i = i+ i->i-i= i->i= -> i= i. Of 

course, if =0, then we have the identity i = i. Here (i.e., =0), it is 

more natural to speak of i as the latent traits or variables, or common 

factors. In addition is ne = 1 (single common factor model), the  will be 
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zero. We assumed E[]=0, E[]=0, and E[y]=02. The covariance matrix of y 
equals: 
 

 = -1-1tt + ,     eq. 1-3 
 

where the covariance matrix of  equals -1-1t (ne x ne), the covariance 

matrix of  equals (ne x ne) and the covariance matrix of  equals q (ny x 

ny). If equals zero, we have (remember that = ): 
 

 = t + ,        eq. 1-4 
 

and the covariance matrix of  equals . We now extend the model as follows: 
 

yi = y + i + i 

i =  + i+ i
 

where y is the ny vector of intercepts or indicator means, depending on the 

details of the model, and  is a vector of intercepts or factor means, 
depending on the details of the model. To simplify things we shall assume 

that =0. The means are:   
 

E[y] = y + E[] + E[] 

E[] =  + E[] 
 

E[] = E[]= 0 

E[] = . 
 
Model for means is thus: 
 

E[y] =  + E[] 

E[] =  , 
 
or, given the appropriate substitution: 
 

E[y] =  + .       eq. 1-5 
 

The covariance matrix still equals  = t + (remember we assumed that 

=0), so  = t + . Note that in LISREL the parameter vectors  and  are 
called ty and al. These may appear on the 'mo' line and be specified using 
'pa', 'ma', etc. You can refer to specific element in the usual fashion as 
well (e.g., fi al 1 al 2). 
 So far we have considered LISREL modeling as a particular instance of 
covariance structure modeling (particular in the sense that it is limited to 
the LISREL model). With the model for the means in place, we view LISREL 
model as a particular instance of mean and covariance structure modeling. 
Table 1-2 and 1-3 provide an overview of the extended model. 

                                                 
2 Note that E[y] = mean(y), I also employ the notation y for the mean of y. 
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Table 1-2: LISREL covariance and mean structure in k=1...K populations. 
 
covariance structure  mean structure 

k = kkk
t + k   yk = k + kk

 
 
Table 1-3: LISREL model matrices + dimensions 
 
matrix LISREL order  meaning 

k  ly  ny x ne factor loading matrix (y->) 

k  ps  ne x ne cov/cor matrix of  or  

k  te  ny x ny cov/cor matrix of residuals() 


k  -  ny x ny expected model cov. matrix of y 
 
vector LISREL dimension meaning 

k  ty  ny x 1 intercept in regression of y on  

k  al  ne x 1 common factor means   


yk  -   ny x 1 expected means of y 
 
 

Box 1-2: Scaling in the common factor model 

Consider the single common factor model,  = t + , where  is the 
variance of the common factor. To fit this model we have to impose some scale 
on the common factor. Specifically because we cannot observe it, we cannot 
know its mean or variance. The standard solution to the problem is to either 

fix the variance to one (=1), and estimate all factor loadings freely, or to 

fix a single factor loading to one (say, the j-th loading), and to estimate  
freely (which is now a direct function of the j-th observed indicator scale). 
Now usually we assume the means of all variables in the model to equal zero. 
But with the introduction of structured means, we have an additional scaling 

problem: if we cannot observe , how can be know its mean value? We can solve 
this problem by fixing the mean of h to zero. So we go from yk = k + kk to 

simply yk = k. As k is zero. Given this constraint the observed means will 

equal the intercepts k. 
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Small example: single factor model. 
 We shall fit a single common factor model to 4 indicators of performal 

IQ. We shall do this by scaling in  (see Box 1-2), and fixing the mean of 
the common factor to zero. Summary statistics are included in the LISREL 
input (note: pc=picture completion, pa=picture arrangement, oa=object 
assembly, ma=matrices).  
 
title single factor model including the means 
da no=1868 ni=4  
cm sy 
      8.24 
      2.84       8.47 
      3.54       3.24       9.06 
      2.55       2.40       2.86       9.36 
me 
     10.41      10.37      10.73      10.41 
la 
     pc         pa         oa         ma 
mo ly=fu,fr ps=sy,fr te=di,fr al=fu,fi ty=fu,fr ne=1 ny=4 
pa ly 
0 2 3 4 
pa te  
11 12 13 14 
pa ps  
21 
va 1 ly 1 1 ! scaling - variance of factor 
va 0 al 1 ! scaling mean of common factor 
ou   
 
Note that the means are included in the input, and that the means model of eq 

1-5 is specified E[y] =  + . However, a is fixed to zero, so that the 

model is simply E[y] = . That is the estimates in  will simply equal the 
observed means. In the output we find: 
 
         TAU-Y        
                  pc         pa         oa         ma    
            --------   --------   --------   -------- 
               10.41      10.37      10.73      10.41 
              (0.07)     (0.07)     (0.07)     (0.07) 
              156.70     153.96     154.03     147.02 
 

 
 

pIQ




 

 
 

Figure 1-1: Path diagram of single factor model with 4 indicators (scaling of 
the common factor pIQ achieved by fixing the first factor loading to 1). 

 
 

y1 

1 

y2 

2 

y3 

3 

y4 pc pa oa ma 

4 1 2 3 4 



Lecture notes I: Measurement Invariance (RM20; Jelte Wicherts).  6

Factor modeling in multiple groups 
In investigating measurement invariance with respect to group in the linear 
factor model, it is convenient to fit a given factor model in multiple 
groups. The multi-group extension is relatively simple as it involve merely 
stacking LISREL input. To illustrate this, I fit a two group model – but I do 
so without any constraints over the groups.  
 
title single factor model including the means 
title whites 
da no=1868 ni=4 ng=2 
cm sy 
      8.24 
      2.84       8.47 
      3.54       3.24       9.06 
      2.55       2.40       2.86       9.36 
me 
     10.41      10.37      10.73      10.41 
la 
     pc         pa         oa         ma 
mo ly=fu,fr ps=sy,fr te=di,fr al=fu,fi ty=fu,fr ne=1 ny=4 
le  
PIQ 
pa ly 
0 2 3 4 
pa te  
11 12 13 14 
pa ps  
21 
va 1 ly 1 1 ! scaling - variance of factor 
va 0 al 1 ! scaling mean of common factor 
ou rs    
title single factor model including the means 
title blacks 
da no=306  
cm sy 
       9.18 
       3.40       9.18 
       4.39       3.68       8.76 
       3.51       3.12       1.81      10.37 
me 
       8.12       8.10       7.89       8.39 
la 
     pc         pa         oa         ma 
mo ly=fu,fr ps=sy,fr te=di,fr al=fu,fi ty=fu,fr ne=1 ny=4 
le  
PIQ 
pa ly 
0 102 103 104 
pa te  
111 112 113 114 
pa ps  
121 
va 1 ly 1 1 ! scaling - variance of factor 
va 0 al 1 ! scaling mean of common factor 
ou rs    
 
Without going into the details of the results, I merely note that the two 
group analysis without any constraints over the groups will produce results 
that are exactly the same as those obtained in two single group analyses.  
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Measurement invariance in the linear factor model. 
  The data shown above were IQ tests collected in 1868 white youths and 
305 black youths (WISC US norm data). Suppose a researcher carries out a 
MANOVA to investigate the hypothesis that white youth on average score higher 
on performal IQ than black youths. Suppose the chosen alpha is 0.01, and the 
results of the MANOVA are: 
 
            Df Pillai approx F num Df den Df    Pr(>F)     
gr           1  0.134   84.108      4   2168 < 2.2e-16 *** 
 
The test statistic F(4,2168)=84.108, and the p-value is < .01. The univariate 
test are also all significant given alpha =.01/4. So the researcher concludes 
that his hypothesis is correct and concludes: "White youth score higher on 
average than black youths with respect to performal IQ". The researcher tries 
to publish these results, and receives a review report, including the 
following comment: 
 

"The author concludes that the groups differ with respect to performal IQ. 
This conclusion is based on the supposition that the same construct was 
measured in both groups. How can the author be so sure of this? How does 
the researcher know that the difference observed at the level of the 
observed variables are a function of differences at the level of the 
latent variable of interest, namely performal IQ?"  

 
This reviewer has an excellent point. How do we know we are measuring the 
same construct? To answer this question, we have to identify the conditions, 
which are necessary to establish that we are indeed measuring the same 
construct in both groups. These conditions are given by the definition of 
measurement invariance (MI). In considering MI in the linear factor model, we 
introduce distributional assumptions in the model, and we require the idea of 
a conditional distribution (see Box 1-3). 
 We introduce the following distributional assumption in group k: 

 

yki~N(k,k), k=1....K.        eq 1-6 
 
This means that the observed random vector yki  in group k follows a 
multivariate normal distribution. The mean vector and covariance matrix are 
subjected to the linear factor model, so we can write: 
 

y ~N(  +  k,kkk
t + k), k=1....K,  ki k k

   
Note that this distributional assumption is considered within each group. 
That is, we may consider this distribution a distribution conditional on 
group. As explained in Box 1-3 we can also condition on the common factor. 
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Box 1-3. Conditioning  

Consider the multi-group linear factor model: yki = ki + ki (k=1...K groups, 
and i=1...Nk cases in group k). First consider the model in a given group k. 

In this model, I condition on a given value of k, *, by considering the 
model in subject for who ki = *. The mean and covariance matrix of y in this 
group of subjects equals:  
 

E[yk|ki = *] =  k + k *, and 

k|* = k 

  
Note that this result is analogous to the results obtain by conditioning on 
the predictor in the linear regression model: yi = b0 + b1* xi + ei. 
 
E[yi|xi=x*] = b0 + b1 x*  

var(yi|xi=x*) = 2e 
  

Note that 2e does not depend on the value of x*. This is the assumption of 
homoskedasticity in the linear regression model. Similarly, note in the 

factor model that k does not depend on *. Again this is the assumption of 
homoskedasticity, but not defined in the linear factor model. So conditioning 

on a variable ( or x) means considering the model in subject who all have a 

given identical fixed value on  (factor model) or x (regression model). 
Here we consider the mean and variance of the dependent variable (y in the 
factor model or y in the regression model). But we can take a more general 
approach by considering the condition distribution of y or y. This allows us 
to adopt a slightly more general approach (the conditional mean and variance 
are aspects or characteristics of the conditional distribution). 

 
The distribution of the observed data conditional on group is given (i.e., 
multivariate normality). Within a given group k, we consider the conditional 

distribution of yki given k=*, f(yki|*): 
 

yki|* ~ N(k + k*, k),       eq 1-7 
 

So f(yki|*) is again a multivariate normal distribution, with the specific 
covariance matrix and mean vector. Specifically, the conditional means and 
covariance matrix within group k are: 
 

E[yk|ki = *] =  k + k*, and k|* = k. 
 
The definition of MI in the linear factor model requires the explicit 
conditioning on group: 
 

Definition of MI:  f(yi|*) = f(yi|* & group=k)   eq 1-8. 
 

for all values of * and all values of k. Now given eq 1-7, this means that 
f(yki|*) should be equal over all groups (k=1...K). Consider just two groups, 
k=1 and k=2. Conditional distributions in groups 1 and 2 are 
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y1i|* ~ N(1 + 1*, 1) 

y2i|* ~ N(2 + 2*, 2) 
 
MI require that these conditional distributions to be equal. So this implies 

that the distribution N(1 + 1*, 1) should equal the distribution N(2 + 

2*, 2). Clearly this is so if and only if k, k, and k  are equal over the 

groups: 1 =2=, 1 =2=, and  1 =2=. Only then will we have: 
 

yki|* ~ N( + *, ), regardless of group (i.e., in all groups). 
 

So if we take these requires (1=2, 1=2, 1=2), and consider them in the 
standard multi-group model, we find that MI in the linear factor model 
prescribes: 
 

k = kt +        eq 1.9a 

k =  + k        eq 1.9b
 
If this model is tenable to reasonable approximation, the indictors are 
measurement invariant with respect to group. Given the context of the factor 
model (including the distributional assumptions), the factor model is called 
“strict factorially invariant”. So strict factorial invariance with respect 
to group means measurement invariance with respect to group in the common 
factor model.  
 The derivation of MI based on conditional distributions is somewhat 
abstract, but its consequences are quite concrete. Specifically MI prescribes 
strict factorial invariance, i.e., specific equality constraints over the 
groups. Regardless of the derivation, we can may note that the test is MI 
with respect to group if the observed group differences in summary statistics 
(means and covariance matrix) are attributable to differences in the means 

and variance of the latent trait or common factor (k and k). This is 
logical: if the test measures the same latent variable in the two groups, 
then that latent variable should be the only source of differences between 
the groups. The MI model (eq 1.9) may also be view as a model in which the 

functional relationship between the observed (y) and latent variable () is 
identical over the groups. To see what this means, consider this in the 

linear regression model (y on x; rather than y on ). Specifically, consider 
the regressions of y on x in two groups as depicted in Figure 1-2. 
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Figure 1-2: regression of y on x in two groups 

In Figure 1-2, we display the scatter plot of data in two groups (black dots, 
gray dots) and the fitted regression line in the two groups. In the factor 
model, this would be the regression of a given indicator y on the factor(s) 

. The model is:  
 

yki = b0k + b1k*xki + ki 
 
where k denotes group (k=1,2) and i denotes case (i=1...Nk). It is only in the 
bottom right figure that the parameters are equal, i.e., b01 = b02 = b0, and b11 

= b12 = b1. So in analogy, together 1 =2 = , and 1 = 2 =  imply that the 
parameters of the regression of indicators on the common factor are 
identical.    
 Another consequence of measurement invariance is this. Suppose we are 
considering a single common factor model. If I choose a given subject from 

group 1, with latent variable value * and a given subject from group 2, with 

latent variable value •, where the values are not equal •≠*. Consider first 
the situation in which measurement invariance does not hold. For the 
difference in expected conditional mean (conditional on the latent variable 
value), we have  
 

E[y1i|1 = *] =  1 + 1*   

E[y2i|2 = •] =  2 + 2• 
 
and the difference is complicated: 
 

E[y1i|k = *] -  E[y1i|k = •] = (1 + 1*) - (2 + 2•) =  

(1 - 2 + 1* - 2•). 
 

This is complicated, because the difference between E[y2i|2 = *] and E[y2i|2 

= •] depends on the parameters , the factor loading , and the latent trait 

difference (• vs *). Now consider the same comparison, but subject to strict 
factorial invariance: 
 

E[y1i|1 = *] =   + *   

E[y2i|2 = •] =   + • 
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and the difference: 
  

E[y1i|k = *] -  E[y1i|k = •] = ( + *) - ( + •) =  

( -  + * - •) = * - •). 
 
The difference now only depends on the latent trait. This is consistent with 
the idea of measuring the same latent variable in both groups. If you compare 
individuals with the same latent trait value, then the differences in their 
expected values should depend only on the latent trait, and on nothing else: 

* - •).  
 

Box 1-4. Conditional means & systematic differences  
Given the distributional assumption of normality in the linear factor model 
we have the unconditional distribution in group k: 

yki~N(k + kk,kkk
t  + k), 

and the conditional distribution in group k: 

yki|* ~ N(k + k*, k),  

Note that yki|ki=* =  k + k * + ki.  

In comparing two subject (i=1,2), with the same latent trait  value (*) we 
have:  

yk1|k1=* =  k + k * + 1i 
yk2|k2=* =  k + k * + 2i 
These subjects will differ as follows 

yk1|k1=* - yk2|k2=*  = (k + k * + 1i) – (k + k * + 2i) = (1i - 2i)  
This difference is solely a function of error. How will the subjects differ 
systematically? To answer this question I consider the conditional mean: 

E[yk1|k1=*]- E[yk2|k2=*]  = (k + k *) – (k + k *) = 0. 
But what does the conditional mean actually represent. You can consider it 

the means of all subject with ki=*. Or, in a thought experiment, the mean of 
the scores of a given subject who is tested repeatedly and (ahem...) 
brainwashed between testing. In theory the expected means of the conditional 
values alow me to consider the systematic part of the scores (the error is 

averaged out): yk2|k2=* =  k + k * + 2i vs. E[yk2|k2=*]  = (k + k *). And 
it allows me to consider systematic differences between subjects.  
 
 So far have consider measurement invariance of a psychometric test with 
respect to group. The definition is more general than that however. We can 
define MI with respect to any variable X: 
 

Definition of MI:  f(yi|*) = f(yi|* & X*),  
 

for all values of  and X (about X represented group). That is, if and only 
if the conditional distribution of y given (conditional on) * (a fixed value 

of ), equals the conditional distribution of y given X* and * (fixed values 

of  and X), are the indicators y measurement invariant with respect to X. MI 
can also be viewed from the perspective of a causal model. That is, the 
definition implies that that the relationship between X (external variable) 
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and y (the indicators) is mediated by  (the common factor). Specifically 

conditioning on  will be equivalent to conditioning on X and  if and only 

if the relationship between the indicators y and X is mediated by . We can 
represent this in a path diagram. 
 

 
Figure 1-3: Left, the relationship between X and y is mediated by ; the test 
consisting of the indicators y1, y2, and y3 is measurement invariant with 
respect to X. Right, the direct relationship between X and y1 constitutes a 
violation of measurement invariance. Specifically, the relationship between X 

and y1, y2, y3 is not complete mediated by .   
 
Measurement invariance in the linear factor model: fitting strategy.   
 We will now consider the practicalities of actually fitting this model. 
We shall assume that we have obtained a data set in several groups, and that 
we want to establish measurement invariance with respect to group. We 
consider a number of increasingly restrictive models. Note that these models 
are nested, i.e., that each model can be derived from the next model by the 
imposition of parameter constraints (i.e., equality constraints). This 
implies that the constraints associated with each model can be tested by 
means of a likelihood ratio (or log likelihood difference) test. We start off 
with configural invariance. To ease presentation, we consider just two model.   
 

Model #1: Configural invariance 
We fit a two group model, but do not introduce any equality constraints over 
the groups (example given above). 
 

k = k k k
t+k 

k = k + k k 

 

We fit a two group model, but do not introduce any equality constraints over 

the groups. We do assume that the pattern or configuration of and are the 
same, i.e., in the two groups the same indicators load on the same factors. 
E.g., letting superscripts to denote group, 
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1 = 111 0  2 = 211 0 

 121 0   221 0 

 0 132   0 232 

 0 142   0 242. 

 
This model actually comprises two independent factor models and thus requires 
the usual identifying constraints which pertain to a single group factor 

model. We scale in  so that we can estimate the factor variances, and fix 
the factor means to zero. 
 

k =  0  

 k21 0  

 0   

 0 k42  
 

k = k k k
t
 + k 

k = k  
 

Consider the conditional statistics: 
 

E[yki|ki=*] = k + k* 

cov[yki|ki=*] = cov[yki|ki=*] = k 

 

and note that E[y1i|1i=*]  E[y2i|2i=*] (because of 1  2 & 1  2). 

 

Model #2: Equal factor loadings (metric invariance). 
In the second step towards establishing measurement invariance, we constrain 
the factor loadings to be equal: 
 

k =  k t
 + k 

k = k  
 

E[yki|ki=*] = k +  * 

cov[yki|ki=*] = cov[yki|*] = k 

E[y1i|1i=*]  E[y2i|2i=*] (because of 1  2). 

 

Model #2 is nested under model #3; the difference in DFs equals....?  
 

Model #3: Equal factor loadings & structured means (strong factorial 
invariance). 
With equal factor loadings we can introduce a model for the means by setting 

the intercepts k equal: 

k =  k t

 + k 


1 =   +  1 

2 =   +  2 
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This model seems to be identified. Suppose we have 1 factor and 4 indicators. 

We would then have 8 observed means (4 in two groups) and only 4 (y) +2 

(1,2) parameters. However, the model is not identified. We are estimating 
two factor means, but as ever we cannot estimate means of latent variables 
(they are latent: this is a scaling problem). There is a simple solution to 
the problem: fixed the factor mean to equal zero in one group (the reference 
group, say group 1):    
 

1 = y + (1-1) = y 
 
and estimate the difference in factor mean in groups 2: 


2 = y +  (2-1) = y + (2-1) = y +  2 
 

(2 = 2-1 is the latent mean difference in factor means of group 1 and group 
2). So we have: 
 

k =  k t+ k 

 

1 =  + (1-1) = y

2 =  + 2 
 

E[yki|ki=*] =  +  

cov[yki|ki=*] = k 

 

note now: E[y1i|1i=*] = E[y2i|1i=*], but 

cov[y1i|1i=*]  cov[y1i|1i=*] as 1  2 

 

Model #3 is nested under model #2; establish the difference in DFs  for 
yourself....  
 

Model #4: Equal factor loadings, equal residuals & structured means 
(strict factorial invariance). 
Finally we add the constraint that the residual variances are equal: 
 

i =  i t+  

 

1 =  + (1-1) = y

2 =  + (2-1) = y + 2 
 
This model represents the strongest form of factorial invariance. If implies: 
 

E[yki|ki=*] =  +  

cov[yki|ki=*] =  

 
note that now:  
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E[y1i|1i=*] = E[y2i|1i=*], and 

cov[y1i|1i=*] = cov[y1i|1i=*],  
  
More generally if we assume multivariate normality, strict factorial 
invariance satisfies the requirement: 
 

f(yki|ki=*) = f(yki|ki=* & k), or 
 

f(y1i|1i=*) = f(y2i|2i=*) 
 
The present discussion concerned the common factor model, and thus linear 

regression. However the requirement f(yi|1i=* & k) as a condition for 
unbiasedness (measurement invariance) is general. For instance, if y is a 

dichotomous variable, we could use the normal ogive model to link y to , and 
arrive at the same requirements. We will return to this later in the course. 
Model #4 is nested under model #3.  
  

Example 
We demonstrate all models using the real data set presented above. 
 
N=1868 Group 1 (white youths) 
                  pc         pa         oa         ma    
            --------   --------   --------   -------- 
       pc       8.24 
       pa       2.84       8.47 
       oa       3.54       3.24       9.06 
       ma       2.55       2.40       2.86       9.36 
         Means    
                pc         pa         oa         ma    
            --------   --------   --------   -------- 
               10.41      10.37      10.73      10.41 
 
N=305 Group 2 (black youths) 
                  pc         pa         oa         ma    
            --------   --------   --------   -------- 
       pc       9.18 
       pa       3.40       9.18 
       oa       4.39       3.68       8.76 
       ma       3.51       3.12       1.81      10.37 
         Means    
                  pc         pa         oa         ma    
            --------   --------   --------   -------- 
                8.12       8.10       7.89       8.39 

 

Model #1: configural invariance: no constraints 
 
title groups 
da No=1868 ni=4 ng=2 
cm sy 
            8.24 
            2.84       8.47 
            3.54       3.24       9.06 
            2.55       2.40       2.86       9.36 
Me    
               10.41      10.37      10.73      10.41 
la 
                pc         pa         oa         ma    
mo ly=fu,fr ps=sy,fr te=sy,fr ne=1 ny=4 ty=fu,fr al=fu,fi 
le 
perfIQ    
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pa ly 
0 1 1 1 
ma ly 
1 0 0 0     ! scaling in lambda 
ma al 
0      ! zero mean factor 
pa ps 
1 
pa te 
1 
0 1 
0 0 1 
0 0 0 1 
ou 
title N=305  Group 2 
da no=305 ni=4 
cm sy 
            9.18 
            3.40       9.18 
            4.39       3.68       8.76 
            3.51       3.12       1.81      10.37 
Me  
                8.12       8.10       7.89       8.39 
la 
                  pc         pa         oa         ma    
mo ly=fu,fr ps=sy,fr te=sy,fr ne=1 ny=4 ty=fu,fr al=fu,fi 
le 
  perfIQ    
pa ly 
0 1 1 1 
ma ly 
1 0 0 0 
ma al 
0   
pa te 
1 
0 1 
0 0 1 
0 0 0 1 
ou mi 
 

Degrees of Freedom = 4 
Minimum Fit Function Chi-Square = 14.96 (P = 0.0048) 
Root Mean Square Error of Approximation (RMSEA) = 0.047 
Non-Normed Fit Index (NNFI) = 0.97 
 
Does not fit very well judging by the chi2, but N is large. The NNFI and 
RMSEA both suggest that the model fits well enough. Modification indices in 
group 2 are: 
 
         Modification Indices for THETA-EPS       
 
                  pc         pa         oa         ma    
            --------   --------   --------   -------- 
       pc        - - 
       pa      13.31        - - 
       oa       3.56       3.37        - - 
       ma       3.37       3.56      13.31        - - 
 
         Expected Change for THETA-EPS    
 
                  pc         pa         oa         ma    
            --------   --------   --------   -------- 
       pc        - - 
       pa      -2.68        - - 
       oa       1.64       1.16        - - 
       ma       1.07       0.97      -1.93        - - 
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The correlation between pc and pa is overestimated in this group. But we will 
accept the model as it stands. 
 

MODEL #2 Metric invariance. 
 title groups 

da No=1868 ni=4 ng=2 
cm sy 
            8.24 
            2.84       8.47 
            3.54       3.24       9.06 
            2.55       2.40       2.86       9.36 
Me    
               10.41      10.37      10.73      10.41 
la 
                pc         pa         oa         ma    
mo ly=fu,fr ps=sy,fr te=sy,fr ne=1 ny=4 ty=fu,fr al=fu,fi 
le 
perfIQ    
pa ly 
0 2 3 4  ! parameter number for equality constraints 
ma ly 
1 0 0 0 
ma al 
0 
pa ps 
1 
pa te 
1 
0 1 
0 0 1 
0 0 0 1 
ou 
title N=305  Group 2 
da no=305 ni=4 
cm sy 
             9.18 
            3.40       9.18 
            4.39       3.68       8.76 
            3.51       3.12       1.81      10.37 
Me  
                8.12       8.10       7.89       8.39 
la 
                  pc         pa         oa         ma    
mo ly=fu,fr ps=sy,fr te=sy,fr ne=1 ny=4 ty=fu,fr al=fu,fi 
le 
  perfIQ    
pa ly 
0 2 3 4  ! equality constraints 
ma ly 
1 0 0 0 
ma al 
0   
pa te 
1 
0 1 
0 0 1 
0 0 0 1 
ou mi 
 

Degrees of Freedom = 7. 
Minimum Fit Function Chi-Square = 18.73 (P = 0.0091). 
Root Mean Square Error of Approximation (RMSEA) = 0.036 
Non-Normed Fit Index (NNFI) = 0.98. 
 

The deterioration in fit not significant: 18.73-14.96 = 3.69, df=3, ns. 
 

MODEL #3, strong factorial invariance  
title groups 
da No=1868 ni=4 ng=2 
cm sy 
            8.24 



Lecture notes I: Measurement Invariance (RM20; Jelte Wicherts).  18

            2.84       8.47 
            3.54       3.24       9.06 
            2.55       2.40       2.86       9.36 
Me    
               10.41      10.37      10.73      10.41 
la 
                pc         pa         oa         ma    
mo ly=fu,fr ps=sy,fr te=sy,fr ne=1 ny=4 ty=fu,fr al=fu,fi 
le 
perfIQ    
pa ly 
0 2 3 4 
ma ly 
1 0 0 0 
ma al 
0 
pa ps 
1 
pa te 
1 
0 1 
0 0 1 
0 0 0 1 
! pa ty 
! 21 22 23 24 
ou 
title N=305  Group 2 
da no=305 ni=4 
cm sy 
            9.18 
            3.40       9.18 
            4.39       3.68       8.76 
            3.51       3.12       1.81      10.37 
Me  
                8.12       8.10       7.89       8.39 
la 
                  pc         pa         oa         ma    
mo ly=fu,fr ps=sy,fr te=sy,fr ne=1 ny=4 ty=in al=fu,fr 
! note ty=in 
le 
  perfIQ    
pa ly 
0 2 3 4 
ma ly 
1 0 0 0 
ma al 
-2  
pa al ! estimate the mean in group 2. this parameter is the mean difference! 
1  
pa te 
1 
0 1 
0 0 1 
0 0 0 1 
 
! pa ty   ! i used ty=in on the mo line. parameter number is an alternative 
! 21 22 23 24 
ou mi 
 

Degrees of Freedom = 10 
Minimum Fit Function Chi-Square = 21.00 (P = 0.021) 
Root Mean Square Error of Approximation (RMSEA) = 0.029 
Non-Normed Fit Index (NNFI) = 0.99 
 
MODEL #3, strict factorial invariance 
title groups 
da No=1868 ni=4 ng=2 
cm sy 
            8.24 
            2.84       8.47 
            3.54       3.24       9.06 
            2.55       2.40       2.86       9.36 
Me    
               10.41      10.37      10.73      10.41 
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la 
                pc         pa         oa         ma    
mo ly=fu,fr ps=sy,fr te=sy,fr ne=1 ny=4 ty=fu,fr al=fu,fi 
le 
perfIQ    
pa ly 
0 2 3 4 
ma ly 
1 0 0 0 
ma al 
0 
pa ps 
1 
pa te 
1 
0 1 
0 0 1 
0 0 0 1 
ou 
title N=305  Group 2 
da no=305 ni=4 
cm sy 
             9.18 
            3.40       9.18 
            4.39       3.68       8.76 
            3.51       3.12       1.81      10.37 
Me  
                8.12       8.10       7.89       8.39 
la 
                  pc         pa         oa         ma    
mo ly=fu,fr ps=sy,fr te=in ne=1 ny=4 ty=in al=fu,fr  ! te=in 
le 
  perfIQ    
pa ly 
0 2 3 4 
ma ly 
1 0 0 0 
ma al 
-2  
pa al 
1  
ou rs 
 
Degrees of Freedom = 14 
Minimum Fit Function Chi-Square = 23.52 (P = 0.052) 
Root Mean Square Error of Approximation (RMSEA) = 0.023 
Non-Normed Fit Index (NNFI) = 0.99 

 
We summarize these results in Table 1-4. 
 
Table 1-4: 
Summary of model fits 
Model   df  chi2  rmsea  nnfi 
#1 (conf)  4  14.9  .047  .97 
#2 (metric)  7  18.7  .036  .98 
#3 (strong fi) 10  21.0  .029  .99 
#4 (strict fi) 14  23.5  .023  .99  

Comparisons loglikelihood differences 
Models df  chi2 
#1 vs #2 3  3.8 ns 
#2 vs #3 3  2.3 ns 
#3 vs #4 4  2.5 ns 
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Note that I have limited the goodness of fit measure to the chi2, rmsea, and 
nnfi. Of course, other indices can be used such as the information criteria 
CAIC or ECVI, or other incremental fit indices, such as CFI.  
  Based on these results, we accept model #4, i.e., the strict factorial 
invariance model. This implies that the 4 indicators of Performal IQ are 
unbiased with respect to group, i.e., we are measuring the same construct in 
the two groups. Note that we have thus explained the observed group 
differences in means by positing a latent group difference. Note that this 
does not tells us anything about the cause of the latent group difference!   
 
Latent means and variances in model #4. 
whites mean  0   variance 3.11 (se. .23)  
black  mean -2.43 (se. .15) variance 3.54 (se. .45) 
 
Figure 1-4 depicts the latent normal distributions, based on these parameter 
estimates. 
 

 
Figure 1-4: distribution of performal IQ in black and whites youths. 

Multiple factor model.  
Above we fitted a single factor model. But the test of measurement invariance 
can be carried out equally well in the multiple factor model. Specifically 
the implications of MI for the multi-group factor model are 
 

k =  k t+ 

k =  +  k 

 
i.e., strict factorial invariance. This model does not limit the 

dimensionality of  in anyway, i.e., the model is an ne common factor model, 
where ne = 1 or possible ne > 1. 
 In fitting a multiple factor model in multiple groups, we can again 
carry out the analysis in the steps outlined above. That is, we can fit the 
configural invariance model, the metric invariance model, and the strong and 
strict factorial models. If the strong of strict factorial models fit, we 
will be modeling the ny observed means differences as a function of the 
differences in ne common factor models. To illustrate this consider the 
following data obtained from the WISC US norm data. 
 
Table 1-5: summary stats WISC US norm data (see also appendix) 
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summary stats N=1868 
white correlations 
1.00 
.58 1.00 
.51 .43 1.00 
.66 .63 .48 1.00 
.51 .55 .40 .61 1.00 
.34 .33 .42 .36 .23 1.00 
.25 .19 .32 .24 .19 .37 1.00 
.35 .40 .30 .38 .35 .16 .16 1.00 
.37 .37 .26 .39 .34 .18 .19 .34 1.00 
.44 .45 .41 .43 .38 .29 .27 .47 .41 1.00 
.34 .35 .23 .33 .29 .17 .15 .41 .37 .56  1.00 
.26 .25 .29 .29 .23 .28 .25 .15 .22 .30 .20 1.00 
.22 .24 .24 .21 .23 .18 .19 .29 .27 .39 .31 .18 1.00 
white means 
10.41 10.29 10.37 10.42 10.44 10.08 10.09 10.41 10.37 10.39 10.73 10.22 10.41 
white stdevs 
2.91 3.01 2.84 2.94 2.81 3.00 2.87 2.87 2.91 2.92 3.01 3.30 3.06 
  
summary stats N=305 
black correlations 
1.00 
.55 1.00 
.53 .46 1.00 
.63 .65 .52 1.00 
.49 .48 .39 .63  1.00 
.43 .34 .50 .41 .35 1.00 
.32 .21 .30 .25 .24 .43 1.00 
.42 .43 .32 .43 .44 .28 .29 1.00 
.29 .36 .23 .36 .38 .30 .26 .37 1.00 
.37 .41 .40 .41 .38 .35 .26 .48 .37 1.00 
.31 .36 .28 .34 .35 .25 .17 .49 .41 .57 1.00 
.21 .26 .28 .28 .26 .25 .25 .16 .21 .43 .39 1.00 
.26 .24 .22 .25 .30 .28 .26 .36 .32 .29 .19 .18 1.00 
black means 
8.09 7.91 8.63 7.86 7.83 9.18 9.12 8.12 8.10 7.70 7.89 8.86 8.39 
black stdevs 
2.65 2.92 2.75 2.76 2.53 3.19 2.95 3.03 3.03 2.70 2.96 2.93 3.22 

 
Here is the lisrel input file for the configural invariance model. 
 
title jensen and reynolds 1982  
title MODEL A1. 
da no=1868 ng=2 ni=13 
km fi=reyn.wh 
me fi=reyn.wh 
sd fi=reyn.wh 
la  
 i s a v c ds ts pc pa bd oa co ma 
se 
 i s a v c ds ts pc pa bd oa co ma / 
mo ny=13 ne=3 ly=fu,fr ps=sy,fr te=di,fr ty=fu,fr al=fu,fi 
ma al 
0 0 0 
le 
v p m 
pa ps 
1  
1 1 
1 1 1 
ma ps 
0 
0 0 
0 0 0 
ma ly 
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0 0 0 
0 0 0 
0 0 0 
1 0 0 
0 0 0 
0 0 0 
0 0 1 
0 0 0 
0 0 0 
0 0 0 
0 1 0 
0 0 0 
0 0 0  
pa ly 
1 0 1 
1 1 0 
1 0 1 
      0 0 0 
1 1 0 
0 0 1 
      0 0 0 
1 1 0 
1 1 0 
0 1 1 
      0 0 0 
0 1 1 
0 1 1  
st 1 all 
st .4 ps(2,1) ps(3,1) ps(3,2) 
st 10 ty(1)-ty(13) 
st 3 te(1)-te(13) 
ou rs ad=off it=9999 nd=3 XM MI 
title jensen and reynolds 1982  
title MODEL A1. 
da no=305 
km fi=reyn.bl 
me fi=reyn.bl 
sd fi=reyn.bl 
la  
 i s a v c ds ts pc pa bd oa co ma 
se  
 i s a v c ds ts pc pa bd oa co ma / 
mo ly=fu,fr ps=sy,fr te=di,fr ty=fu,fr al=fu,fi   
le  
 v p m 
ma al 
0 0 0 
ma ly 
0 0 0 
0 0 0 
0 0 0 
1 0 0 
0 0 0 
0 0 0 
0 0 1 
0 0 0 
0 0 0 
0 0 0 
0 1 0 
0 0 0 
0 0 0  
pa ly 
1 0 1 
1 1 0 
1 0 1 
      0 0 0 
1 1 0 
0 0 1 
      0 0 0 
1 1 0 
1 1 0 
0 1 1 
      0 0 0 
0 1 1 
0 1 1  
st .4 ps(2,1) ps(3,1) ps(3,2) 
st 10 ty(1)-ty(13) 
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st 5 te(1)-te(13) 
ou
 

 rs 

 
 
Figure 1-5: Path diagram of model for WISC (scaling in Lambda). 
 
Assignment #1: complete the following table. 
 
Summary of model fits 
 
Model   df  chi2  rmsea  nnfi  CAIC    
#1 (conf)  106  239.9  .034  0.991  1124.1  
#2 (metric)   
#3 (strong fi)  
#4 (strict fi)  
  

Comparisons loglikelihood differences 
Models df  chi2 
#1 vs #2  
#2 vs #3  
#3 vs #4  
 
Report the latent mean differences. Are they significant? 
 
Second order factor model 
General intelligence, or “g”, is an important construct in IQ research. “g” 
is viewed as a latent variable that permeates all IQ tests, and thus gives 
rise to the so-called positive manifold. The positive manifold is a 
complicated name for a simple phenomenon: correlation among tests of 
cognitive abilities are almost always positive.  
 In confirmatory factor analysis of IQ test scores, “g” may be fitted 
in two ways, 1) as a first order general factor (the “bifactor model”); and 
2) as a second order general factor (the “second order factor model”). We 
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consider the latter here in a single group without means. The data are 
WAIS-III data obtained in a sample of 164 young adult males. We start with 
an oblique 4 factor model, where we specify the expected factor structure. 
The common factors are Vocabulary (VO), Perceptual Organization (PO), 
Working Memory (WM), and Processing Speed (PS). We shall not introduce the 
means.  
 
title young men 
! WAIS III  
da ng=1 ni=14 no=164 ma=cm 
cm sy 
    76.213 
    32.223     29.376 
    14.231      8.457     11.022 
    13.135      8.542      5.720     15.761 
    28.908     15.727      9.265      7.061     23.232 
    31.307     17.711      8.249      5.657     16.128     27.248 
     9.793      4.680      4.180      6.621      5.381      5.027 
     7.236 
    11.654      7.403      4.227      3.656      6.166      6.516 
     2.269      9.548 
    61.185     36.239     19.663     17.247     24.130     31.713 
    14.927     10.278    287.981 
    41.354     22.380     15.483     11.234     25.913     21.390 
    10.121     10.751     51.575    109.830 
    12.261      9.364      6.756      4.736      7.885      8.352 
     3.059      5.080     16.589     18.231     15.920 
    17.479     10.829      4.566      4.962      9.812     10.277 
     4.273      4.663     25.253     21.684      6.488     17.472 
    28.582     14.398      9.269      9.169     13.253     14.308 
     7.260      8.391     61.877     34.134     13.941      7.462 
    71.572 
    31.361     19.759     14.341     11.163     20.864     18.058 
     9.162     10.114     49.372     59.121     13.555     17.648 
    25.364     78.677 
la 
    VOCAB SIM ARIT DIGIT INFORM COMPRE LN PC COD BD MATRIC PA SS OA 
mo ny=14 ne=4 ly=fu,fi ps=sy,fi te=sy,fi    
le 
VO PO WM PS 
fr te 1 1 te 2 2 te 3 3 te 4 4 te 5 5 te 6 6 te 7 7  
fr te 8 8 te 9 9 te 10 10 te 11 11 te 12 12 te 13 13 te 14 14 
fr te 14 10 
pa ly 
1 0 0 0 ! voc 
1 0 0 0 ! sim 
0 1 1 0 ! arit 
0 0 1 0 ! digit 
1 0 0 0 ! inform 
1 0 0 0 ! compre 
0 0 1 0 ! ln   
0 1 0 0 ! pc 
0 0 0 1 ! cod 
0 1 0 0 ! bd    
0 1 0 0 ! ma   
0 1 0 0 ! pa  
0 0 0 1 ! ss  
0 1 0 0 ! oa  
! scaling in Ly 
va 1 ly 1 1 ly 8 2 ly 4 3 ly 9 4 
fi ly 1 1 ly 8 2 ly 4 3 ly 9 4 
pa ps 
1  
1 1  
1 1 1  
1 1 1 1 
st 3 all 
st 1 ps 1 1 -  ps 4 4 
st 40 ps 1 1 ps 2 2 ps 3 3 ps 4 4 
st 10 te 1 1 te 2 2 te 3 3 te 4 4 te 5 5 te 6 6 te 7 7  
st 10 te 8 8 te 9 9 te 10 10 te 11 11 te 12 12 te 13 13 te 14 14 
ou rs mi nd=3 ad=off ss 
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The model fits quite well both in terms of the following fit indices: 
 
                             Degrees of Freedom = 69 
              Minimum Fit Function Chi-Square = 91.209 (P = 0.0380) 
             Root Mean Square Error of Approximation (RMSEA) = 0.0383 
                       Non-Normed Fit Index (NNFI) = 0.970 
                       Comparative Fit Index (CFI) = 0.978 
 
and in terms of the standardized residuals: 
       
 - 3|4  
 - 2|8  
 - 2|20  
 - 1|766  
 - 1|44433110  
 - 0|9988776666665555  
 - 0|4444311100000000000000000  
   0|11111222333333333344444  
   0|56778899  
   1|0000122334444  
   1|68  
   2|02  
   2|6 
  
The correlations among the 1st order factors are 
 
                  VO         PO         WM         PS    
            --------   --------   --------   -------- 
       VO      1.000 
       PO      0.844      1.000 
       WM      0.578      0.630      1.000 
       PS      0.663      0.731      0.571      1.000 
 
The second order model includes a common factor upon which the common 
factor VO, PO, WM and PS load. We specify this in LISREL as follows. Here 
is the oblique common factor model: 
 

 
 
We introduce a 5th common factor, denoted “g”.  
 



Lecture notes I: Measurement Invariance (RM20; Jelte Wicherts).  26

 
 
The first order common factors load on “g”, but no observed variable loads 
directly on “g”. Thus in this model “g” does influence all observed 
variables, but this influence runs via the 1st order common factors. We 
have 
 

PS = g, PS + PS 
WM = g, WM + WM 
PO = g, PO + PO 
VO = g, VO + VO 
 
We specify the g factor as follows: 
 
title young men 
da ng=1 ni=14 no=164 ma=cm 
cm sy 
    76.213 
    32.223     29.376 
    14.231      8.457     11.022 
    13.135      8.542      5.720     15.761 
    28.908     15.727      9.265      7.061     23.232 
    31.307     17.711      8.249      5.657     16.128     27.248 
     9.793      4.680      4.180      6.621      5.381      5.027 
     7.236 
    11.654      7.403      4.227      3.656      6.166      6.516 
     2.269      9.548 
    61.185     36.239     19.663     17.247     24.130     31.713 
    14.927     10.278    287.981 
    41.354     22.380     15.483     11.234     25.913     21.390 
    10.121     10.751     51.575    109.830 
    12.261      9.364      6.756      4.736      7.885      8.352 
     3.059      5.080     16.589     18.231     15.920 
    17.479     10.829      4.566      4.962      9.812     10.277 
     4.273      4.663     25.253     21.684      6.488     17.472 
    28.582     14.398      9.269      9.169     13.253     14.308 
     7.260      8.391     61.877     34.134     13.941      7.462 
    71.572 
    31.361     19.759     14.341     11.163     20.864     18.058 
     9.162     10.114     49.372     59.121     13.555     17.648 
    25.364     78.677 
la 
    VOCAB SIM ARIT DIGIT INFORM COMPRE LN PC COD BD MATRIC PA SS OA 
mo ny=14 ne=5 ly=fu,fi ps=sy,fi te=sy,fi be=fu,fr   
le 
VO PO WM PS g 
fr te 1 1 te 2 2 te 3 3 te 4 4 te 5 5 te 6 6 te 7 7  
fr te 8 8 te 9 9 te 10 10 te 11 11 te 12 12 te 13 13 te 14 14 
fr te 14 10 
! note that no indicator loads on the 5th factor. 
pa ly 
1 0 0 0 0! voc 
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1 0 0 0 0! sim 
0 1 1 0 0! arit 
0 0 1 0 0! digit 
1 0 0 0 0! inform 
1 0 0 0 0! compre 
0 0 1 0 0! ln   
0 1 0 0 0! pc 
0 0 0 1 0! cod 
0 1 0 0 0! bd    
0 1 0 0 0! ma   
0 1 0 0 0! pa  
0 0 0 1 0! ss  
0 1 0 0 0! oa  
! scaling in Ly 
va 1 ly 1 1 ly 8 2 ly 4 3 ly 9 4 
fi ly 1 1 ly 8 2 ly 4 3 ly 9 4 
pa ps 
1  
0 1  
0 0 1  
0 0 0 1 
0 0 0 0 1 
! 
pa be 
0 0 0 0 0 
0 0 0 0 1 
0 0 0 0 1 
0 0 0 0 1 
0 0 0 0 0 
va 1 be 1 5 
! 
st .5 all 
st 1 be 2 5 be 3 5 be 4 5 
st 1 ps 1 1 -  ps 4 4 
st 40 ps 1 1 ps 2 2 ps 3 3 ps 4 4 
st 1 ps 5 5 
st 10 te 1 1 te 2 2 te 3 3 te 4 4 te 5 5 te 6 6 te 7 7  
st 10 te 8 8 te 9 9 te 10 10 te 11 11 te 12 12 te 13 13 te 14 14 
pd 
ou rs mi nd=3 ad=off ss 
 
The second order model is actually a simple single common factor model: 
 

   
 
 
There is no apparent differences between these two models. Indeed both are 
characterized by the same problem of identification relating to scaling. In 
the LISREL job above, we have chose to fix the scale of the first order 

factors by fixing element in : 
 
 ! scaling in Ly 
va 1 ly 1 1 ly 8 2 ly 4 3 ly 9 4 
fi ly 1 1 ly 8 2 ly 4 3 ly 9 4 
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We have the same scaling to identify the variance of “g”.  
  
pa be 
0 0 0 0 0 
0 0 0 0 1 
0 0 0 0 1 
0 0 0 0 1 
0 0 0 0 0 
va 1 be 1 5 
 

PS = g,PS g + PS 
WM = g,WM g + WM 
PO = g,PO g + PO 
VO = g + VO 
 
Given this scaling the decomposition of variance is: 
 

var(PS) =  g, PS var(g) + var(PS), etc. 
 
Because we have fixed BE 1 5 to equal 1, we can estimate the variance of 
“g”. Of course we could also have fixed BE 2 5, BE 3 5, or BE 4 5. As in 
the standard single common factor model, this is arbitrary. Here are some 
results. First the model fits well: 
 
 
                             Degrees of Freedom = 71 
              Minimum Fit Function Chi-Square = 91.958 (P = 0.0479) 
             Root Mean Square Error of Approximation (RMSEA) = 0.0360 
                       Non-Normed Fit Index (NNFI) = 0.973 
                       Comparative Fit Index (CFI) = 0.979 
 
Standardized residuals are OK, as these range from about –3.4 to about 2.7 
and are concentrated about zero: 

 
 - 3|4  
 - 2|8  
 - 2|2  
 - 1|9765  
 - 1|444322100  
 - 0|99987666655555  
 - 0|4444421110000000000000000  
   0|1111112222233333334444  
   0|5677788889  
   1|0000012233334  
   1|689  
   2|1  
   2|7 

 
We limit our discussion to the second order factor “g”. First, here are the 
factor loading, which are estimated in BE: 
 
         BETA         
 
                    g    
             -------- 
       VO       1.000 
  
       PO       0.266 
              (0.041) 
                6.411 
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       WM       0.306 
              (0.051) 
                6.006 
  
       PS       1.303 
              (0.220) 
                5.920 
  
Here are the residuals: 
 
         PSI          
 
                  VO         PO         WM         PS          g    
            --------   --------   --------   --------   -------- 
              12.959      0.264      4.913     48.990     42.381 
             (4.152)    (0.282)    (1.178)   (20.115)    (8.184) 
               3.122      0.935      4.169      2.435      5.179 
  
And here are the reliabilities: 
 
         Squared Multiple Correlations for Structural Equations   
 
                  VO         PO         WM         PS          g    
            --------   --------   --------   --------   -------- 
               0.766      0.919      0.447      0.595       - -  

 
These are calculated in the standard way, given that we are regressing VO, 
etc. on “g”. For instance the reliability of VO is:  
 
.766 = (42.381)/(42.381+12.959) 
 
The reliability of PO is: 
 
.919=.2662*42.381 / (.2662*42.381+0.264). 
 
It is interesting to note that “g” explains about 92% of the variance in 
PO. From a correlational point of view, therefore, “g” and PO are quite 
hard to distinguish in this model (whether this will generalize to other 
samples, is an open question).  
 In addition note that this model: 
 

 
implies that all relations between the first-order factors VO, PO, WM and 
PS are explained by ‘g’. It would of course be possible for the first-order 
factors to show additional relations that are not explained by ‘g’. For 
example, VO and PO could be related beyond their common relation to ‘g’. 
Such additional relations can be accommodated in he model by freeing 
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elements in psi (note that these elements should be interpreted as 
covariances between the residual variances of the first-order factors, 
i.e., relations between those parts of the factors that were not explained 
by ‘g’). 
 
An extension of the LISREL model. 
Above we considered this LISREL model for the covariance matrix (k stands 
for group k=1...K, but above K=1): 
 

k = k (-k)-1k (-k)-1tk
t + k  

 
The model for the means is (not considered in the example above): 

k = kk (-k)-1k  
  
We used this model to fit the second order factor model. This model is 
quite easy to understand3, partly because it involves only 4 parameter 

matrices Λ, Β, Ψ, and . However, this is actually just a sub-model of the 
full LISREL model. We shall not consider the full LISREL model, but we 
shall consider an extension, which is useful in the light of the previous 
hierarchical (second-order) analysis. The LISREL model we consider is this: 
 

k = k (-k)-1(k k k t +k) (-k)-1tk
 t+k  

k = kk (-k)-1(kkk) 
 

This is complicated! But we can simplify a little if we set k = 0: 
 

k = k (k k k t +k)k
 t+k  

k = kk(kkk) = kkkkkk) 
 
Note the similarity between the familiar common factor model  

k = kkk
 t+k and the present extension(k k k t + k). This matrix(k k 

k t + k) is the covariance matrix of the common factors. Schematically, 

the extension can be conveyed as follows (with k = 0): 
 
 

                                                 
3 Once you have studied it many times and fitted even more times! 
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





y 









 

We have thus added a variable , which is a latent predictor of . So 
working forward from the common factor model we have: 
 
equation for 
observations yk = 

equations for covariance matrix 
 

k k + k k =k kk
t+k 

k (-k)-1k + k k =k(-k)-1k(-k)-1tk
t+k 

k (-k)-1(kk+k)+ k k =k(-k)-1(kkkt+k)(-k)-1tk
t+k 

 

Or in terms of the models for : 
 
equation for 
observations 

equation for covariance matrix 

k = k k =k 

k = (-k)-1k  k =(-k)-1 k (-k)-1t 

k = (-k)-1(kk+k)  k =(-k)-1(kkkt+k)(-k)-1t 

 
 
equation for 
observations yk = 

equations for covariance matrix 
 

k k + k k = k+kk  

k (-k)-1k + k k = k+k(-k)-1k 

k (-k)-1(kk+k)+ k k = k+k(-k)-1(kkk) 
 

Or in terms of the models for : 
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equation for 
observations 

equation for covariance matrix 

k = k k = k 

k = (-k)-1k  k = (-k)-1k 

k = (-k)-1(kk+k)  k = (-k)-1(kkk) 
 
 
Table 1-6: LISREL covariance and mean structure in k=1...K populations. 
 
covariance structure   mean structure 

k = k (k k k t +k)k
 t+k  k = kk(kkk) 

 
matrix LISREL order  meaning 

k  ly  ny x ne factor loading matrix (y->) 

k  ps  ne x ne cov/cor matrix of  or  

k  te  ny x ny cov/cor matrix of residuals() 

k  ph  nk x nk cov/cor matrix of  (2nd order factors) 

k  ga  nk x nk regression matrix (->) 
k  -  ny x ny expected model cov. matrix of y 
 
vector LISREL dimension meaning 

k  ty  ny x 1 intercept in regression of y on  

k  al  ne x 1 common factor means of  or  

k  al  nk x 1 common factor means of 
yk  -   ny x 1 expected means of y 


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Second order factor model, same model, different specification 

Above we employed the model k = k (-k)-1k (-k)-1t k
t+k to fit the 

second order factor model. We shall now use the following model: 
 

k = k (-k)-1(k k kt +k) (-k)-1t k
t + k  

 
to fit the second order factor model. However, now we shall not require the 

k matrix, and because we only have one group, we drop the group index: 
 

k =  (  t + )t +    
 
Here is the LISREL input for this formulation of the model: 
 
title young men 
!  
da ng=1 ni=14 no=164 ma=cm 
! 
cm sy 
    76.213 
    32.223     29.376 
    14.231      8.457     11.022 
    13.135      8.542      5.720     15.761 
    28.908     15.727      9.265      7.061     23.232 
    31.307     17.711      8.249      5.657     16.128     27.248 
     9.793      4.680      4.180      6.621      5.381      5.027 
     7.236 
    11.654      7.403      4.227      3.656      6.166      6.516 
     2.269      9.548 
    61.185     36.239     19.663     17.247     24.130     31.713 
    14.927     10.278    287.981 
    41.354     22.380     15.483     11.234     25.913     21.390 
    10.121     10.751     51.575    109.830 
    12.261      9.364      6.756      4.736      7.885      8.352 
     3.059      5.080     16.589     18.231     15.920 
    17.479     10.829      4.566      4.962      9.812     10.277 
     4.273      4.663     25.253     21.684      6.488     17.472 
    28.582     14.398      9.269      9.169     13.253     14.308 
     7.260      8.391     61.877     34.134     13.941      7.462 
    71.572 
    31.361     19.759     14.341     11.163     20.864     18.058 
     9.162     10.114     49.372     59.121     13.555     17.648 
    25.364     78.677 
la 
    VOCAB SIM ARIT DIGIT INFORM COMPRE LN PC COD BD MATRIC PA SS OA 
mo ny=14 ne=4 ly=fu,fi ps=sy,fi te=sy,fi nk=1 ga=fu,fr ph=di,fr    
le 
VO PO WM PS  
lk 
g 
fr te 1 1 te 2 2 te 3 3 te 4 4 te 5 5 te 6 6 te 7 7  
fr te 8 8 te 9 9 te 10 10 te 11 11 te 12 12 te 13 13 te 14 14 
fr te 14 10 
pa ly 
1 0 0 0 ! voc 
1 0 0 0 ! sim 
0 1 1 0 ! arit 
0 0 1 0 ! digit 
1 0 0 0 ! inform 
1 0 0 0 ! compre 
0 0 1 0 ! ln   
0 1 0 0 ! pc 
0 0 0 1 ! cod 
0 1 0 0 ! bd    
0 1 0 0 ! ma   
0 1 0 0 ! pa  
0 0 0 1 ! ss  
0 1 0 0 ! oa  
! scaling in Ly 
va 1 ly 1 1 ly 8 2 ly 4 3 ly 9 4 
fi ly 1 1 ly 8 2 ly 4 3 ly 9 4 
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pa ps 
1  
0 1  
0 0 1  
0 0 0 1 
pa ga 
0 1 1 1 
ma ga 
1 0 0 0 
pa ph 
1 
st .5 all 
st 10 ph 1 1 
st 1 ga 2 1 ga 3 1 ga 4 1 
st 1 ps 1 1 -  ps 4 4 
st 40 ps 1 1 ps 2 2 ps 3 3 ps 4 4 
st 10 te 1 1 te 2 2 te 3 3 te 4 4 te 5 5 te 6 6 te 7 7  
st 10 te 8 8 te 9 9 te 10 10 te 11 11 te 12 12 te 13 13 te 14 14 
pd 
ou rs mi nd=3 ad=off ss 
 

Here are some results. These are identical to those shown above. 
 
         GAMMA        
 
                   g    
            -------- 
       VO      1.000 
  
       PO      0.266 
             (0.041) 
               6.411 
  Note that these gamma-loadings are 

identical to the beta loadings reported 
above 

       WM      0.306 
             (0.051) 
               6.006 
  
       PS      1.303 
             (0.220) 
               5.920 
  
 
 
         Covariance Matrix of ETA and KSI         
 
                  VO         PO         WM         PS          g    
            --------   --------   --------   --------   -------- 
       VO     55.340 
       PO     11.262      3.257 
       WM     12.969      3.446      8.881 
       PS     55.208     14.671     16.895    120.906 
        g     42.381     11.262     12.969     55.208     42.381 
 
         PHI          
 
                   g    
            -------- 
              42.381 
             (8.184) 
               5.179 
  
 
         PSI          

Ps-parameters are 
also identical to 
those reported 
above 

         Note: This matrix is diagonal. 
 
                  VO         PO         WM         PS    
            --------   --------   --------   -------- 
              12.959      0.264      4.913     48.990 
             (4.152)    (0.282)    (1.178)   (20.115) 
               3.122      0.935      4.169      2.436 
  
 
         Squared Multiple Correlations for Structural Equations   
 
                  VO         PO         WM         PS    
            --------   --------   --------   -------- 
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               0.766      0.919      0.447      0.595 
 
                             Degrees of Freedom = 71 
              Minimum Fit Function Chi-Square = 91.958 (P = 0.0479) 
 
The squared multiple correlation .919, corresponds to a correlation between 
PO and g of sqrt(.919)=.958, or in terms of the parameter estimates: 
cov(PO,g)/sqrt[var(PO)*var(g)]= 
 
.958=(42.381*0.266)/[sqrt(.264+42.381*0.2662)*sqrt(42.381)]. Here finally 
is the path diagram produced by LISREL. 

 
 

 
 
So we have fitted this model both using  = (-)-1(I-)-1tt+ and using 

 = (t+)t + . The latter model is more suitable for a 2nd order 
factor model, because the specification using this model is more economical 
and more elegant. However, these two ways of specifying the model are 
equivalent.    
 
Multi-group first order factor model: Strict Factorial Invariance. 
Here is the input file for a strict factorial invariant model. The data are 
the same as those shown above (WISC US norm data in 1868 white and 305 black 
youths). 
 
title jensen and reynolds 1982  
title MODEL A4. 
da no=1868 ng=2 ni=13 
km fi=reyn.wh 
me fi=reyn.wh 
sd fi=reyn.wh 
la  
 i s a v c ds ts pc pa bd oa co ma 
se 
 i s a v c ds ts pc pa bd oa co ma / 
mo ny=13 ne=3 ly=fu,fr ps=sy,fr te=di,fr ty=fu,fr al=fu,fi 
ma al 
0 0 0 
le 
v p m 
pa ps 
1  
1 1 
1 1 1 
ma ps 
0 
0 0 
0 0 0 
ma ly 
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0 0 0 
0 0 0 
0 0 0 
1 0 0 
0 0 0 
0 0 0 
0 0 1 
0 0 0 
0 0 0 
0 0 0 
0 1 0 
0 0 0 
0 0 0  
pa ly 
1 0 1 
1 1 0 
1 0 1 
      0 0 0 
1 1 0 
0 0 1 
      0 0 0 
1 1 0 
1 1 0 
0 1 1 
      0 0 0 
0 1 1 
0 1 1  
st 1 all 
st .4 ps(2,1) ps(3,1) ps(3,2) 
st 10 ty(1)-ty(13) 
st 3 te(1)-te(13) 
ou rs ad=off it=9999 nd=3 XM MI 
title jensen and reynolds 1982  
title MODEL A4. 
da no=305 
km fi=reyn.bl 
me fi=reyn.bl 
sd fi=reyn.bl 
la  
 i s a v c ds ts pc pa bd oa co ma 
se  
 i s a v c ds ts pc pa bd oa co ma / 
mo ly=in ps=sy,fr te=in ty=in al=fu,fr   
le  
 v p m 
ma al 
0 0 0 
st 1 all 
st .4 ps(2,1) ps(3,1) ps(3,2) 
st 10 ty(1)-ty(13) 
st 5 te(1)-te(13) 
st -1 al(1)-al(3) 
ou rs 
 
 
If you run this model, you will find that the model fits reasonably.  
 
             Degrees of Freedom = 148 
               Minimum Fit Function Chi-Square = 327.775 (P = 0.00) 
             Root Mean Square Error of Approximation (RMSEA) = 0.0327 
           90 Percent Confidence Interval for RMSEA = (0.0278 ; 0.0376) 
                       Non-Normed Fit Index (NNFI) = 0.991 
  
The latent covariance matrix and means in the white and black samples are: 
 

w 
         Covariance Matrix of ETA                 
 
                   v          p          m    
            --------   --------   -------- 
        v      6.290 
        p      2.976      4.787 
        m      2.221      1.253      2.408  
 

w 
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            Mean Vector of Eta-Variables 
 
                   v          p          m    
            --------   --------   -------- 
              0.000*     0.000*      0.000* 
   

b  
                   v          p          m    
            --------   --------   -------- 
        v      5.298 
        p      2.698      4.425 
        m      2.323      1.544      2.532 
 

b 
         Mean Vector of Eta-Variables 
 
                   v          p          m    
            --------   --------   -------- 
              -2.634     -2.751     -0.824 
 
 
We will now consider the 2nd order model, using the strict factorial 
invariance model as the baseline model. We have fitted the first order model: 
 

w =wt+  w =  w

b =bt+  b = + bw 
 
We will now fit the second order model, starting with this model: 
 

w =(wwwt+w)t+ w = w 

b =(bbbt+b)t+ w = b 
 

Note that the first elements of w and b are fixed to 1. This is a scaling 
constraint that serves to identify the variance of the second order factor 

(that is the 1's serve the same purpose as the fixed 1's in the matrix ).  
 

Note that the factor loading and residual covariance matrices are equal. 
The factor covariance matrix and the means are now unconstrained. Here is 
the input: 
 
title jensen and reynolds 1982  
title MODEL B1. 
da no=1868 ng=2 ni=13 
km fi=reyn.wh 
me fi=reyn.wh 
sd fi=reyn.wh 
la 
 i s a v c ds ts pc pa bd oa co ma 
mo nk=1 ny=13 ne=3 ly=fu,fr ps=di,fr te=di,fr ty=fu,fr al=fu,fi  c 
                          ka=fu,fi ga=fu,fr ph=sy,fr 
le 
 v p m 
lk 
 g 
ma ka 
0 
pa ps 
2 3 4 
pa ph 
1 
ma ly 
0 0 0 
0 0 0 
0 0 0 
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1 0 0 
0 0 0 
0 0 0 
0 0 1 
0 0 0 
0 0 0 
0 0 0 
0 1 0 
0 0 0 
0 0 0  
pa ly 
1 0 1 
1 1 0 
1 0 1 
      0 0 0 
1 1 0 
0 0 1 
      0 0 0 
1 1 0 
1 1 0 
0 1 1 
      0 0 0 
0 1 1 
0 1 1  
ma ga 
1 0 0 
pa ga 
0 6 7 
ma al 
0 0 0 
st 1 all 
st .2 ga 2 1 ga 3 1 
st 1 ph 1 1 
st 5 te 1 - te 13 
st 10 ty 1 - ty 13 
ou ad=off it=500 ns rs 
title jensen and reynolds 1982  
title MODEL B1. 
da no=305 
km fi=reyn.bl 
me fi=reyn.bl 
sd fi=reyn.bl 
la 
 i s a v c ds ts pc pa bd oa co ma 
mo ly=in ps=di,fr te=in ty=fu,fr ga=fu,fr al=fu,fi ka=fu,fi ph=sy,fr  
le 
 v p m 
lk 
 g 
ma ga 
1 0 0 
pa ga 
0 16 17 
pa ka 
0 
pa ps 
12 13 14 
ma al 
0 0 0 
pa al  
0 0 0 
ou nd=4  
 
 
Degrees of Freedom = 138 
Minimum Fit Function Chi-Square = 305.7152 (P = 0.00) 
 

Assignment #2:  
 
Fit the following models: 
 

model 2) equal  
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w =(wt+w)t+ w = w 

b =(bt+b)t+ b = b 
 
Degrees of Freedom = 140 
Minimum Fit Function Chi-Square = 308.0422 (P = 0.00) 
 

model 3) equal and structured means:  
equal , w=0 and b=free, w=0 and b=0. 
 

w =(wt+w)t+ w =    

b =(bt+b)t+ w = +(b) (b =b) 
  
Degrees of Freedom = 150 
Minimum Fit Function Chi-Square = 330.1134 (P = 0.00) 

 

model 4) equal and structured means:  
equal , w=0 and b=0, w=0 and b=free. 
 

w =(wt+w)t+ w =    

b =(bt+b)t+ w = +(b)  (b =b) 
 
Degrees of Freedom = 152 
Minimum Fit Function Chi-Square = 389.7424 (P = 0.0) 

 
Report the results in terms of goodness of fit, and in terms of the 
parameters pertaining to the latent common factors (1st and 2nd order common 
factors). Consider the Modification indices of the parameters in al in model 
4. 
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Evaluation of fit (see lisrel lecture notes 6).  
  
 

 
 
 
Modification indices.  
 Apart from a summary of fit indices and fitted residuals, LISREL also 
provides so-called modification indices (MI, obtainable by putting ‘mi’ on 
the ou-line) as information related to misspecification. 
For every fixed (to zero, or constrained to another values) parameter, 

LISREL calculates the difference in 2 (the expected drop in 2) that is to 
be expected if that parameter was to be estimated freely. The MI can thus 

be considered a 2 statistic with 1 degree of freedom. (LISREL also 
provides table of Expected Change, which represents the predicted estimated 
change, in either positive or negative direction, for every fixed 
parameter. The expected change is however dependent on the scales of the 
variables, and the scaling choices, so the absolute values are difficult to 
interpret). At the end of the MI output LISREL prints the largest MI, i.e., 
the parameter that, if freely estimated, would have the largest beneficial 

effect on the overall 2 fit of the model. 
 So, if a model does not fit the data neatly, the MI’s can be 
inspected to find out where the largest misfit is located. So the fit of a 
model can be improved by freeing the parameter(s) with the largest MI. 
However practical and convenient this procedure seems, there are a few 
concerns: 
 

1. LISREL simply calculates the expected drop in 2 for every 
constrained parameter, and then advertises the parameter with the 
largest MI. One should however realize that freeing the parameter 
with the largest MI (or any other) might not be theoretically 
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sensible, wise, logical, or justified. It is therefore important to 
keep in mind what freeing the parameter means for the interpretation 
of your model (as it might undermine the main goal of your study, or 
create an improbable, illogical model).  

2. One should not upgrade one’s model endlessly by freeing one 
parameter after the other based on the MI’s. The more parameters are 
freed, the more the new model deviates from the original, intended, 
hypothesized model. Also, the more one capitalizes on chance. Also, 
if the original model requires many changes, one should consider 
revising hypotheses and models, rather than desperately attempting 
to make the model fit the data. 

It is possible that model fit improves if one frees the covariance between 
error terms. Suppose I fit a one-factor model on 4 tests, and the MI’s tell 
me that the fit can be improved greatly by freeing the covariance between the 
residuals (parts of variance unexplained by the 1 factor) of test 1 and test 
3. Of course this is possible: it is conceivable that test 1 and test 3 have 
something in common over and above their communality with test 2 and 4. One 
should however realize that such additional relations might be interpreted as 
an indication that the 1-factor model is too parsimonious, i.e., that a model 
with more factors actually underlies the data. 
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Appendix reyn.wh and reyn.bl files 
 
reyn.wh 
 
1.00 
.58 1.00 
.51 .43 1.00 
.66 .63 .48 1.00 
.51 .55 .40 .61 1.00 
.34 .33 .42 .36 .23 1.00 
.25 .19 .32 .24 .19 .37 1.00 
.35 .40 .30 .38 .35 .16 .16 1.00 
.37 .37 .26 .39 .34 .18 .19 .34 1.00 
.44 .45 .41 .43 .38 .29 .27 .47 .41 1.00 
.34 .35 .23 .33 .29 .17 .15 .41 .37 .56  1.00 
.26 .25 .29 .29 .23 .28 .25 .15 .22 .30 .20 1.00 
.22 .24 .24 .21 .23 .18 .19 .29 .27 .39 .31 .18 1.00 
10.41 10.29 10.37 10.42 10.44 10.08 10.09 10.41 10.37 10.39 10.73 10.22 10.41 
2.91 3.01 2.84 2.94 2.81 3.00 2.87 2.87 2.91 2.92 3.01 3.30 3.06 
  
reyn.bl  
 
1.00 
.55 1.00 
.53 .46 1.00 
.63 .65 .52 1.00 
.49 .48 .39 .63  1.00 
.43 .34 .50 .41 .35 1.00 
.32 .21 .30 .25 .24 .43 1.00 
.42 .43 .32 .43 .44 .28 .29 1.00 
.29 .36 .23 .36 .38 .30 .26 .37 1.00 
.37 .41 .40 .41 .38 .35 .26 .48 .37 1.00 
.31 .36 .28 .34 .35 .25 .17 .49 .41 .57 1.00 
.21 .26 .28 .28 .26 .25 .25 .16 .21 .43 .39 1.00 
.26 .24 .22 .25 .30 .28 .26 .36 .32 .29 .19 .18 1.00 
8.09 7.91 8.63 7.86 7.83 9.18 9.12 8.12 8.10 7.70 7.89 8.86 8.39 
2.65 2.92 2.75 2.76 2.53 3.19 2.95 3.03 3.03 2.70 2.96 2.93 3.22 
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Lecture notes II: Discete factor model 1 

 

references 

Wirth, R. J. & Edwards, M. C. Item Factor Analysis: Current Approaches and Future Directions, 
Psychological Methods, Vol. 12, No. 1, 58–79. 
 [recent review, including a clear explanation of the relation between discrete factor 
analysis and model from item response theory]  
 

Summary 

 The aim of the present lecture notes is to introduce the discrete factor 
model. You are familiar with the standard linear factor model, in which 
continuously distributed observed variables (indicators) are related to 
common factors (latent traits) by means of a linear regression model. In this 
case the common factors are the independent variables and the indicators are 
the dependent variables. We retain the assumption of continuous common 
factors, but now switch from continuous indicators to discrete, ordinal 
indicators. We consider indicators discrete if the response format comprises 
less than 7 ordered response categories. For instance a three point scale has 
three ordered response categories, and thus definitely counts as a discrete 
indicator. Often indicators are dichotomous ("yes / no", "agree / disagree", 
"correct / incorrect"). Discrete dependent variables cannot be analyzed using 
the linear model. In standard regression, one uses probit or logit regression 
in the case of dichotomous dependent variables. Logit & probit regression can 
be carried out in SPSS. The discrete factor model is based on the probit 
method. Once the discrete factor model has been introduced, we will return to 
the theme of measurement invariance (in the next lecture notes).  
  
Software.  
 We are going to make a switch from LISREL to Mplus. Please go to the 
Mplus site, download and install the student version of Mplus. 
http://www.statmodel.com/demo.shtml. Mplus employs a completely different 
syntax. However, as we shall limit all subsequent models to the 1 or 2 common 
factor models, I will explain the syntax using examples.  
  
Unweighted Least Squares. 
In all analyses caried out so far, the parameters were estimated by the 
method of maximum likelihood (ML) estimation. This is the most important 
(certainly most fequently used) estimation technique in LISREL/SEM 
modeling. However, ML is limited to multivariate normal data. We will now 
consider another general method of estimation that is based on the 
principle of least squares minimization, which is important in the analysis 
of discrete data. We first explain the principle of unweighted least 

squares (ULS). Let S denote the p x p observed covariance matrix, and () 
the pxp model matrix, where the model is the following LISREL submodel (we 

shall discard  for now): 
 

() = t



                                                 
1 1 Conor V. Dolan c.v.dolan@uva.nl. RM20. MI: continuous & discrete factor models. 
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i.e., the common factor model. In ULS estimation we minimize the squared 

difference between the observed matrix S and the model matrix (), where  
contains the unknown parameters in the model. The ULS function is: 
 

Fuls() = ½ trace[{S-()}2]     eq 2-12 
 
The minimization problem is to find values of the unknown parameters 
(collected in q), that minimize the function. As it stands, this function 
is not very clear. So let's consider a small example: let S equal 
 
S = a b    
  b c, 
  

and () equal 
 
() =      
    
 
So {S-()} equals 
 
a- b- 
b- c- 
 
and {S-()}2 equals 
 
(a-)2 +(b-)2    (a-)*(b-)+(c-)*(b-) 
(a-)*(b-)+(c-)*(b-)   (b-)2+(c-)2  
 
½trace({S-()}2) equals ½([(a-)2+(b-)2]+[(b-)2+(c-)2]),  
 
i.e., the sum of the squared differences between the elements of S and 

(). Or, in the case of a single factor model with three indicators, () 

= t +  (=1, for scaling): 
 
() =   12+1

2 21  31 
  21  22+2

2 32 
 
 

 31  32  32+3
2 

S = S  S  S   11 21 31

  S  S  S21 22 32 

  S31 S32 S33 
 

Fuls() = ½trace[{S-()}2] = 
 
½(S11 -12-1

2)2 + 2*(S21-21)2 + (S22 -22-2
2)2 +... 

...+ 2*(S32-32)2 +(S33 -32-3
2)2. 

 

                                                 
2 ½ trace[{S-()}2]: {S-()} is a symmetric matrix as {S-()}2 = {S-
()}{S-()}; trace(A), where A is a square matrix, is the operation of 
summing the diagonal elements of A. Trace[{S-()}2] is therefore a scalar 
(single number).     
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LISREL seeks values of the parameters =[1 2 3 1
2 2

2 3
2] that minimize 

this least squares function. In LISREL, ULS estimates are obtained by 
stating to "uls" on the "ou" line ("ou ml" is the default). Here is the 
LISREL input: 

 
title 
da no=100 ni=4 ma=cm 
cm sy 
  2.00   
  1.20 2.44   
  0.95 1.14 1.9025   
  1.15 1.02 0.8075 1.7225 
mo ne=1 ny=4 ly=fu,fr te=di,fr ps=di,fi 
ma ps 
1 
ou nd=3 rs uls 
 
Here is the output: 
 
 LISREL Estimates (Unweighted Least Squares)          
 
         LAMBDA-Y     
 
               ETA 1    
            -------- 
    VAR 1      1.100 
             (0.062) 
  
    VAR 2      1.130 
             (0.062) 
  
    VAR 3      0.915 
             (0.053) 
  
    VAR 4      0.950 
             (0.059) 
 
               THETA-EPS    
 
               VAR 1      VAR 2      VAR 3      VAR 4    
            --------   --------   --------   -------- 
               0.790      1.164      1.066      0.821 
             (0.199)    (0.210)    (0.177)    (0.184)  
 
                           Goodness of Fit Statistics 
 
 W_A_R_N_I_N_G: Chi-square, standard errors, t-values and standardized 
                residuals are calculated under the assumption of multi- 
                variate normality. 
 
                              Degrees of Freedom = 2 
       Normal Theory Weighted Least Squares Chi-Square = 3.624 (P = 0.163) 
 
ULS is simple to understand, but has the drawback that the standard errors 
of estimates and the chi2 are not necessarily correct. There are versions 
of least sqaures estimators which do given correct results. We will first 
reformulate the ULS function in order to introduce these.   
 Another more flexible way to represent the ULS function is this: Let 

s denote a vector containing the elements in S and a vector () containing 

the element in (). For example, given 
 
() =   12+1

2 21  31 
  21  22+2

2 32 
  31  32  32+3

2 
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S = S  S  S   11 21 31

  S  S  S21 22 32 

  S31 S32 S33 
 

s = [S11 S21 S22 S31 S32 S33]t 
 
() = [12+1

2   21   22+2
2   31   32   32+3

2]t 
 

So given p tests, S and () are pxp matrices, and s and () are 

q=p*(p+1)/2 vectors. As S and () are symmetrix, s and () contain the 
same information. The ULS function can be formulated as follows: 
 

FULS() = {s - ()}t WULS-1 {s - ()} 
 

with =[1 2 3 1
2 2

2 3
2], and WULS a qxq diagonal matrix, with 1 or .5 on 

the diagonal. Consider again the simple example: 
 
S = a b, s=[a b c]   
  b c 
  
and () equals 
 
() =   ()=[    
    
 
WULS = 1 0 0 
  0 .5 0 
  0 0 1 
 
FULS() = {s - ()}t WULS-1 {s - ()} = ((a-)2+2*(b-)2+(c-)2), 
 
You can choose other matrices W. The function is then generally called the 
weighted least squares function (WLS):  
 

FWLS() = {s - ()}t W-1 {s - ()}. 
 
There are various choices for W. W is said to be correct if W expresses the 
sampling functuation of the elements in s, i.e., if W is the covariance 
matrix of the estimates of s. This may seem like a strange concept 
(covariance matrix of a covariance matrix?), but actually we are already 
familiar with it. For instance, the standard error of an estimate may be 

viewed as the standard deviation of the estimate. Let est() denote the ML 
estimate of the mean of data vector x, then the standard error equal 

/sqrt(N), and the variance equals 2/N, where  is the standard deviation 
of x. The variance of an estimated variance (s2) equals (2*s4)/N, so using 
WLS to estimate a single variance we would have: 
 

 FWLS() = {s - ()} {(2*s4)/N}-1 {s - ()}, or 
 

 FWLS() = {s - ()} {N/(2*s4)} {s - ()}, 
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where the matrix W (actually a scalar: 2*s4)/N} is correctly specified, 
because it reflects the sampling fluctuation of s=[s2]. We shall use the 
WLS function in the LISREL modeling of discrete data, where the matrix W is 
chosen to be correct (at least in theory). 
 
LISREL modeling of ordinal data 
 So far we have assumed that data were multivariate normally 
distributed, and we used ML estimation to fit LISREL models. Unfortunately 
there are many situations in which the data is not normally distributed. If 
the data are continuously distributed, one may consider various data 
transformations to render the data more normally distributed. There are 
situations in which transformations work quite well. For instance these 
data are not normally distributed (skewness=1.029, kurtosis=1.115).  
 

 
Figure 2-1 

 
However a simple square root transformation helps a lot (skewness=0.263, 
kurtosis=-0.104): 
 

 
Figure 2-2 

 
In the PRELIS program (part of the LISREL program), you can transform data 
to so-called normal scores. This transformation renders the skewness and 
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kurtosis as close to the expected values under normality as possible. 
However, there are situations, in which transformations do not work well, 
or are simply inappropriate. One such situation is when the data are  
discrete. For example, in the most extreme case the data may be 
dichotomous, e.g., scores 0 and 1. For instance, the question "do you drink 
three or more alcoholic beverages a day" will given rise to the response 
"yes" or "no", i.e., a dichotomous variable. Less extreme examples are data 
collected with 3 point scales, or 5 point scales. Of course as the number 
of response categories increase, the data may start to look normal. Here 
are some examples (Fig 6-3). Given 7 response categories, the data may 
start to look normal, as shown in figure 2-3. 
 

 
 

Figure 2-3:  
 
As a rule of thumb we shall call data with 7 or more ordered response 
categories continuous. If such data appear to be normal (more or less 
symmetrically distributed), ML estimation will work well enough to be 
useful. However, this is not the case if the number of categories is 5 or 
less.  
 Treating discrete or ordinal as continuous is generally not a good 
idea. In the first place, the correlations are underestimated. We 
illustrate this as follows. Consider the following: X is bivariate normal, 
with zero means, and covariance (correlation) matrix 
 
1  .5 
.5  1 
  
Figure 6-4 displays the histogram of 500 estimated correlation between two 
variables x1 and x2, with each correlation based on N=200 (a simulation 
study!). Figure 2-4 top: continuous standard normal, Figure 2-4 bottom: 
discrete, three point scale. The ordinal data was obtained from the 
continuous data as follows: 
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if x1<-1   y1=0 (if x1 is less than -1, assign 0 to y1) 
if x1>-1<1   y1=1 (etc) 
if x1>1   y1=2 
 
The variable x1 was continuous, standard and normal, but y1 is ordinal, 
specifically a 3 point scale.  
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Figure 2-4 top: 500 correlations based on 500 samples of N=200, continuous 
data; Figure 2-4 bottom: 500 correlations based on 500 samples of N=200, 

discretized data (3 point scale). 
 
The mean values and standard deviations of the correlations shown in fig 2-
4 are .504 (sd=.049) in the case if the normal data, and .374 (sd=.061) in 
the case of the three point scale. Given that the true correlation is .5, 
the observed correlation in the discretized data is clearly underestimated 
(.374). The degree of underestimation depends in part on distribution of 
the data. Because the covariance are biased, all parameters in a LISREL 
model are biased too. In addition to this bias, standard errors are usually 
overestimated, and the chi2 goodness of fit index does not follow the 
expected chi2 distribution (under the null hypothesis, i.e., assuming the 
model fitted is the correct, or true model).  
 
Discrete factor analysis: rationale 
 Discrete and continuous factor analysis are closely related. Both 
involve the following model (i for subject, we will assume just one group): 
 

yi* =  + i + i. 
 
The only difference is that in continuous factor analysis, the indicators 
yi* are observed, whereas as in discrete factor analysis they are not. What 
do we observe in discrete factor analysis are discrete (ordinal) responses 
to the items: yi, which assume values (say): 0,1,.... Consider a three 
point scale (0,1,2). The observed discrete responses are related to the 
latent responses as follows: 
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y=0 if y*<t1 
y=1 if t1<y*<t2 
y=2 if y*>t2, 
 

where t1 and t2 are called thresholds (Note: t1 is not 1, i.e., a 
threshold is not an intercept). As demonstrated below, if we observe the 
discrete y, the standard covariance matrix or the Pearson product moment 
correlation coefficient between y1 and y2 can be calculated. However, if 
the data are ordinal the correlation between the observed discrete 
variables underestimates the correlation between y1* and y2* (see Figure 2-
4). Thus we require a method to calculate the correlations among the 
observed variables which takes into account the fact that they are discrete 
(ordinal) and not continuous. To this end we use the tetrachoric or 
polychoric correlation matrix (tetrachorics for dichotomous data).  
 
Tetrachoric & polychoric correlation coefficients 
 Structural equation modeling of ordinal data can be carried out in 
LISREL by analysing the so-called tetrachoric or polychoric correlation 
coefficients with WLS estimation. To explain the tetrachoric correlation, 
let us consider dichotomous variables, i.e., 2 point scales. The 
tetrachoric correlation is based on the assumption that there is a standard 
normal distribution underlying the observed dichotomy. Consider the item 
"do you drink three or more alcoholic beverages a day", with responses 
coded 0 (yes) 1 (no). Suppose in a sample of N=100 psychology student, you 
observe an endorsement rate (i.e., response "yes") in 15 cases.  
 

 
Figure 2-5: thresholds on standard normal distribution 

 
In Figure 2-5, the top right figure shows the underlying standard normal 
distribution and a threshold (cut-off point) at about –1. According to this 
model, the tendency to display alcoholic behavior is a continuous variable 
y*, and the reponse to the item is determined by the subject's position on 
this underlying variable. There is a point beyond which the reponse is 1. 
This point is called the threshold, and may be estimated easily: if 15% 
respond yes (0), then the probability of response yes is point .15. Let 

(z) denote the cumulative normal distribution, then (z)=.15, and  
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-1(.15)=z.  
 

 
 
Using the NCSS calculator3, we find that z equals about –1. In R you can 
type:  
 

> pnorm(1)   this is (1) 
[1] 0.8413447   

> qnorm(.8413)  this is (.8413) 
[1] 0.999815 

> pnorm(-1)   this is (-1) 
 [1] 0.1586553 

> qnorm(.15865)   this is (.15865) 
[1] -1.000022 
 
The position of the threshold is an unknown (to be estimated) parameter 
that depends on the item. For instance, this the item was "do you drink 
three or more alcoholic beverages a week", and you observed an endorsement 
rate of about 50%, the top left figure (Figure 5-6) may be appropriate. By 
defining response probabilities as a function of a continuous but 
unobserved variable, we can fit the factor model to the continuous 
unobserved variable (or variables). To this end we need to estimate the 
correlation between two continuous distributions based on the observed 
ordinal data. We already know from above (Figure 2-4) that the standard 
correlation coefficient based on the observed ordinal data underestimates 
the true correlation between the underlying continuous variables.    
 A tetrachoric correlation is the correlation between the underlying 
normal distributions, which is calculated on the basis of the observed 
reponses to two dichotomous items. We can present the observed data in a 
2x2 table. E.g., for N=1000: 

                                                 
3 http://www.ncss.com/download_probcalc.html 
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item 1 
0 1 

     marginal 
item 2 0 118 372 490 

1 24 486 510 
 

marginal  142 858 1000 
 
or  
 
118 0 0 
372 0 1 
24 1 0 
486 1 1 
 
The thresholds are  
 

1 = -1(142/1000)=-1.07 (item 1).  

2 = -1(490/1000)=-0.025 (item 2). 
 
We now assume that underlying the dichomotomies there is a bivariate 

standard normal distribution. Let (z1,z2, ) denote the standard bivariate 

normal distribution, where  is the correlation between the underlying 
normal distributions (see Figure 2-6).  
 

Figure 2-6: two bivariate normal distributions (=0 and =.7). 
 

  
The probability of scoring [0,0] equals 
 

 1 2 

∫ ∫ (z1,z2,)d(z1)d(z2) = (-∞...1,-∞...2, ) 
 -∞ -∞ 
 
The probability of scoring [1,0] equals 
 

 ∞ 2 

∫ ∫ (z1,z2,)d(z1)d(z2) = (1...∞,-∞...2, ) 

 1 -∞ 
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The probability of scoring [0,1] equals 
 

 1 ∞ 

∫ ∫ (z1,z2,)d(z1)d(z2) = (-∞...1,2...-∞, ) 

 -∞ 2 
 
The probability of scoring [0,1] equals 
 
 ∞ ∞ 

∫ ∫ (z1,z2,)d(z1)d(z2) = (1...∞,2...∞, ) 

 1 2 
 

Note that these expressions depend on three unknown quantities: 1, 1, and 

. We have already estimated 1 (-1.07) and 2 (-.025). To estimate , we 

seek the value of  such that the likelihood of the observed count is 
maximal (i.e., we use ML estimation)  
 
expected count    observed count   

(-∞...1,-∞...2, )   118  (score 0 0) 

(1...∞,-∞...2, )   372  (score 0 1) 

(-∞...1,2...-∞, )   24  (score 1 0) 

(1...∞,2...∞, )   486  (score 1 1) 
 

Suppose =.5, then we have  
 
expected count     observed count   

(-∞...1,-∞...2,.5)=1000*.115  118 (score 0 0) 

(1...∞,-∞...2,.5)=1000*.376  372 (score 0 1) 

(-∞...1,2...-∞,.5)=1000*.027  24 (score 1 0) 

(1...∞,2...∞,.5)=1000*.482  486 (score 1 1) 
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expected: (1...∞,2...∞, .5)=1000*.4821=482.1   
observed: 486 (score 1 1) 
 
Given the marginal probabilities and the probability of score 1 1, we can 
calculate the other probabilities (e.g., prob(1,0)=.858-.482=.376, etc.). 
  

Table: observed counts and expected probabilities based on =.5. 
 

item 1 
0  1 

 
item 2 0 118  372  490 (.490) 
   (.115) (.376) 

1 24  486  510 (.510) 
 (.027) (.482) 

   142  858  1000 
   (.142) (.858) 
 
and thus: 
 
observed count expected counts  responses 
118   115    0 0 
372   376    0 1 
24   27    1 0 
486   482    1 1 
 

The correlation  is estimated by minimizing some function of the 
difference between the observed counts and the expected counts (based on 

the current value of ). Given the similarity in values of observed and 
expected, the estimate of .5 is probably close to the ML estimate. The 
actual maximum likelihood estimate can be obtained from PRELIS, which is 
part of the LISREL program. You can read the data into LISREL in a number 
of ways. Given the raw data file ddat1 (1000 x 2), we can use this script 
(cut and paste this in a lisrel syntax window): 

 
 title prelis input file 
 da ni=2 no=1000 
 ra fi=ddat1 

raw data file ddat1 1000 x 2 

 or all 
 ou ma=pm   all variables are ordinal 

 
 
But the raw data file actually only contains this information: 
 
freq.  item1  item2 
118  0  0 
372  0  1 
24  1  0 
486  1  1 
 
So if you read this table and specify the first column as the weight 
variable, you will get the same results. 
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title prelis input file 
da ni=3 no=0 
ra fi=ddats 
la 
freq itm1 itm2 
we 1 
or all 
ou ma=pm sa=wmat1 
 
The results are (click on the PRELIS icon): 
                            

datafile 4 x 3,  freq., item1, item2 
 
118  0  0 
372  0  1 
24  1  0 
486  1  1 

weigh data by frequency

 The following lines were read from file E:\lisb\prel2.LS8: 
 
 title prelis input file 
 da ni=3 no=0 
 ra fi=ddats 
 la 
 freq itm1 itm2 
 we 1 
 or all 
 ou ma=pm   
 
 Total Sample Size =   1000 
 
 Univariate Marginal Parameters 
 
 Variable     Mean St. Dev.   Thresholds 
 --------     ---- --------   ---------- 

thresholds      itm1    0.000    1.000  -0.025 
     itm2    0.000    1.000  -1.071 
 
 Univariate Distributions for Ordinal Variables  
 
     itm1 Frequency Percentage Bar Chart 

                                                   0     490        49.0     
      1                                                    510        51.0     
 
     itm2 Frequency Percentage Bar Chart 

              0     142        14.2     
                                                     1     858        85.8     

 
 There are 4 distinct response patterns, see FREQ-file. 
 The 4 most common patterns are : 
     486        1   1 
     372        0   1 
     118        0   0 
      24        1   0 
 
                         Correlations and Test Statistics 
 
            (PE=Pearson Product Moment, PC=Polychoric, PS=Polyserial) 
                                        Test of Model         Test of Close Fit 
 Variable vs. Variable Correlation  Chi-Squ.  D.F. P-Value       RMSEA  P-Value 
 -------- --- -------- -----------  --------  ---- -------       -----  ------- 
     itm2 vs.     itm1  0.544 (PC)   0.000     0    1.000        0.000   1.000 
  
 
 Correlation Matrix                   
  
                itm1       itm2 
            --------   -------- 

tetrachoric 
correlation 

     itm1      1.000 
     itm2      0.544      1.000 
 
 Means 
 
                itm1       itm2 
            --------   -------- 
               0.000      0.000 
 
 Standard Deviations 

summary statistics of the 
underlying bivariate 
standard normal distribution 

 
                itm1       itm2 
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            --------   -------- 
               1.000      1.000 
 
So we find that .544 is the maximum likelihood estimate of the tetrachoric 
correlation coefficient. This is close to the true value of .5. Simply 
calculating the Pearson Product Moment correlation coefficient results in a 
correlation of .277, i.e., as expected, the correlation is underestimated. 
 
WLS estimation 
 We have seen that we can obtain an estimate of the tetrachoric 
correlation coefficient. In the case of several variables, we can obtain 
from PRELIS the tetrachoric correlation matrix. In the case of polytomous 
data (e.g., 3 or 5 point scales), we can obtain the so-called polychoric 
correlation matrices. These are based on the same assumption of an 
underlying (bivariate) standard normal distribution, but involve more 
thresholds. For instance given a 3 point scale, we have three response 
categories, and two thresholds. Suppose we observe 158 responses 0, 818 
responses 1, and 22 reponses 2 then the tresholds would be about -1 and 2, 
as shown in Figure 2-6. 

 
 

 
Figure 2-6: three point scale, response requencies determined by the 
tresholds. Probabilities shown. Suppose the item is scores 0,1,2, then 

prob(0)=~ .158, prob(1)=~.818, prob(2)=~.022. In a sample of 1000 cases, we 
could expect 158 scores 0, 818 scores 1 and 22 scores 2.  

 
In addition to the correlation matrix, you can obtain the correct weight 
matrix for the elements in the correlation matrix. In the following script, 
the correlation matrix is written to the file rmat and the weight matrix W 
to the file wmat1: 
 
title prelis input file 
 da ni=3 no=500 
 ra fi=ddat3 
la 
itm1 itm2 itm3 
 or all 
 OU MA=PM SM=rmat AC=wmat1 XM XB XT 
 
The data file ddat3 contains 3 dichotomous variables observed in 500 cases. 
This is the (edited) output: 
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Univariate Marginal Parameters 
 
 Variable     Mean St. Dev.   Thresholds 
 --------     ---- --------   ---------- 
     itm1    0.000    1.000   0.035 
     itm2    0.000    1.000   0.954 
     itm3    0.000    1.000  -1.003 
 
 Univariate Distributions for Ordinal Variables  
 
     itm1 Frequency Percentage Bar Chart 
      0     257        51.4                                                     

                                                  1     243        48.6     
 
     itm2 Frequency Percentage Bar Chart 

                                                     0     415        83.0     
      1                85        17.0     
 
     itm3 Frequency Percentage Bar Chart 

               0      79        15.8     
                                                     1     421        84.2     

 
 There are 7 distinct response patterns, see FREQ-file. 
 The 7 most common patterns are : 
     171        0   0   1 
     166        1   0   1 
      74        0   0   0 
      73        1   1   1 
      11        0   1   1 
       4        1   0   0 
       1        0   1   0 
 
 
                         Correlations and Test Statistics 
 
            (PE=Pearson Product Moment, PC=Polychoric, PS=Polyserial) 
                                        Test of Model         Test of Close Fit 
 Variable vs. Variable Correlation  Chi-Squ.  D.F. P-Value       RMSEA  P-Value 
 -------- --- -------- -----------  --------  ---- -------       -----  ------- 
     itm2 vs.     itm1  0.623 (PC)   0.000     0    1.000        0.000   1.000 
     itm3 vs.     itm1  0.753 (PC)   0.000     0    1.000        0.000   1.000 
     itm3 vs.     itm2  0.598 (PC)   0.000     0    1.000        0.000   1.000 
  
 Correlation Matrix                   
  
                itm1       itm2       itm3 
            --------   --------   -------- 
     itm1      1.000 
     itm2      0.623      1.000 
     itm3      0.753      0.598      1.000 
 
 Means 
 
                itm1       itm2       itm3 
            --------   --------   -------- 
               0.000      0.000      0.000 
 
 Standard Deviations 
 
                itm1       itm2       itm3 
            --------   --------   -------- 
               1.000      1.000      1.000 
 
You may wonder why the means and the standard deviations are zero and one. 
This is because these pertain to the scale of the unobserved, underlying 
continuous variables y* (where y denotes the ordinal variable). These 
values are due to arbitrary, but convenient, scaling constraints. Because 
the y* is not observed we have to impose a scale (just as we have to scale 
the latent variables in a common factor analysis). So y (ordinal) is a 
function of y* (continuous, not observed), but we have to impose a scale on 
y*, such that y* standardized with zero mean. Given the assumption of y* ~ 
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MVN(,), we note that the scaling assumption now implies y* ~ MVN(,), 

where  (greek capital rho) is a correlation matrix.   
 We can now analyse the data in LISREL using WLS estimation. 
Fortunately you will have little trouble writing the input file, as most of 
it is business as usual. The new aspects are shown in green italics: pm fi= 
identifies the location of the polychoric or tetrachoric correlation 
matrix, and ac= identifies the location of the correct weight matrix.  
 
title lisrel input file WLS 
 da no=500 ni=3 ma=pm 
 pm fi=rmat 
 ac=wmat3 
 mo ly=di,fi ps=sy,fr te=ze ne=3 ny=3 
 ma ly 
 1 1 1 
 ma ps 
 1 
 0 1 
 0 0 1 
 pa ps 
 0 
 1 0 
 1 1 0 
 ou nd=4 
   
Here are the results (edited):                                                         
 
         Correlation Matrix       
 
               VAR 1      VAR 2      VAR 3    
            --------   --------   -------- 
    VAR 1     1.0000 
    VAR 2     0.6225     1.0000 
    VAR 3     0.7528     0.5984     1.0000 
    
         PSI          
               ETA 1      ETA 2      ETA 3    
            --------   --------   -------- 
    ETA 1     1.0000 
    ETA 2     0.6225     1.0000 
            (0.0619) 
    ETA 3     0.7528     0.5984     1.0000 
            (0.0548)   (0.1086) 
  
 
                           Goodness of Fit Statistics 
                              Degrees of Freedom = 3 
                Minimum Fit Function Chi-Square = 0.0 (P = 1.0000) 

 
The chi2 is zero because this is a saturated model. The estimated 
correlations in PSI equal the input correlations (only now we have standard 
errors of the estimates). If we treat the ordinal data as continuous, we 
would obtain biased correlation coefficients. 
 
    ETA 1     1.0000 
    ETA 2     0.3376     1.0000 
    ETA 3     0.3773     0.1814     1.0000 
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Generally, if you have discrete or ordinal data, and the assumption of 
underlying normality is reasonable, you may use LISREL to analyze the 
tetrachoric or polychoric correlation matrix using WLS. The correlation 
matrix and the weight matrix can be obtained from PRELIS. Note that WLS 
usually larger sample sizes than does normal theory ML (analysis of 
multivariate normal data), especially when the thresholds are extreme. 
However: 
 

1) When is the assumption of underlying normality reasonable ? 
2) What to do when the sample is small ? 
3) What to do when the thresholds are extreme ? 

 
If is not reasonable in the case of a nominal variable (sex, political 
preference). However, it can be difficult to determine whether a variable 
is nominal. Consider normal (unaffected) vs. personality disordered 
(affected),  In a dimensional model of psychopathology, affected (dysthymic 
depression, personality disordered) is often viewed as a manifestation of 
the extreme of a continuous distribution. Here is an extreme example:  

 

 
 

Figure 2-7: extreme responses 2 (mildly affected) and 3 (extremely 
affected) 
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1) Normal, p=.9772 
2) 2&3 Affected, 1-.9772 = .0228 
3) 2 mild p=.0218 
4) 3 severe p=.0062 

 
Here the underlying variable is the liability to display psychopathology. 
If you accept this model, then you consider score 3 to be associated with 
the extreme of the distribution.  
 The analysis of ordinal data generally requires large sample sizes. 
So if the sample is small, you will have to collect more data. But note 
that seemingly large datasets may be too small to obtain stable estimates 
of polychoric correlations. Given the example above (prob(severe)=.006), 
you will require N=10000, if you want to ascertain about 60 (expected 
value) severely affected cases. Pooling the affecteds can help: given 
10000, you will ascertain about 228 cases.  
 
Illustration using PRELIS / LISREL. 
 It is important to realize that beyond the complications of 
calculating tetrachoric or polychoric correlations and the weight matrix 
(all do-able in PRELIS), the actual modeling of the data proceeds along the 
usual lines: in terms of model specification in LISREL all you now know 
still applies. PRELIS can also calculate correlations between ordinal 
variables with varying numbers of categories and continuous variables. The 
correlation between a continuous variable and a ordinal variable is called 
a point bi-serial correlation coefficient. PRELIS can also calculate the 
correct weight matrix in these cases. To illustrate dichotomous factor 
analysis will fit a single factor model to the following data: 
 
 0 0 0 0 0    56 
 0 0 0 0 1    39 
 0 0 0 1 0     4 
 0 0 0 1 1     2 
 0 0 1 0 0    15 
 0 0 1 0 1    39 
 0 0 1 1 0     4 
 0 0 1 1 1    15 
 0 1 0 0 0    14 
 0 1 0 0 1    13 
 0 1 0 1 0     1 
 0 1 0 1 1     2 
 0 1 1 0 0    12 
 0 1 1 0 1    19 
 0 1 1 1 0     3 
 0 1 1 1 1    12 
 1 0 0 0 0    14 
 1 0 0 0 1    21 
 1 0 0 1 0     2 
 1 0 0 1 1     3 
 1 0 1 0 0     7 
 1 0 1 0 1    39 
 1 0 1 1 0     4 
 1 0 1 1 1    31 
 1 1 0 0 0     5 
 1 1 0 0 1     7 
 1 1 0 1 0     2 
 1 1 0 1 1     7 
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 1 1 1 0 0     7 
 1 1 1 0 1    32 
 1 1 1 1 0     5 
 1 1 1 1 1    64 

 
Cut and paste the data to an external file (ddat5). Cut and paste to the 
SYNTAX window in LISREL (see also the appendix). 
 
title prelis input file 
da ni=6 no=0 
! ddat5 contains the dat as shown above 
ra fi=ddat5 
la 
itm1 itm2 itm3 itm4 itm5 freq 
or itm1 itm2 itm3 itm4 itm5 
we 6 
OU MA=PM SM=rmat5 AC=wmat5 ! XM XB XT 

 

Run the suntax. Here are the results: 
  
 Total Sample Size =    500 
 
 Univariate Marginal Parameters 
 
 Variable     Mean St. Dev.   Thresholds 
 --------     ---- --------   ---------- 
     itm1    0.000    1.000   0.000 
     itm2    0.000    1.000   0.228 
     itm3    0.000    1.000  -0.295 
     itm4    0.000    1.000   0.462 
     itm5    0.000    1.000  -0.496 
 
 Univariate Distributions for Ordinal Variables  
 
     itm1 Frequency Percentage Bar Chart 

                                                     0     250        50.0     
                                                     1     250        50.0     

 
     itm2 Frequency Percentage Bar Chart 
      0     295        59.0                                                     

                                       1     205        41.0     
 
     itm3 Frequency Percentage Bar Chart 

                                   0     192        38.4     
           1     308        61.6                                               

 
     itm4 Frequency Percentage Bar Chart 

                                                     0     339        67.8     
                            1     161        32.2     

 
     itm5 Frequency Percentage Bar Chart 

                           0     155        31.0     
                                                     1     345        69.0     

 
 
 Correlation Matrix                   
  
                itm1       itm2       itm3       itm4       itm5 
            --------   --------   --------   --------   -------- 
     itm1      1.000 
     itm2      0.335      1.000 
     itm3      0.445      0.371      1.000 
     itm4      0.506      0.411      0.571      1.000 
  
 

   itm5      0.436      0.214      0.528      0.408      1.000 
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Run LISREL 
 
title lisrel input file WLS 
 da no=500 ni=5 ma=pm 
 pm fi=rmat5 
 ac=wmat5 
 mo ly=fu,fr ps=sy,fi te=di,fr ne=1 ny=5 al=ze ty=ze 
pa ly 
2 3 4 5 6 
pa te 
12 13 14 15 16 
ma ps 
1 
st .5 all 
ou 
 
OUTPUT: 
 
 LISREL Estimates (Weighted Least Squares)            
 
         LAMBDA-Y     
 
               ETA 1    
            -------- 
    VAR 1     0.6542 
            (0.0537) 
             12.1703 
  
    VAR 2     0.4918 
            (0.0602) 
              8.1670 
  
    VAR 3     0.7789 
            (0.0522) 
             14.9340 
  
    VAR 4     0.7604 
            (0.0542) 
             14.0301 
  
    VAR 5     0.6337 
            (0.0564) 
             11.2400 
  
         THETA-EPS    
 
               VAR 1      VAR 2      VAR 3      VAR 4      VAR 5    
            --------   --------   --------   --------   -------- 
              0.5721     0.7581     0.3933     0.4217     0.5985 
            (0.0834)   (0.0742)   (0.0928)   (0.0938)   (0.0843) 
              6.8627    10.2111     4.2396     4.4961     7.0983 
  
 
         Squared Multiple Correlations for Y - Variables          
 
               VAR 1      VAR 2      VAR 3      VAR 4      VAR 5    
            --------   --------   --------   --------   -------- 
              0.4279     0.2419     0.6067     0.5783     0.4015 
 
 
                           Goodness of Fit Statistics 
 
                              Degrees of Freedom = 5 
              Minimum Fit Function Chi-Square = 7.5170 (P = 0.1849) 
            Root Mean Square Error of Approximation (RMSEA) = 0.03176 
 
         Standardized Residuals   
 
               VAR 1      VAR 2      VAR 3      VAR 4      VAR 5    
            --------   --------   --------   --------   -------- 
    VAR 1      - -   
    VAR 2     0.3120      - -   
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    VAR 3    -2.0449    -0.3213      - -   
    VAR 4     0.2856     0.9981    -0.8481      - -   
    VAR 5     0.5645    -1.7997     1.2912    -1.7096      - - 
   
Mplus 
 To investigate measurement invariance in the discrete factor 
model, we shall use Mplus (the student version). You can obtain the 
student version from http://www.statmodel.com/demo.shtml. I assume you 
have saved the data of the previous illustration in an external file called 
"ddats5". To fit exaclty the same factor model in Mplus, I specify the 
following syntax (single factor, one group): 
 
Title: 
    1-factor CFA 5 dich. items 
Data:  
 file is ddats5;       
Variable:  
 names are v1 v2 v3 v4 v5 freq;   
    freq is freq;  
  usev are v1 v2 v3 v4 v5; 
    categorical are v1 v2 v3 v4 v5;                                                    
Analysis:   
    estimator is wls; 
Model: 
    f by v1*.5 v2*.5 v3*.5 v4*.5 v5*.5; 
    f@1; 
    [f@0]; 
    [v1$1]; 
    [v2$1]; 
    [v3$1]; 
    [v4$1]; 
 Output: 
    standardized tech1 tech2; 

 
 

A major distinction between Mplus and LISREL is that PRELIS is used before 
LISREL to calculate the correlation matrix and the weight matrix (W). These 
are then read into the LISREL syntax (pm fi=...., ac=.....). In Mplus, the 
complete analysis is carried out in one step. This is more convenient.  
 

Mplus LISREL 

         

f by v1*.5 v2*.5 v3*.5 v4*.5 v5*.5; pa ly  
1 
1 
1 
1 
1 

f@1; 
[f@0]; 

ma ps 
1 
ma al 
0 

    [v1$1]; 
    [v2$1]; 
    [v3$1]; 
    [v4$1]; 

thresholds. these are estimated in PRELIS, 
and are not part of the LISREL input 
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Here is the output (edited), which is largely simple to follow:  
 
UNIVARIATE PROPORTIONS AND COUNTS FOR CATEGORICAL VARIABLES 
 
    V1 
      Category 1    0.500      250.000 
      Category 2    0.500      250.000 
    V2 
      Category 1    0.590      295.000 
      Category 2    0.410      205.000 
    V3 
      Category 1    0.384      192.000 
      Category 2    0.616      308.000 
    V4 
      Category 1    0.678      339.000 
      Category 2    0.322      161.000 
    V5 
      Category 1    0.310      155.000 
      Category 2    0.690      345.000 
 
THE MODEL ESTIMATION TERMINATED NORMALLY 
 
TESTS OF MODEL FIT 
 
Chi-Square Test of Model Fit 
 
          Value                              7.533 
          Degrees of Freedom                     5 
          P-Value                           0.1839 
 
Number of Free Parameters                       10 
 
RMSEA (Root Mean Square Error Of Approximation) 
 
          Estimate                           0.032 
 
MODEL RESULTS 
                                                    Two-Tailed 
                    Estimate       S.E.  Est./S.E.    P-Value 
 
 F        BY 
    V1                 0.654      0.054     12.183      0.000 
    V2                 0.492      0.060      8.176      0.000 
    V3                 0.779      0.052     14.950      0.000 
    V4                 0.760      0.054     14.045      0.000 
    V5                 0.634      0.056     11.252      0.000 
 
 Means 
    F                  0.000      0.000    999.000    999.000 
 
 Thresholds 
    V1$1              -0.001      0.056     -0.010      0.992 
    V2$1               0.221      0.056      3.920      0.000 
    V3$1              -0.292      0.057     -5.133      0.000 
    V4$1               0.460      0.058      7.915      0.000 
    V5$1              -0.493      0.058     -8.427      0.000 
 
 Variances 
    F                  1.000      0.000    999.000    999.000 
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R-SQUARE 
 
    Observed                                        Two-Tailed   Residual 
    Variable        Estimate       S.E.  Est./S.E.    P-Value    Variance 
 
    V1                 0.428      0.070      6.092      0.000      0.572 
    V2                 0.242      0.059      4.088      0.000      0.758 
    V3                 0.607      0.081      7.475      0.000      0.393 
    V4                 0.578      0.082      7.023      0.000      0.422 
    V5                 0.402      0.071      5.626      0.000      0.598 

  
IRT PARAMETERIZATION IN TWO-PARAMETER PROBIT METRIC 
WHERE THE PROBIT IS DISCRIMINATION*(THETA - DIFFICULTY) 
 
 Item Discriminations 
 
 F        BY 
    V1                 0.865      0.124      6.970      0.000 
    V2                 0.565      0.091      6.198      0.000 
    V3                 1.242      0.211      5.880      0.000 
    V4                 1.171      0.198      5.923      0.000 
    V5                 0.819      0.122      6.734      0.000 
 
 Means 
    F                  0.000      0.000      0.000      1.000 
 
 Item Difficulties 
    V1$1              -0.001      0.086     -0.010      0.992 
    V2$1               0.450      0.128      3.509      0.000 
    V3$1              -0.375      0.078     -4.820      0.000 
    V4$1               0.604      0.089      6.760      0.000 
    V5$1              -0.778      0.119     -6.548      0.000 
 
 Variances 
    F                  1.000      0.000    999.000    999.000 

 
Mplus provides the results in the IRT parameterization. This indicates that 
the discrete factor model and the two parameter Birmbaum model are actually 
equivalent. However, we shall limit our presentation to the discrete factor 
model.  
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Mplus example: Single group two common factors 
 
Title: 
    1-factor CFA 6 dich. items 
Data:  
 file is ddat1;       
Variable:  
 names are v1 v2 v3 v4 v5 v6;   
  usev are v1 v2 v3 v4 v5 v6; 
    categorical are v1 v2 v3 v4 v5 v6;                                                    
Analysis:   
    estimator is WLS; 
Model: 
    f1 by v1*.5 v2*.5 v3*.5;  
    f2 by v4*.5 v5*.5 v6*.5; 
    f1@1 f2@1; 
    f1 with f2*.4; 
    [f1@0 f2@0]; 
    [v1$1 v1$2]; 
    [v2$1 v2$2]; 
    [v3$1 v3$2]; 
    [v4$1 v4$2]; 
    [v5$1 v5$2]; 
    [v6$1 v6$2]; 
 Output: 
    standardized tech1 tech2; 

  
 

Mplus LISREL 

         

    f1 by v1*.5 v2*.5 v3*.5;  
    f2 by v4*.5 v5*.5 v6*.5; 

pa ly  
1 0 
1 0 
1 0 
0 1 
0 1 
0 1 
st .5 ly 1 1 ly 2 1 ly 3 1  
st .5 ly 4 2 ly 5 2 ly 6 2 

f1@1 f2@1; 
f1 with f2*.4; 
[f1@0 f2@0]; 

ma ps 
1 
.4 1 
pa al 
0 
1 0 
ma al  
0 0  

    [f1@0 f2@0]; 
    [v1$1 v1$2]; 
    [v2$1 v2$2]; 
    [v3$1 v3$2]; 
    [v4$1 v4$2]; 
    [v5$1 v5$2]; 
    [v6$1 v6$2]; 

thresholds. these are estimated in PRELIS, 
and are not part of the LISREL input 
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Mplus example: Single group two common factors with equality constraints 
 
Title: 
    1-factor CFA 6 dich. items 
Data:  
 file is ddat1;       
Variable:  
 names are v1 v2 v3 v4 v5 v6;   
  usev are v1 v2 v3 v4 v5 v6; 
    categorical are v1 v2 v3 v4 v5 v6;                                                    
Analysis:   
    estimator is WLS; 
Model: 
    f1 by v1*.5 (p1); 
    f1 by v2*.5 (p1); 
    f1 by v3*.5 (p1);  
    f2 by v4*.5 (p2);  
    f2 by v5*.5 (p2); 
    f2 by v6*.5 (p2);  
    f1@1 f2@1; 
    f1 with f2*.4; 
    [f1@0 f2@0]; 
    [v1$1];  
    [v1$2]; 
    [v2$1 v2$2]; 
    [v3$1 v3$2]; 
    [v4$1 v4$2]; 
    [v5$1 v5$2]; 
    [v6$1 v6$2]; 
 Output: 
    standardized tech1 tech2; 

 
 

Mplus LISREL 

         

    f1 by v1*.5 (p1); 
    f1 by v2*.5 (p1); 
    f1 by v3*.5 (p1);  
    f2 by v4*.5 (p2);  
    f2 by v5*.5 (p2); 
    f2 by v6*.5 (p2);  
 

pa ly  
3 0 
3 0 
3 0 
0 4 
0 4 
0 4 
st .5 ly 1 1 ly 2 1 ly 3 1  
st .5 ly 4 2 ly 5 2 ly 6 2 
 
or: 
eq ly 1 1 ly 2 1 ly 3 1  
eq ly 4 2 ly 5 2 ly 6 2 
 

  

  

 

Equal tresholds:  
 
    [v1$1] (t1);  
    [v1$2] (t2); 
    [v2$1] (t1);  
    [v2$2] (t2); 

     
etc. 
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Mplus example: Two groups, two common factors 
 
Title: 
     model 3b 
 Multiple-group discrete factor analysis 
     1-factor CFA on 5 items 
Data:  
 file is ddat2;       
Variable:  
 names are v1 v2 v3 v4 v5 v6 sex;   
 usev are v1 v2 v3 v4 v5 v6; 
    categorical are v1 v2 v3 v4 v5 v6;  
    grouping = sex (1 = female 2 = male)                                                    
Analysis:   
    parameterization = delta; 
Model: 
    f1 by v1*.5 v2*.5 v3*.5;  
    f2 by v4*.5 v5*.5 v6*.5; 
    f1@1 f2@1; 
    f1 with f2*.3; 
    [f1@0 f2@0]; 
    [v1$1 v1$2]; 
    [v2$1 v2$2]; 
    [v3$1 v3$2]; 
    [v4$1 v4$2]; 
    [v5$1 v5$2]; 
    [v6$1 v6$2]; 
    {v1@1 v2@1 v3@1 v4@1 v5@1 v6@1}; 
Model male: 
    f1 by v1*.5 v2*.5 v3*.5;  
    f2 by v4*.5 v5*.5 v6*.5; 
    f1@1 f2@1; 
    f1 with f2*.3; 
    [f1@0 f2@0]; 
    [v1$1 v1$2]; 
    [v2$1 v2$2]; 
    [v3$1 v3$2]; 
    [v4$1 v4$2]; 
    [v5$1 v5$2]; 
    [v6$1 v6$2]; 
    {v1@1 v2@1 v3@1 v4@1 v5@1 v6@1}; 
Output: 
    standardized tech1 tech2; 
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Mplus example: Two groups, estimates thresholds and polycorrelations. 
 

 
 

v1 

v1 

v2 

v2 

v3 

v3 

v4 

v4 

v5 

v5 

v5 

v6 

 
 
Title: 
 step 1 
 multiple-group discrete fa              
Data:  
 file is ddat2;       
Variable:  
    names are v1 v2 v3 v4 v5 v6 sex;   
    usev are v1 v2 v3 v4 v5 v6; 
    categorical are v1 v2 v3 v4 v5 v6;  
    grouping = sex (1=female 2=male)                                                                          
Analysis:   
     parameterization = delta; 
Model: 
    f1 BY v1@1;  
    f2 BY v2@1; 
    f3 BY v3@1; 
    f4 BY v4@1; 
    f5 BY v5@1; 
    f6 by v6@1 
    f1 with f2 f3 f4 f5 f6; 
    f2 with f3 f4 f5 f6; 
    f3 with f4 f5 f6; 
    f4 with f5 f6; 
    f5 with f6; 
    f1@1 f2@1 f3@1 f4@1 f5@1 f6@1; 
    [f1@0 f2@0 f3@0 f4@0 f5@0 f6@1]; 
 
    MODEL MALE: 
    {v1@1 v2@1 v3@1 v4@1 v5@1 v6@1}; 
    f1 BY v1@1;  
    f2 BY v2@1; 
    f3 BY v3@1; 
    f4 BY v4@1; 
    f5 BY v5@1; 
    f6 BY v6@1; 
! correlations 
    f1 with f2 f3 f4 f5 f6; 
    f2 with f3 f4 f5 f6; 
    f3 with f4 f5 f6; 
    f4 with f5 f6; 
    f5 with f6; 
!  
    f1@1 f2@1 f3@1 f4@1 f5@1 f6@1; 
    [f1@0 f2@0 f3@0 f4@0 f5@0 f6@0]; 
! thresholds 
    [v1$1 v1$2 v2$1 v2$2]; 
    [v3$1 v3$2 v4$1 v4$2 v5$1 v5$2 v6$1 v6$2];  
Output: 
    standardized tech1 tech2; 
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Assignment 1: Here are the Law School Admission Test (LSAT), Section VI 
data. A famous data set that is often used to illustrate IRT model. The 
data consist of N=1000, the responses are dichotomous responses to 5 
cognitive ability items. Column 1 to 5 are the observed response 
configurations. The 6th column contains the frequencies. Read the data into 
PRELIS, calculate the WLS weight matrix and the tetrachoric correlation, 
write these to external files. In LISREL use WLS estimation to fit the 
single factor model. Also fit the model with equal factor loadings and 
residual variance. Compare the model fit and test the restrictions using a 
likelihood ratio test. Repeat the analysis in Mplus.  
 
i1  i2  i3  i4  i5 freq  
 
0    0    0    0    0 3 
0    0    0    0    1 6 
0    0    0    1    0 2 
0    0    0    1    1 11 
0    0    1    0    0 1 
0    0    1    0    1 1 
0    0    1    1    0 3 
0    0    1    1    1 4 
0    1    0    0    0 1 
0    1    0    0    1 8 
0    1    0    1    1 16 
0    1    1    0    1 3 
0    1    1    1    0 2 
0    1    1    1    1 15 
1    0    0    0    0 10 
1    0    0    0    1 29 
1    0    0    1    0 14 
1    0    0    1    1 81 
1    0    1    0    0 3 
1    0    1    0    1 28 
1    0    1    1    0 15 
1    0    1    1    1 80 
1    1    0    0    0 16 
1    1    0    0    1 56 
1    1    0    1    0 21 
1    1    0    1    1 173 
1    1    1    0    0 11 
1    1    1    0    1 61 
1    1    1    1    0 28 
1    1    1    1    1 298 
 
Assignment 2: Use the R script in Appendix B (script 1) to simulate ordinal 
data (three points scales). Change the script so that the factor loadings 
are equal over the items, and the thresholds are equal over the items. Fit 
the true models in Mplus.   
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Appendix 1: Using PRELIS/LISREL 
1) Open LISREL student version, click on FILE, click on NEW, choose SYNTAX 
Only, click OK. Enter the PRELIS input (cut-and-paste), and save as (FILE, 
SAVE AS) yourname.pr2. Make sure you save the input in the same directory 
in which you have saved the data (ddats). To run the PRELIS input click on 
the PRELIS icon.  
 

 
 

 
 
The data are:  
 
118  0  0 
372  0  1 
24  1  0 
486  1  1 
 
Note that PRELIS write the polychoric correlation matrix and the weight 
matrix to external files (pm and wmat1). 
 
 
title lisrel input file WLS 
 da no=500 ni=5 ma=pm 
 pm fi=rmat 
 ac=wmat1  
etc.
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Appendix B: data simulation program (R) 
 
# 
# Script 1 Single group two factor model. 6 three points scales.  
#  
library(MASS) 
np1=500  # sample size 
np=np1  
ne=2  # number of factors 
ny=nv=6  # number of variables 
ncat=3  # three points scales (3 categories) 
# probabilities response 0,1,2 
probs = matrix(c(  
.2,.3,.5, 
.2,.2,.6, 
.3,.3,.4, 
.2,.2,.6, 
.1,.4,.5, 
.2,.4,.4),ny,ncat,byrow=T) 
ncat1=ncat+1 
cprobs=matrix(0,ny,ncat1) 
cprobs[,1]=0 
for (i in 1:nv) { 
for (j in 1:ncat) { 
tmp=0 
for (k in 1:j) { 
tmp=tmp+probs[i,k] 
} 
cprobs[i,(j+1)]=tmp # cumulatie probs cprobs[1,]=0,.2,.5,1 
}} 
thresholds=qnorm(cprobs) # thresholds 
# define sigma   # create Sigma ly*ps*ly' + te 
ly=matrix(c( 
.7,0, 
.6,0, 
.8,0, 
0,.7, 
0,.6, 
0,.8),nv,ne,byrow=T) 
ty<-as.matrix(c(0,0,0,0,0,0))  # ty 
# group 1 
al1=matrix(0,ne,1) # factor mean # mean of factor zero! al 
ps1=matrix(c(1,.5,.5,1),ne,ne,byrow=T) # factor cov/variance ps 
te1=diag(nv)-diag(diag(ly%*%ps1%*%t(ly))) # te residual 
# 
mu1=ty+ly%*%al1 
sigma1=ly%*%ps1%*%t(ly)+te1 
# 
rdat1<-mvrnorm(np1,mu=mu1,Sigma=sigma1) # simulate continuous data 
ddat1=matrix(-1,np1,nv)   # create discrete data 
for (k in 1:nv) { 
ddat1[,k]=as.numeric(cut(rdat1[,k],thresholds[k,]))-1 
} 
# 
write(t(rdat1),file="rdat1",ncolumn=nv) 
write(t(ddat1),file="ddat1",ncolumn=nv) 
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# 
# Script 2: Two group two factor model. 6 three points scales.   
# 
library(MASS) 
np1=500 
np2=500 
np=np1+np2 
ne=2 
ny=nv=6 
ncat=3 
# 
ncat1=ncat+1 
ny1=ny+1 
# probabilities response 0,1,2 
probs = matrix(c( 
.2,.3,.5, 
.2,.2,.6, 
.3,.3,.4, 
.2,.2,.6, 
.1,.4,.5, 
.2,.4,.4),ny,ncat,byrow=T) 
cprobs=matrix(0,ny,ncat1) 
cprobs[,1]=0 
for (i in 1:nv) { 
for (j in 1:ncat) { 
tmp=0 
for (k in 1:j) { 
tmp=tmp+probs[i,k] 
} 
cprobs[i,(j+1)]=tmp 
}} 
thresholds=qnorm(cprobs) 
  
# define sigma 
ly=matrix(c( 
.7,0, 
.6,0, 
.8,0, 
0,.7, 
0,.6, 
0,.8),nv,ne,byrow=T) 
ty<-as.matrix(c(0,0,0,0,0,0)) 
# group 1 
al1=matrix(0,ne,1) # factor mean 
ps1=matrix(c(1,.5,.5,1),ne,ne,byrow=T) # factor variance 
te1=diag(nv)-diag(diag(ly%*%ps1%*%t(ly))) 
# 
mu1=ty+ly%*%al1 
sigma1=ly%*%ps1%*%t(ly)+te1 
# 
al2=matrix(c(.5,-.5),ne,1) 
mu2=ty+ly%*%al2 
ps2=matrix(c(1,.5,.5,1),ne,ne,byrow=T) 
te2=te1 
sigma2=ly%*%ps2%*%t(ly)+te2 
# 
# 
rdat1=matrix(0,np,ny1) 
ddat1=matrix(0,np,ny1) 
rdat1[1:np1,1:ny]<-mvrnorm(np1,mu=mu1,Sigma=sigma1) 
rdat1[(np1+1):np,1:ny]<-mvrnorm(np2,mu=mu2,Sigma=sigma2) 
rdat1[1:np1,ny1]=1 
rdat1[(np1+1):np,ny1]=2 
 
for (k in 1:nv) { 
ddat1[1:np1,k]=as.numeric(cut(rdat1[1:np1,k],thresholds[k,]))-1 
ddat1[(1+np1):np,k]=as.numeric(cut(rdat1[(1+np1):np,k],thresholds[k,]))-1 
} 
ddat1[1:np1,ny1]=1 
ddat1[(np1+1):np,ny1]=2 
# 
write(t(rdat1),file="rdat2",ncolumn=ny1) 
write(t(ddat1),file="ddat2",ncolumn=ny1) 
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Lecture notes III: Measurement invariance with respect to group 
in the discete factor model1 
 
references 
Wirth, R. J. & Edwards, M. C. Item Factor Analysis: Current Approaches and Future Directions, 
Psychological Methods, Vol. 12, No. 1, 58–79. 
 [recent review, including a clear explanation of the relation between discrete factor 
analysis and model from item response theory]  
 
Millsap, R. E., & Yun-Tein, J. (2004). Assessing factorial invariance in orderedcategorical 
measures. Multivariate Behavioral Research, 39(3), 479−515. 

 
Discrete factor analysis, again. 
In the previous lecture notes we presented discrete factor analysis. As in 
standard continuous factor analysis we assumed the following model (i for 
subject, we will assume just one group): 
 

yi* =  + i + i. 
 
In continuous factor analysis, the indicators yi* are observed, continuous 
and multivariate normally distributed. In discrete factor analysis, we 
observe discrete (ordinal) responses to the items. These are related to the 
the now unobserved indicators yi*, as follows (for a three point scale): 
 
y=0 if y*<t1 
y=1 if t1<y*<t2 
y=2 if y*>t2, 
 
where y* is a given component of y*. Or, for a dichotomous variable: 
 
y=0 if y*<t1 
y=1 if t1>y*. 
 
The parameters t1 and t2 are thresholds, i.e., points on the normal 
distribution, i.e., the distribution of y*. As depicted in the previous 
lecture notes: 
 

 
 
Figure 3-1: latent indicator distributed with thresholds 
 

                                                 
1 1 Conor V. Dolan c.v.dolan@uva.nl. RM20. MI: continuous & discrete factor models. 
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There are two thing to note. The thresholds are part of a statistical model 
designed to relate specific discrete outcome (e.g., response to item i is 
0) to a probability. In the model this probability of modeled using the 
probit function, which is just the cumulative normal distribution:  
 
  t1 

(t1)= ∫ (z1)dz1 = (-∞...t1) 
  -∞ 
 

where z1 = (y1*-)/, and  and  are the mean and standard deviation of 
y*. Secondly note that y* is now effectively a latent variable, this means 
that we have to impose some scale on it. Specifically if we cannot observe 

y*, then now can be known  and . This problem is solved by imposing 

scaling, i.e., =0 and =1 (and so y1=z1). So the probit may be viewed as 
a device to assign probabilities to discrete outcome. The choice of the 
probit is convenient, because it generalizes easily to two items. That is, 
in the case of two discrete items we can model the joint probabilities of 
outcomes (e.g., y1=0 and y2=0) using cumulative bi-variate normal: 
 
   t1 t2 

(t1,t2) =   ∫ ∫ (z1,z2,)d(z1)d(z2)=(-∞...t1,-∞...t2,) 
   -∞ -∞ 
 

which is a function of the thresholds t1 an t2, and the correlation  

between z1 and z2. Here again z1 = (y1*-)/, and z2 = (y2*-)/2, and given 

imposed scaling ==0 & ==1. For instance, suppose r=.35, and t1=-.7, 
t2=-.3. In R we can calculate the marginal and the joint probabilities as 
follows (using the library mvtnorm2): 
 
library(mvtnorm) 
t1=-.7 
t2=-.3 
r=.35 
ts=c(t1,t2) 
sigma=matrix(c(1,r,r,1),2,2,byrow=T) 
mean=rep(0,2) 
p1=pnorm(t1) 
p2=pnorm(t2) 
p12=pmvnorm(lower=-Inf, upper=ts, mean=mean, 
        corr=sigma) 
print(c(p1,p2,p12[1])) 

 
0.2419637 (p1) 0.3820886 (p2) 0.1361873 (p12) 
 
Or suppose we observed in a sample of 300 cases the following reponses to a 
dichotomous item: 73 reponse 0 and 227 response 1. The probability of 
response 0 is 73/300 = .243. The threshold can be calculated as follows: 
 
p=73/300 
t1=qnorm(p) 
print(t1) 

                                                 
2 You can easily install this and other libraries in R. 
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i.e., t1=-.6956. The correlation r can be calculated in PRELIS, Mplus, or 
in R (library polycor): 
 
library(polycor) 
polychor(y1,y2, ML = TRUE) 
[1] 0.3820016 

 
where y1 contains the responses to the first and y2 contains the responses 
to the second item.  
 Now if we have 5 items, we have the association between the items 
are a function of the thresholds, which we can estimate readily the 
thresholds and the correlation matrix of y* (using polycor or PRELIS or 
Mplus).  
 

 = 1 

 21 1 

 31 32 1 

 41 42 43 1 

 51 52 53 54 1 
 
Given responses to 5 ordinal items, and assuming underlying multivariate 
normality, we can estimate the correlation matrix and subsequently subject 
this matrix to some model, e.g., a factor model: 
 

 = t + , 
 
To fit the model we used a least square estimator, usually called Weighted 
Least Squares (WLS3): 
 

FWLS() = {r - ()}t Wwls-1 {r - ()}, 
 

where r contains the observed correlations and () contains the expected 

correlations based on the parameters  in the model  = + , i.e.,  

contains the factor loadings and factor correlations, and =[21, 31, 
32,...,53, 54]. The matrix W is the covariance matrix of the estimates in 
r. This choice of W represents a "correct" weighing of the values in {r - 

()}. This means that the standard errors and the chi2 are - at least - in 
theory correct. WLS estimation is implemented in LISREL and in Mplus. The 
main disadvantage of WLS is that is requires large sample sizes to work 
well, especially when the number of item is large. The influence of the 
number of items can be appreciated by realizing that W is the covariance 
matrix of the elements in r. Given M items, the vector r contains 
L=M*(M+1)/2-M elements. So the matrix W will contain L*(L+1)/2 elements. 
Consider a numerical example (using R):  
 
> getM=function(M) { M*(M+1)/2-M } 

                                                 
3 Both in LISREL and in Mplus, there are robust versions of WLS. These are robust in the sense 
that they perform well (accurate standard errors, correct chi2 statistics at least in 
theory). Mplus uses the robust version by default.  
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> getL=function(L) {L*(L+1)/2} 
> getL(getM(5:15)) 
 
 [1]   55  120  231  406  666 1035 1540 2211 3081 4186 5565 
 
So given 5 item L contains 55 elements, but given 15 items W contains 5565 
elements! The dependence of WLS on sample size has been solved to a degree 
by the development of robust WLS and robust ML estimation methods. This 
issue os somewhat removed from the business at hand (measurement 
invariance), but we'll consider various estimation procedures below.  
 

Measurement invariance in the discrete factor analysis. 
 The aim of the present lecture notes is to discuss in terms of Mplus 
model the steps towards measurement invariance in the discrete (ordinal) 
factor model using WLS estimation. We limit this presentation to the simple 
case of 4 3-point items, a single common factor model, and two groups: we 
want to establish measurement invariance of the items with respect to 
group. As you may remember from lecture notes I, there is one clear 
definition of measurement invariance. The definition is general as it 
applies to any psychometric measurement model. It is far reaching in its 
consequences. For instance, let us suppose that measurement invariance  
with respect to group of a set of items holds. This implies that any 
difference between the groups in the observed summary statistics of the 
items should be due to differences with respect to the latent traits. For 
instance, in the linear factor model, we have  
 

k = kt +          

k =  + k,           
  
that is, group difference in the covariance matrix and groups difference in 
the means are - given strict factorial invariance, attributable to group 
differences in the common factor covariance matrices and the common factor 

means (k and k, respectively). Taking this perspective on measurement 
invariance, we shall, in the remainder of the present lecture notes, 
consider the steps towards measurement invariance in the discrete factor 
model. We now focus mainly on Mplus program.  
 
The script used to simulate the data (note the parameter values chosen, as 
you will need them to do the assignments below). 
 
# 
library(MASS) 
np1=500 
np2=500 
np=np1+np2 
ne=1 
ny=nv=4 
ncat=3 
# 
ncat1=ncat+1 
ny1=ny+1 
# probabilities response 0,1,2 
probs = matrix(c( 
.2,.3,.5, 
.2,.2,.6, 
.3,.3,.4, 
.2,.2,.6),ny,ncat,byrow=T) 
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cprobs=matrix(0,ny,ncat1) 
cprobs[,1]=0 
for (i in 1:nv) { 
for (j in 1:ncat) { 
tmp=0 
for (k in 1:j) { 
tmp=tmp+probs[i,k] 
} 
cprobs[i,(j+1)]=tmp 
}} 
thresholds=qnorm(cprobs) 
  
# define sigma 
# stated as reliablities 
# take sqrt to obtaing loadings 
rel=c(.5,.6,.55,.45) 
ly=matrix(sqrt(rel),nv,ne,byrow=T) 
ty<-as.matrix(c(0,0,0,0)) 
# group 1 
al1=matrix(0,ne,1) # factor mean 
ps1=matrix(c(1),ne,ne,byrow=T) # factor variance 
te1=diag(nv)-diag(diag(ly%*%ps1%*%t(ly))) 
# 
mu1=ty+ly%*%al1 
sigma1=ly%*%ps1%*%t(ly)+te1 
# 
al2=matrix(c(-.5),ne,1) 
mu2=ty+ly%*%al2 
ps2=matrix(c(1),ne,ne,byrow=T) 
te2=te1 
sigma2=ly%*%ps2%*%t(ly)+te2 
# 
# 
rdat1=matrix(0,np,ny1) 
ddat1=matrix(0,np,ny1) 
rdat1[1:np1,1:ny]<-mvrnorm(np1,mu=mu1,Sigma=sigma1) 
rdat1[(np1+1):np,1:ny]<-mvrnorm(np2,mu=mu2,Sigma=sigma2) 
rdat1[1:np1,ny1]=1 
rdat1[(np1+1):np,ny1]=2 
 
for (k in 1:nv) { 
ddat1[1:np1,k]=as.numeric(cut(rdat1[1:np1,k],thresholds[k,]))-1 
ddat1[(1+np1):np,k]=as.numeric(cut(rdat1[(1+np1):np,k],thresholds[k,]))-1 
} 
ddat1[1:np1,ny1]=1 
ddat1[(np1+1):np,ny1]=2 
# 
write(t(rdat1),file="rdat2",ncolumn=ny1) 
write(t(ddat1),file="ddat2",ncolumn=ny1) 
 
 
Steps towards MI 
 As mentioned we assume that we have measured 4 items in two sample. 
The items are unidimensional, i.e., within each sample the single common 
factor model fits well (is correctly specified). In analyzing these data we 
would want to start with calculating the summary statistics. These are 
response requencies and the 3x3 cross table of pairs of item responses 
(remember were considering three point scales). As you can obtain this 
information easily from SPSS, R, PRELIS, and Mplus, I will not dwell on 
these statistics. I call the data file ddat2, it contains the item 
responses to items 1,2,3,4 and a group indicator (1 or 2). Here is the 
PRELIS input.  
 
title prelis input file 
da ni=5 no=1000 
ra fi=ddat2 
la 
v1 v2 v3 v4 sex 
or v1 v2 v3 v4 
sc gr=1    ! select group 1  
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OU MA=PM !SM=rmat AC=wmat1 
 
Rather, I will move on to the polychoric correlations and the tresholds.  
 
Mplus parameterization: Delta 
 The correlation matrix of of the underlying indicators y* is modeled 
as follow in two groups: 
 

1 = 1111
t+ 1)1t 

2 = 2222
t+ 2)2t 

 

Note that the presence of the diagonal matrix  is new. In the socalled 

delta-parameterization, the matrix  is constrained as follows: 
diag() diag() - diag(t), where diag()is the identity matrix. So the 

diagonal elements of  are chosen to ensure that the latent indicators 
have unit variance. In a single group analysis, the default model is: 
 

 = t+ ) with  
 

diag() diag() - diag(t), and  =I. This implies that  is a 
correlation matrix.  
 
Step 1 towards MI  
1) Estimate the polychoric correlation matrices R1 and R2, and thresholds t1 
and t2 in groups 1 and 2, without any constraints.  
 
I do this in Mplus, in a single analysis (I call the group variable sex and 
the items v1 to v4): 
 
Mplus INPUT step 1 
 
Title: 
 step 1 
 multiple-group discrete fa              
Data:  
 file is ddat2;       
Variable:  
    names are v1 v2 v3 v4 sex;   
    usev are v1 v2 v3 v4; 
    categorical are v1 v2 v3 v4;  
    grouping = sex (1 = female 2= male)                                                                      
Analysis:   
! type = meanstructure; 
     parameterization = delta; 
Model: 
    f1 BY v1@1;    ! factor loadings 
    f2 BY v2@1; 
    f3 BY v3@1; 
    f4 BY v4@1; 
    f1 with f2 f3 f4;   ! factor correlation 
    f2 with f3 f4; 
    f3 with f4; 
    f1@1 f2@1 f3@1 f4@1;  ! factor variances 
    [f1@0 f2@0 f3@0 f4@0];  ! factor means 
    [v1$1 v1$2 v2$1 v2$2];  ! thresholds 
    [v3$1 v3$2 v4$1 v4$2]; 
    MODEL MALE: 
    {v1@1 v2@1 v3@1 v4@1};  ! scale factors diagonal of Delta matrix 
    f1 BY v1@1;  
    f2 BY v2@1; 
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    f3 BY v3@1; 
    f4 BY v4@1; 
    f1 with f2 f3 f4; 
    f2 with f3 f4; 
    f3 with f4; 
    f1@1 f2@1 f3@1 f4@1; 
    [f1@0 f2@0 f3@0 f4@0]; 
    [v1$1 v1$2 v2$1 v2$2]; 
    [v3$1 v3$2 v4$1 v4$2];  
Output: 
    standardized tech1 tech2; 
 
Here are the results (edited) in the female sample. First the correlations: 
 
Group FEMALE 
 
F1       WITH 
    F2                 0.494      0.050      9.861      0.000 
    F3                 0.546      0.042     12.987      0.000 
    F4                 0.474      0.051      9.215      0.000 
 
 F2       WITH 
    F3                 0.605      0.044     13.837      0.000 
    F4                 0.439      0.055      7.936      0.000 
 
 F3       WITH 
    F4                 0.552      0.047     11.786      0.000 

 
And the thresholds: 
 
 Thresholds 
    V1$1              -0.885      0.065    -13.660      0.000  item 1 theshold 1 
    V1$2              -0.055      0.056     -0.984      0.325 item 1 threshold 2 
    V2$1              -0.885      0.065    -13.660      0.000 item 2 etc. 
    V2$2              -0.316      0.057     -5.536      0.000 
    V3$1              -0.601      0.060    -10.032      0.000 
    V3$2               0.238      0.057      4.200      0.000 
    V4$1              -0.915      0.065    -13.980      0.000 
    V4$2              -0.337      0.057     -5.892      0.000 

 
Exercise: the polychroic correlation between items 1 and 2 is estimated at 
.494. What is its true value? The threshold V1$1 is estimated at -.885. 
What is its true value?   
 
We have estimated the polychoric correlation matrix of the latent 

indicators: k = k)t = k and thresholds tk (k=1,2). The means of the 
latent indicartors are zero in both groups mean(y*k) = 0. 

 
Step 2 towards MI 
 
Note that we estimate polychoric correlations subject to the assumption 
that the underlying indicators y*, are standardized (mean=0, variance=1):  
 
y=0 if y*<t1 
y=1 if t1<y*<t2 
y=2 if y*>t2, 
 
This is an scaling constraint which stems from the fact that we cannot know 
the mean and variance of a variable which is latent or unobserved (this is 
just like scaling common factors in a confirmatory factor model). Now given 
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three point scales, we can standardized the y* in one group and subject to 
equal thresholds over the groups estimate the covariance and means of the 
y* in the second group. We illustrate this in using the following R script 
and figure. 
  
x=seq(-4,4,len=100) 
d1=dnorm(x)   # group 1 
d2=dnorm(x*1.5-.5)  # group 2 
plot(x,d1,type='l',col=2,lwd=3,xlab='latent item y*') 
lines(x,d2,type='l',col=4,lwd=4)  
lines(rep(qnorm(.2),10),seq(0,.4,len=10),type='b',lwd=2) 
lines(rep(qnorm(.2+.3),10),seq(0,.4,len=10),type='b',lwd=2) 

-4 -2 0 2 4

0.
0

0
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2
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0
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latent item y*

d1

 
Figure 3-2: latent indicator distributions in two groups with two 
thresholds. 
 
The thresholds are equal over the groups. Differences in the response 
frequencies between group 1 (red) and group 2 (blue) are now due to the 
differnces in the distribution of the latent indicator y*. In the second 
step, we estimate the polychoric correlation matrix subject to y*~N(0,1) in 
the first group, and estimate the polychoric covariance matrix and 
underlying indicator means in the second group. 
 
Mplus input step 2 

2) Estimate the polychoric correlation matrix 1 and thesholds  in group 1 
and estimate the covariance matrix 2 and means 2 in group 2.Note that the 
thresholds are equal over the groups.  
 
Title: 
 step 2 
 multiple-group discrete fa              
Data:  
 file is ddat2;       
Variable:  
    names are v1 v2 v3 v4 sex;   
    usev are v1 v2 v3 v4; 
    categorical are v1 v2 v3 v4;  
    grouping = sex (1 = female 2= male)                                                                       
Analysis:   
! type = meanstructure; 
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     parameterization = delta; 
Model: 
    f1 BY v1@1;  
    f2 BY v2@1; 
    f3 BY v3@1; 
    f4 BY v4@1; 
    f1 with f2 f3 f4; 
    f2 with f3 f4; 
    f3 with f4; 
    f1@1 f2@1 f3@1 f4@1; 
    [f1@0 f2@0 f3@0 f4@0]; 
    [v1$1 v1$2 v2$1 v2$2]; 
    [v3$1 v3$2 v4$1 v4$2];  
 
    MODEL MALE: 
    {v1*1 v2*1 v3*1 v4*1}; ! delta elements 
    f1 BY v1@1;    
    f2 BY v2@1; 
    f3 BY v3@1; 
    f4 BY v4@1; 
    f1 with f2 f3 f4; 
    f2 with f3 f4; 
    f3 with f4; 
    f1@1 f2@1 f3@1 f4@1; 
    [f1*0 f2*0 f3*0 f4*0]; 
!    [v1$1 v1$2 v2$1 v2$2]; ! thresholds not estimated 
!    [v3$1 v3$2 v4$1 v4$2];  ! equal to those in group 1 
Output: 
    standardized tech1 tech2; 
 
Output in group 2 (edited): 
 
Means  (means of y* in group 2) 
    F1                -0.400      0.073     -5.467      0.000 
    F2                -0.504      0.076     -6.601      0.000 
    F3                -0.548      0.086     -6.388      0.000 
    F4                -0.431      0.078     -5.508      0.000 
 
 Thresholds (equal to those in group 1) 
    V1$1              -0.885      0.065    -13.659      0.000 
    V1$2              -0.055      0.056     -0.984      0.325 
    V2$1              -0.885      0.065    -13.658      0.000 
    V2$2              -0.316      0.057     -5.539      0.000 
    V3$1              -0.601      0.060    -10.029      0.000 
    V3$2               0.238      0.057      4.201      0.000 
    V4$1              -0.915      0.065    -13.981      0.000 
    V4$2              -0.337      0.057     -5.893      0.000 
 
 Variances 
    F1                 1.000      0.000    999.000    999.000 
    F2                 1.000      0.000    999.000    999.000 
    F3                 1.000      0.000    999.000    999.000 
    F4                 1.000      0.000    999.000    999.000 
 Scales  (Matrix Delta in group 2) 
    V1                 0.976      0.099      9.887      0.000 
    V2                 0.968      0.124      7.787      0.000 
    V3                 0.866      0.089      9.713      0.000 
    V4                 0.965      0.124      7.790      0.000 
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We have estimated the polychoric correlation matrix of the latent 

indicators and the thresholds in group 1: 1 = 1)t = 1 and thesholds 

t1 (k=1,2). The means of the latent indicators are zero in group 1 
mean(y*1) = 0. In group 2 we have estimated the polychoric covariance 

matrix of the latent indicators 2 = 2)t = 2t and the means of the 

latent indicators mean(y*1) = [-.400, -.505, -.548, -.421]. Note that 2is 
still standarized. The tresholds in group 2 equal the thresholds in group 
1. By constraining the thresholds to be equal, we have sufficient 
information to estimate the polychoric covariance matrix4 and means of the 
latent indicators in group 2. We now assume that the differences in the 
observed response frequencies are due to the difference in the distribution 
of the latent indicators.  
 
Step 3(a) towards MI: factor models. 
 

3a) Fit a common factor model the matrices 1 and 2, without any 
constraints over groups, i.e., 1 = 11 1

t+ 1, and 2 = 22 2
t+ 2. In 

addition  are estimated (equal over groups) and 2 is estimated (latent 
indicator means in group 2).  
 
Henceforth we will limit our treatment to the single common factor model, 
which is the true model. Note a) that standard scaling requirements  
require some action (I means scaling of the common factor). One possibility 

is to standardize: 1=2=1; b) As before in the delta parameterization, 

the parameters 1 are not free parameters, as diag(11 1
t+ 1) = 

diag(11
t+ 1) = diag(I), where I is the identity matrix. In group 2, 

however no further constraints (beyond scaling) are necessary. 
 

Mplus input step 3a (note the formulation is not standard - see path 
diagrams below) 
 
Title: 
    Model 3a 
 Multiple-group discrete factor analysis 
    1-factor CFA on 4 items 
Data:  
 file is ddat2;       
Variable:  
 names are v1 v2 v3 v4 sex;   
 usev are v1 v2 v3 v4; 
    categorical are v1 v2 v3 v4;  
    grouping = sex (1 = female 2= male);                                                    
Analysis:   
! type = meanstructure; 
    parameterization = delta; 
Model: 
   f1 by v1; 
   f2 by v2; 
   f3 by v3; 
   f4 by v4; 
     f5 by f1* f2 f3 f4; 

                                                 
4 This is so only in the case of three or more point scales. In the case of dichotomous 
indicators, the Delta matrix cannot be estimated, i.e., it has to be fixed to the identifiy 
matrix, as in group 1. 
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     f1@0 f2@0 f3@0 f4@0 f5@1; 
     [f1@0 f2@0 f3@0 f4@0 f5@0]; 
     [v1$1 v1$2]; 
     [v2$1 v2$2]; 
     [v3$1 v3$2]; 
     [v4$1 v4$2]; 
Model male: 
     f5 by f1* f2 f3 f4; 
     f1@0 f2@0 f3@0 f4@0 f5@1; 
     [f1*0 f2*0 f3*0 f4*0 f5@0]; 
!    {v1@1 v2@1 v3@1 v4@1}; 
Output: 
    standardized tech1 tech2; 
  
 
Group FEMALE 
 
 F1       BY 
    V1                 1.000      0.000    999.000    999.000 
 
 F2       BY 
    V2                 1.000      0.000    999.000    999.000 
 
 F3       BY 
    V3                 1.000      0.000    999.000    999.000 
 
 F4       BY 
    V4                 1.000      0.000    999.000    999.000 
 
 F5       BY 
    F1                 0.681      0.043     15.861      0.000 
    F2                 0.716      0.045     15.829      0.000 
    F3                 0.827      0.038     22.022      0.000 
    F4                 0.661      0.046     14.303      0.000 
 
 Means 
    F5                 0.000      0.000    999.000    999.000 
 
 Intercepts 
    F1                 0.000      0.000    999.000    999.000 
    F2                 0.000      0.000    999.000    999.000 
    F3                 0.000      0.000    999.000    999.000 
    F4                 0.000      0.000    999.000    999.000 
 
 Thresholds 
    V1$1              -0.885      0.065    -13.660      0.000 
    V1$2              -0.055      0.056     -0.984      0.325 
    V2$1              -0.885      0.065    -13.660      0.000 
    V2$2              -0.316      0.057     -5.536      0.000 
    V3$1              -0.601      0.060    -10.030      0.000 
    V3$2               0.238      0.057      4.198      0.000 
    V4$1              -0.915      0.065    -13.979      0.000 
    V4$2              -0.337      0.057     -5.893      0.000 
 
 Variances 
    F5                 1.000      0.000    999.000    999.000 
 
 Residual Variances 
    F1                 0.000      0.000    999.000    999.000 
    F2                 0.000      0.000    999.000    999.000 
    F3                 0.000      0.000    999.000    999.000 
    F4                 0.000      0.000    999.000    999.000 
 
 Scales 
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    V1                 1.000      0.000    999.000    999.000 
    V2                 1.000      0.000    999.000    999.000 
    V3                 1.000      0.000    999.000    999.000 
    V4                 1.000      0.000    999.000    999.000 
 
Group MALE 
 
 F1       BY 
    V1                 1.000      0.000    999.000    999.000 
 
 F2       BY 
    V2                 1.000      0.000    999.000    999.000 
 
 F3       BY 
    V3                 1.000      0.000    999.000    999.000 
 
 F4       BY 
    V4                 1.000      0.000    999.000    999.000 
 
 F5       BY 
    F1                 0.763      0.090      8.461      0.000 
    F2                 0.854      0.120      7.112      0.000 
    F3                 0.839      0.103      8.153      0.000 
    F4                 0.725      0.107      6.802      0.000 
 
 Means 
    F5                 0.000      0.000    999.000    999.000 
 
 Intercepts 
    F1                -0.401      0.073     -5.468      0.000 
    F2                -0.504      0.076     -6.596      0.000 
    F3                -0.548      0.086     -6.390      0.000 
    F4                -0.431      0.078     -5.510      0.000 
 
 Thresholds 
    V1$1              -0.885      0.065    -13.660      0.000 
    V1$2              -0.055      0.056     -0.984      0.325 
    V2$1              -0.885      0.065    -13.660      0.000 
    V2$2              -0.316      0.057     -5.536      0.000 
    V3$1              -0.601      0.060    -10.030      0.000 
    V3$2               0.238      0.057      4.198      0.000 
    V4$1              -0.915      0.065    -13.979      0.000 
    V4$2              -0.337      0.057     -5.893      0.000 
 
 Variances 
    F5                 1.000      0.000    999.000    999.000 
 
 Residual Variances 
    F1                 0.000      0.000    999.000    999.000 
    F2                 0.000      0.000    999.000    999.000 
    F3                 0.000      0.000    999.000    999.000 
    F4                 0.000      0.000    999.000    999.000 
 
 Scales 
    V1                 0.976      0.099      9.887      0.000 
    V2                 0.967      0.124      7.787      0.000 
    V3                 0.866      0.089      9.713      0.000 
    V4                 0.965      0.124      7.790      0.000 

 
We have now estimated in group 1 the polychoric correlation matrix and the 

thresholds: 1 = 1111
t+ 1)1t and t1. And we have estimated in group 2 

the polychoric covariance matrix and the latent indicator means: 2 = 
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2222
t+ 2)2t and mean(y*)= [-.401, -.504, -.548,-.431]. Note that 

222
t+ 2 is still a correlation matrix. The tresholds in group 2 equal 

those in group 1. 
 You will have noted that we defined the factor model in the following 
way: 
 

 
 
Figure 3-3: residuals as factors. 
 
Rather than in the more nature way: 
 

 
 
Figure 3-4: more natural: residuals as residuals.  
 
We shall now formulate the model in the more natural way (step 3b). 
 
Step 3b towards MI (alternative to step 3a syntax) 
 
3b) One could also introduce the factor models following step 1. That is 
estimate the polychoric correlation matrices subject to the factor model: 

1 = 11 1
t+ 1, and 2 = 22 2

t+ 2. Given scaling requirements, we 

require diag(11
t+ 1)=diag(22

t+ 2)=diag(), i.e., in both groups the 
residual covariance matrices 1 and 2 are constrained, and thresholds  1 
and 2 are estimated (NOT equal over the groups). 
 
Mplus input step 3b 
 
Title: 
    model 3b 
 Multiple-group discrete factor analysis 
    1-factor CFA on 4 items 
Data:  
 file is ddat2;       

f 

y* 

e 

y* 

e 

y* 

e 

y* 

e 

f5 

y* y* y* y* 

f1 f2 f3 f5 
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Variable:  
 names are v1 v2 v3 v4 sex;   
 usev are v1 v2 v3 v4; 
    categorical are v1 v2 v3 v4;  
    grouping = sex (1 = female 2= male)                                                    
Analysis:   
! type =  meanstructure; 
    parameterization = delta; 
Model: 
    f by v1*.5 v2*.5 v3*.5 v4*.5; 
    f@1; 
    [f@0]; 
    [v1$1 v1$2]; 
    [v2$1 v2$2]; 
    [v3$1 v3$2]; 
    [v4$1 v4$2]; 
Model male: 
    f by v1*.5 v2*.5 v3*.5 v4*.5; 
    f@1; 
    [f@0]; 
    [v1$1 v1$2]; 
    [v2$1 v2$2]; 
    [v3$1 v3$2]; 
    [v4$1 v4$2]; 
    {v1@1 v2@1 v3@1 v4@1}; 
 
Output: 
    standardized tech1 tech2; 

 
  
Group FEMALE 
 
 F        BY 
    V1                 0.681      0.043     15.860      0.000 
    V2                 0.716      0.045     15.828      0.000 
    V3                 0.827      0.038     22.020      0.000 
    V4                 0.661      0.046     14.302      0.000 
 
 Means 
    F                  0.000      0.000    999.000    999.000 
 
 Thresholds 
    V1$1              -0.885      0.065    -13.660      0.000 
    V1$2              -0.055      0.056     -0.984      0.325 
    V2$1              -0.885      0.065    -13.660      0.000 
    V2$2              -0.316      0.057     -5.536      0.000 
    V3$1              -0.601      0.060    -10.032      0.000 
    V3$2               0.238      0.057      4.200      0.000 
    V4$1              -0.915      0.065    -13.980      0.000 
    V4$2              -0.337      0.057     -5.892      0.000 
 
 Variances 
    F                  1.000      0.000    999.000    999.000 
 
 Scales 
    V1                 1.000      0.000    999.000    999.000 
    V2                 1.000      0.000    999.000    999.000 
    V3                 1.000      0.000    999.000    999.000 
    V4                 1.000      0.000    999.000    999.000 
 
Group MALE 
 
 F        BY 
    V1                 0.745      0.036     20.628      0.000 
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    V2                 0.826      0.032     25.849      0.000 
    V3                 0.727      0.038     18.886      0.000 
    V4                 0.700      0.040     17.394      0.000 
 
 Means 
    F                  0.000      0.000    999.000    999.000 
 
 Thresholds 
    V1$1              -0.473      0.058     -8.106      0.000 
    V1$2               0.337      0.057      5.892      0.000 
    V2$1              -0.369      0.057     -6.425      0.000 
    V2$2               0.181      0.056      3.218      0.001 
    V3$1              -0.045      0.056     -0.805      0.421 
    V3$2               0.681      0.061     11.154      0.000 
    V4$1              -0.468      0.058     -8.017      0.000 
    V4$2               0.090      0.056      1.610      0.107 
 
 Variances 
    F                  1.000      0.000    999.000    999.000 
 
 Scales 
    V1                 1.000      0.000    999.000    999.000 
    V2                 1.000      0.000    999.000    999.000 
    V3                 1.000      0.000    999.000    999.000 
    V4                 1.000      0.000    999.000    999.000 

 
We have now estimated in group 1 the polychoric correlation matrix and the 

thresholds: 1 = 1111
t+ 1)1t and t1. And we have estimated in group 2 

the polychoric covariance matrix and the latent indicator means: 2 = 
2222

t+ 2)2t and thresholds t2 (not equal to t1!). The latent indicator 

means are zero in both groups mean(y*)= [0,0,0,0], and as always 1 and 2 
are not free parameter matrices.  
  Step 3a and 3b serve to establish the factor model without further 
constraints. That is to say the object is only to establish the 
dimensionality of the set of items. We assume that this dimenionality is 
identical in the groups (a single factor model), but this is not a 
requirement that is associated with MI. That is, MI does not require the 
number of factors to be equal over the groups (2 common factors could be 
correlated .7 in group 1 and correlated 1 in group 2, i.e., in group 2 the 
model would be effectively a single common factor model). The model in step 
3 fits well, we conclude that the factor models are correctly spectify, and 
we can continue with step 4.  
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Step 4 towards MI - equal factor loadings or metric invariance. 
 
4) In step 4, we proceed by constraining the parameters of the factor 
model. The first step towards MI is to constrains the factor loadings to be 

equal over the groups: 1 = 1 t+ 1 and 2 = 2 t+ 2, subject to the 

equality constraints on the thresholds, , and, remembering that 2 is 
freely estimated in group 2.  

 Given the scaling constraint 1=1, we have 1 =  t+ 1 and 2 = 2 

t+ 2. Note that 2 is now a free parameter, i.e., the equality constraint 

on the factor loadings () enables us to estimate the factor variance in 

group 2. The hypothesis 2=1 may be of interest, but is irrelvant to the 

issue of MI (i.e., MI does not prescribe 2=1). Note that we still require 

diag(11
t+ 1)=diag().  

 
Mplus step 4 input 
 
Title: 
 model 4 
 Multiple-group discrete factor analysis 
    1-factor CFA on 4 items 
Data:  
 file is ddat2;       
Variable:  
 names are v1 v2 v3 v4 sex;   
 usev are v1 v2 v3 v4; 
    categorical are v1 v2 v3 v4; 
    grouping = sex (1 = female 2= male);                                                     
Analysis:   
! type =  meanstructure; 
    parameterization = delta; 
Model: 
   f1 by v1@1; 
   f2 by v2@1; 
   f3 by v3@1; 
   f4 by v4@1; 
   f5 by f1* (1);  
   f5 by f2  (2); 
   f5 by f3  (3) ; 
   f5 by f4  (4); 
   f1@0 f2@0 f3@0 f4@0 f5@1; 
   [f1@0 f2@0 f3@0 f4@0 f5@0]; 
   [v1$1 v1$2]; 
   [v2$1 v2$2]; 
   [v3$1 v3$2]; 
   [v4$1 v4$2]; 
Model male: 
   f5 by f1* (1);  
   f5 by f2  (2); 
   f5 by f3  (3) ; 
   f5 by f4  (4); 
     f1@0 f2@0 f3@0 f4@0 f5*1; 
     [f1*0 f2*0 f3*0 f4*0 f5@0]; 
!    {v1@1 v2@1 v3@1 v4@1}; 
Output: 
    standardized tech1 tech2; 
 
 

Output 
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Group FEMALE 
 
 F1       BY 
    V1                 1.000      0.000    999.000    999.000 
 
 F2       BY 
    V2                 1.000      0.000    999.000    999.000 
 
 F3       BY 
    V3                 1.000      0.000    999.000    999.000 
 
 F4       BY 
    V4                 1.000      0.000    999.000    999.000 
 
 F5       BY 
    F1                 0.684      0.039     17.580      0.000 
    F2                 0.721      0.042     17.040      0.000 
    F3                 0.818      0.034     23.847      0.000 
    F4                 0.662      0.043     15.412      0.000 
 
 Means 
    F5                 0.000      0.000    999.000    999.000 
 
 Intercepts 
    F1                 0.000      0.000    999.000    999.000 
    F2                 0.000      0.000    999.000    999.000 
    F3                 0.000      0.000    999.000    999.000 
    F4                 0.000      0.000    999.000    999.000 
 
 Thresholds 
    V1$1              -0.881      0.062    -14.268      0.000 
    V1$2              -0.058      0.055     -1.059      0.290 
    V2$1              -0.873      0.061    -14.202      0.000 
    V2$2              -0.326      0.057     -5.745      0.000 
    V3$1              -0.611      0.058    -10.514      0.000 
    V3$2               0.247      0.056      4.423      0.000 
    V4$1              -0.915      0.062    -14.792      0.000 
    V4$2              -0.337      0.057     -5.913      0.000 
 
 Variances 
    F5                 1.000      0.000    999.000    999.000 
 
 Residual Variances 
    F1                 0.000      0.000    999.000    999.000 
    F2                 0.000      0.000    999.000    999.000 
    F3                 0.000      0.000    999.000    999.000 
    F4                 0.000      0.000    999.000    999.000 
 
 Scales 
    V1                 1.000      0.000    999.000    999.000 
    V2                 1.000      0.000    999.000    999.000 
    V3                 1.000      0.000    999.000    999.000 
    V4                 1.000      0.000    999.000    999.000 
 
Group MALE 
 
 F1       BY 
    V1                 1.000      0.000    999.000    999.000 
 
 F2       BY 
    V2                 1.000      0.000    999.000    999.000 
 



Lecture notes III: Measurement Invariance (RM20; Jelte Wicherts).  18

 F3       BY 
    V3                 1.000      0.000    999.000    999.000 
 
 F4       BY 
    V4                 1.000      0.000    999.000    999.000 
 
 F5       BY 
    F1                 0.684      0.039     17.580      0.000 
    F2                 0.721      0.042     17.040      0.000 
    F3                 0.818      0.034     23.847      0.000 
    F4                 0.662      0.043     15.412      0.000 
 
 Means 
    F5                 0.000      0.000    999.000    999.000 
 
 Intercepts 
    F1                -0.401      0.073     -5.519      0.000 
    F2                -0.509      0.074     -6.891      0.000 
    F3                -0.569      0.085     -6.665      0.000 
    F4                -0.431      0.078     -5.508      0.000 
 
 Thresholds 
    V1$1              -0.881      0.062    -14.268      0.000 
    V1$2              -0.058      0.055     -1.059      0.290 
    V2$1              -0.873      0.061    -14.202      0.000 
    V2$2              -0.326      0.057     -5.745      0.000 
    V3$1              -0.611      0.058    -10.514      0.000 
    V3$2               0.247      0.056      4.423      0.000 
    V4$1              -0.915      0.062    -14.792      0.000 
    V4$2              -0.337      0.057     -5.913      0.000 
 
 Variances 
    F5                 1.198      0.205      5.859      0.000 
 
 Residual Variances 
    F1                 0.000      0.000    999.000    999.000 
    F2                 0.000      0.000    999.000    999.000 
    F3                 0.000      0.000    999.000    999.000 
    F4                 0.000      0.000    999.000    999.000 
 
 Scales 
    V1                 0.993      0.076     12.990      0.000 
    V2                 1.041      0.095     10.974      0.000 
    V3                 0.818      0.065     12.658      0.000 
    V4                 0.966      0.089     10.911      0.000 
 

We have now estimated in group 1 the polychoric correlation matrix and the 

thresholds: 1 = 11t+ 1)1t and t1. Note that due to scaling 1=1. We 
have estimated in group 2 the polychoric covariance matrix and the latent 

indicator means: 2 = 22t+ 2)2t and thresholds t2 equal to t1. The 
latent indicator means are zero in group 1, and estimated in group 2 

mean(y*) = [-.401,-.509,-.569, -.431]. As always 1 and 2 are not free 
parameter matrices.  
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Step 5 towards MI: strong factorial invariance 
 
5) In step 5, we proceed by constraining the mean vector in group 2, i.e., 

2 = , where  is the difference in factor mean between group 1 and group 
2. Thus we estimate the thresholds , the factor models 1 =  t+ 1 and 2 
= 2 t+ 2, and the means model 2 = .  
 
In terms of the usual taxonomy, this model is the strong factorial 

invariance model. Here again note that we still require diag(11
t+ 

1)=diag(). 
 
Mplus input Step 5  

 
Title: 
 model 5 
 Multiple-group discrete factor analysis 
    1-factor CFA on 4 items 
Data:  
 file is ddat2;       
Variable:  
 names are v1 v2 v3 v4 sex;   
 usev are v1 v2 v3 v4; 
    categorical are v1 v2 v3 v4;  
    grouping = sex (1 = female 2= male)                                                    
Analysis:   
! type =  meanstructure; 
    parameterization = delta; 
Model: 
   f1 by v1@1; 
   f2 by v2@1; 
   f3 by v3@1; 
   f4 by v4@1; 
   f5 by f1* (1);  
   f5 by f2  (2); 
   f5 by f3  (3) ; 
   f5 by f4  (4); 
   f1@0 f2@0 f3@0 f4@0 f5@1; 
   [f1@0 f2@0 f3@0 f4@0 f5@0]; 
   [v1$1 v1$2]; 
   [v2$1 v2$2]; 
   [v3$1 v3$2]; 
   [v4$1 v4$2]; 
Model male: 
   f5 by f1* (1);  
   f5 by f2  (2); 
   f5 by f3  (3) ; 
   f5 by f4  (4); 
   f1@0 f2@0 f3@0 f4@0 f5*1; 
   [f1@0 f2@0 f3@0 f4@0 f5*0]; 
!    {v1@1 v2@1 v3@1 v4@1}; 
Output: 
    standardized tech1 tech2; 
 
Output  
 
Group FEMALE 
 
 F1       BY 
    V1                 1.000      0.000    999.000    999.000 
 
 F2       BY 
    V2                 1.000      0.000    999.000    999.000 
 
 F3       BY 
    V3                 1.000      0.000    999.000    999.000 
 
 F4       BY 
    V4                 1.000      0.000    999.000    999.000 
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 F5       BY 
    F1                 0.671      0.036     18.691      0.000 
    F2                 0.731      0.038     19.146      0.000 
    F3                 0.823      0.033     24.754      0.000 
    F4                 0.660      0.038     17.236      0.000 
 
 Means 
    F5                 0.000      0.000    999.000    999.000 
 
 Intercepts 
    F1                 0.000      0.000    999.000    999.000 
    F2                 0.000      0.000    999.000    999.000 
    F3                 0.000      0.000    999.000    999.000 
    F4                 0.000      0.000    999.000    999.000 
 
 Thresholds 
    V1$1              -0.899      0.056    -15.932      0.000 
    V1$2              -0.084      0.049     -1.733      0.083 
    V2$1              -0.860      0.058    -14.739      0.000 
    V2$2              -0.313      0.049     -6.350      0.000 
    V3$1              -0.600      0.055    -10.976      0.000 
    V3$2               0.254      0.055      4.626      0.000 
    V4$1              -0.916      0.058    -15.703      0.000 
    V4$2              -0.341      0.048     -7.037      0.000 
 
 Variances 
    F5                 1.000      0.000    999.000    999.000 
 
 Residual Variances 
    F1                 0.000      0.000    999.000    999.000 
    F2                 0.000      0.000    999.000    999.000 
    F3                 0.000      0.000    999.000    999.000 
    F4                 0.000      0.000    999.000    999.000 
 
 Scales 
    V1                 1.000      0.000    999.000    999.000 
    V2                 1.000      0.000    999.000    999.000 
    V3                 1.000      0.000    999.000    999.000 
    V4                 1.000      0.000    999.000    999.000 
 
Group MALE 
 
 F1       BY 
    V1                 1.000      0.000    999.000    999.000 
 
 F2       BY 
    V2                 1.000      0.000    999.000    999.000 
 
 F3       BY 
    V3                 1.000      0.000    999.000    999.000 
 
 F4       BY 
    V4                 1.000      0.000    999.000    999.000 
 
 F5       BY 
    F1                 0.671      0.036     18.691      0.000 
    F2                 0.731      0.038     19.146      0.000 
    F3                 0.823      0.033     24.754      0.000 
    F4                 0.660      0.038     17.236      0.000 
 
 Means 
    F5                -0.663      0.083     -8.018      0.000 
 
 Intercepts 
    F1                 0.000      0.000    999.000    999.000 
    F2                 0.000      0.000    999.000    999.000 
    F3                 0.000      0.000    999.000    999.000 
    F4                 0.000      0.000    999.000    999.000 
 
 Thresholds 
    V1$1              -0.899      0.056    -15.932      0.000 
    V1$2              -0.084      0.049     -1.733      0.083 
    V2$1              -0.860      0.058    -14.739      0.000 
    V2$2              -0.313      0.049     -6.350      0.000 
    V3$1              -0.600      0.055    -10.976      0.000 
    V3$2               0.254      0.055      4.626      0.000 
    V4$1              -0.916      0.058    -15.703      0.000 
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    V4$2              -0.341      0.048     -7.037      0.000 
 
 Variances 
    F5                 1.179      0.200      5.892      0.000 
 
 Residual Variances 
    F1                 0.000      0.000    999.000    999.000 
    F2                 0.000      0.000    999.000    999.000 
    F3                 0.000      0.000    999.000    999.000 
    F4                 0.000      0.000    999.000    999.000 
 
 Scales 
    V1                 1.017      0.078     13.008      0.000 
    V2                 1.034      0.088     11.810      0.000 
    V3                 0.824      0.065     12.629      0.000 
    V4                 0.977      0.082     11.977      0.000 
 
 
We have now estimated in group 1 the polychoric correlation matrix and the 
thresholds: 1 = 11t+ 1)1t and t1. We have estimated in group 2 the 
polychoric covariance matrix and the latent indicator means: 2 = 22t+ 
2)2t and thresholds t2 equal to t1. The latent indicator means are zero in 
group 1, and estimated in group 2 as follows: 2 (2 is the common factor 
mean in group 2, the value of 2 = -.663, its true value is -.5). So 
mean(y*) in group 2 = [(.671*-.663), (.731*-.663),(.823*-.663),(.660*-

.663)] = [-0.444873 -0.484653 -0.545649 -0.437580]. As always 1 and 2 are 
not free parameter matrices. The chi2 of this model is 5.684 with 10 
degrees of Freedom. 
 You will note that we have reverted to the model specification of 
Figure 3-3. We consider the more natural specification of the same model. 
 
Mplus step 5 input (simpler formulation) 
 
Title: 
 model 5b alternative simpler 
 Multiple-group discrete factor analysis 
    1-factor CFA on 4 items 
Data:  
 file is ddat2;       
Variable:  
 names are v1 v2 v3 v4 sex;   
 usev are v1 v2 v3 v4; 
    categorical are v1 v2 v3 v4;  
    grouping = sex (1 = female 2= male)                                                                       
Analysis:   
! type =  meanstructure; 
    parameterization = delta; 
Model: 
    f by v1*.5 v2*.5 v3*.5 v4*.5; 
    f@1; 
    [f@0]; 
    [v1$1 v1$2]; 
    [v2$1 v2$2]; 
    [v3$1 v3$2]; 
    [v4$1 v4$2]; 
Model male: 
    f*1; 
    [f*0]; 
!    {v1@1 v2@1 v3@1 v4@1}; 
Output: 
    standardized tech1 tech2; 
 
Output 
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Group FEMALE 
 
 F        BY 
    V1                 0.671      0.036     18.691      0.000 
    V2                 0.731      0.038     19.146      0.000 
    V3                 0.823      0.033     24.755      0.000 
    V4                 0.660      0.038     17.236      0.000 
 
 Means 
    F                  0.000      0.000    999.000    999.000 
 
 Thresholds 
    V1$1              -0.899      0.056    -15.932      0.000 
    V1$2              -0.084      0.049     -1.733      0.083 
    V2$1              -0.860      0.058    -14.739      0.000 
    V2$2              -0.313      0.049     -6.350      0.000 
    V3$1              -0.600      0.055    -10.976      0.000 
    V3$2               0.254      0.055      4.625      0.000 
    V4$1              -0.916      0.058    -15.703      0.000 
    V4$2              -0.341      0.048     -7.037      0.000 
 
 Variances 
    F                  1.000      0.000    999.000    999.000 
 
 Scales 
    V1                 1.000      0.000    999.000    999.000 
    V2                 1.000      0.000    999.000    999.000 
    V3                 1.000      0.000    999.000    999.000 
    V4                 1.000      0.000    999.000    999.000 
 
Group MALE 
 
 F        BY 
    V1                 0.671      0.036     18.691      0.000 
    V2                 0.731      0.038     19.146      0.000 
    V3                 0.823      0.033     24.755      0.000 
    V4                 0.660      0.038     17.236      0.000 
 
 Means 
    F                 -0.663      0.083     -8.018      0.000 
 
 Thresholds 
    V1$1              -0.899      0.056    -15.932      0.000 
    V1$2              -0.084      0.049     -1.733      0.083 
    V2$1              -0.860      0.058    -14.739      0.000 
    V2$2              -0.313      0.049     -6.350      0.000 
    V3$1              -0.600      0.055    -10.976      0.000 
    V3$2               0.254      0.055      4.625      0.000 
    V4$1              -0.916      0.058    -15.703      0.000 
    V4$2              -0.341      0.048     -7.037      0.000 
 
 Variances 
    F                  1.179      0.200      5.892      0.000 
 
 Scales 
    V1                 1.017      0.078     13.008      0.000 
    V2                 1.034      0.088     11.810      0.000 
    V3                 0.824      0.065     12.629      0.000 
    V4                 0.978      0.082     11.977      0.000 

 
The results, we hope, are identical. But the model is simpler. The chi2 is 
again 5.684 with 10 degrees of Freedom.
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Step 5 towards MI: Switch to theta parameterization. 
 
The delta parameterization does not seem to be suitable to test strict 
factorial invariance. We therefore switch to the theta parameterization. 
This involves fixing the residual (error) variances of the latent 

indicators to arbitrary values (i.e, the parameters in ). We shall first 
repeat the step 5 using this parameterization. Note that we shall fix the 
residual variances to their true values (i.e., .5 .4 .45 .55). This is 
arbritrary, but facilitates the evaluation of the parameter recovery. The 
results would not change substantively, if you changed the fixed values to, 
say, .7,.7,.7,.7 (as you can establish for yourself). 
 
Mplus Step 5 Theta parameterization 
 
Title: 
 model 5c (model 5 theta) 
 Multiple-group discrete analysis 
    1-factor CFA on 4 items 
Data:  
 file is ddat2;       
Variable:  
 names are v1 v2 v3 v4 sex;   
 usev are v1 v2 v3 v4; 
    categorical are v1 v2 v3 v4;  
    grouping = sex (1 = female 2= male)                                                    
Analysis:   
! type =  meanstructure; 
    parameterization = theta; 
Model: 
    f by v1*.5 v2*.5 v3*.5 v4*.5; 
    f@1; 
    [f@0]; 
    [v1$1 v1$2]; 
    [v2$1 v2$2]; 
    [v3$1 v3$2]; 
    [v4$1 v4$2]; 
Model female: 
! true value  FIXED 
    v1@0.5 v2@0.4 v3@0.45 v4@0.55; 
Model male: 
    f*1; 
    [f*-.5]; 
!  estimated strong factorial inv.  
    v1*0.5 v2*0.4 v3*0.45 v4*0.55; 
Output: 
    standardized tech1 tech2; 

 
OUTPUT 
 
Chi-Square Test of Model Fit 
 
          Value                              5.684* 
          Degrees of Freedom                    10 
          P-Value                           0.8411 
 
Group FEMALE 
 
 F        BY 
    V1                 0.640      0.062     10.271      0.000 
    V2                 0.679      0.076      8.901      0.000 
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    V3                 0.970      0.121      8.004      0.000 
    V4                 0.651      0.067      9.729      0.000 
 
 Means 
    F                  0.000      0.000    999.000    999.000 
 
 Thresholds 
    V1$1              -0.858      0.070    -12.335      0.000 
    V1$2              -0.080      0.047     -1.716      0.086 
    V2$1              -0.798      0.078    -10.200      0.000 
    V2$2              -0.290      0.051     -5.702      0.000 
    V3$1              -0.708      0.090     -7.888      0.000 
    V3$2               0.299      0.068      4.390      0.000 
    V4$1              -0.904      0.075    -12.004      0.000 
    V4$2              -0.337      0.052     -6.457      0.000 
 
 Variances 
    F                  1.000      0.000    999.000    999.000 
 
 Residual Variances 
    V1                 0.500      0.000    999.000    999.000 
    V2                 0.400      0.000    999.000    999.000 
    V3                 0.450      0.000    999.000    999.000 
    V4                 0.550      0.000    999.000    999.000 
 
Group MALE 
 
 F        BY 
    V1                 0.640      0.062     10.271      0.000 
    V2                 0.679      0.076      8.901      0.000 
    V3                 0.970      0.121      8.004      0.000 
    V4                 0.651      0.067      9.729      0.000 
 
 Means 
    F                 -0.663      0.083     -8.019      0.000 
 
 Thresholds 
    V1$1              -0.858      0.070    -12.335      0.000 
    V1$2              -0.080      0.047     -1.716      0.086 
    V2$1              -0.798      0.078    -10.200      0.000 
    V2$2              -0.290      0.051     -5.702      0.000 
    V3$1              -0.708      0.090     -7.888      0.000 
    V3$2               0.299      0.068      4.390      0.000 
    V4$1              -0.904      0.075    -12.004      0.000 
    V4$2              -0.337      0.052     -6.457      0.000 
 
 Variances 
    F                  1.179      0.200      5.892      0.000 
 
 Residual Variances 
    V1                 0.396      0.091      4.368      0.000 
    V2                 0.262      0.076      3.465      0.001 
    V3                 0.941      0.266      3.535      0.000 
    V4                 0.519      0.130      4.005      0.000 
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Step 6 towards MI: strict factorial invariance.  
 
6) In step 6, finally, we constrain the residual variances to be equal over 
the groups. Thus we estimate the thresholds , the factor models 1 =  t+ 
 and 2 = 2 t+ , and the means model 2 = . Note that above we 
required diag(11

t+ )=diag(). However, in the present model,  is fixed 
and constrained to be equal over the groups. This is the theta 
parameterisation. 
 
In terms of the usual taxonomy, this model is the strict factorial 
invariance model. This model represents full measurement invariance.  
 
Mplus in put Step 6 Theta parameterization 
 
Title: 
 model6 
 Multiple-group discrete factor analysis 
    1-factor CFA on 4 items 
Data:  
 file is ddat2;       
Variable:  
 names are v1 v2 v3 v4 sex;   
 usev are v1 v2 v3 v4; 
    categorical are v1 v2 v3 v4;  
    grouping = sex (1 = female 2= male)                                                     
Analysis:   
! type =  meanstructure; 
    parameterization = theta; 
Model: 
    f by v1*.5 v2*.5 v3*.5 v4*.5; 
    f@1; 
    [f@0]; 
    [v1$1 v1$2]; 
    [v2$1 v2$2]; 
    [v3$1 v3$2]; 
    [v4$1 v4$2]; 
Model female: 
    v1@0.51 v2@0.64 v3@0.75 v4@0.84; 
Model male: 
    f*1; 
    [f*0]; 
    v1@0.51 v2@0.64 v3@0.75 v4@0.84; 
Output: 
    standardized tech1 tech2;  
 
Output 
 
TESTS OF MODEL FIT 
 
Chi-Square Test of Model Fit 
 
          Value                             14.114* 
          Degrees of Freedom                    14 
          P-Value                           0.4413 
 
 
Group FEMALE 
 
 F        BY 
    V1                 0.693      0.060     11.534      0.000 
    V2                 0.952      0.093     10.234      0.000 
    V3                 1.019      0.089     11.403      0.000 
    V4                 0.826      0.075     10.979      0.000 
 
 Means 
    F                  0.000      0.000    999.000    999.000 
 
 Thresholds 
    V1$1              -0.909      0.062    -14.700      0.000 
    V1$2              -0.073      0.049     -1.484      0.138 
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    V2$1              -1.096      0.088    -12.432      0.000 
    V2$2              -0.383      0.069     -5.547      0.000 
    V3$1              -0.759      0.078     -9.685      0.000 
    V3$2               0.312      0.068      4.573      0.000 
    V4$1              -1.129      0.077    -14.609      0.000 
    V4$2              -0.414      0.064     -6.445      0.000 
 
 Variances 
    F                  1.000      0.000    999.000    999.000 
 
 Residual Variances 
    V1                 0.510      0.000    999.000    999.000 
    V2                 0.640      0.000    999.000    999.000 
    V3                 0.750      0.000    999.000    999.000 
    V4                 0.840      0.000    999.000    999.000 
 
Group MALE 
 
 F        BY 
    V1                 0.693      0.060     11.534      0.000 
    V2                 0.952      0.093     10.234      0.000 
    V3                 1.019      0.089     11.403      0.000 
    V4                 0.826      0.075     10.979      0.000 
 
 Means 
    F                 -0.640      0.082     -7.855      0.000 
 
 Thresholds 
    V1$1              -0.909      0.062    -14.700      0.000 
    V1$2              -0.073      0.049     -1.484      0.138 
    V2$1              -1.096      0.088    -12.432      0.000 
    V2$2              -0.383      0.069     -5.547      0.000 
    V3$1              -0.759      0.078     -9.685      0.000 
    V3$2               0.312      0.068      4.573      0.000 
    V4$1              -1.129      0.077    -14.609      0.000 
    V4$2              -0.414      0.064     -6.445      0.000 
 
 Variances 
    F                  1.179      0.187      6.309      0.000 
 
 Residual Variances 
    V1                 0.510      0.000    999.000    999.000 
    V2                 0.640      0.000    999.000    999.000 
    V3                 0.750      0.000    999.000    999.000 
    V4                 0.840      0.000    999.000    999.000 
 
 
We have now estimated in group 1 the polychoric correlation matrix and the 
thresholds, the latent indicator means are fixed to zero:  
 
1 = 1t+ ) and t1 (1=1) and mean(y*) = 0.  
 
We have estimated in group 2 the polychoric covariance matrix and the 
latent indicator means:  
 
2 = 2t+ ) and thresholds t2 equal to t1 and mean(y*) = 2 
 
The differences between the groups in the correlation matrices and the 
means of the latent indicators are due solely to differences in the common 
factor distribution (N(0,1) in group 1 and N(2,2)= N(-0.640,1.179) in 
group 2. The tresholds which connect the latent indicators to the observed 
ordinal indicators are equal over the groups.  
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Just a check. 
 
Here finally is the input for the analyses with all parameters fixed to 
their true values, using the delta parametrization. This is just a check. 
 
true values from the R script: 
 
> al2 
     [,1] 
[1,] -0.5 
> ps1 
     [,1] 
[1,]    1 
> ps2 
     [,1] 
[1,]    1 
> al1 
     [,1] 
[1,]    0 
> ly 
          [,1] 
[1,] 0.7071068 
[2,] 0.7745967 
[3,] 0.7416198 
[4,] 0.6708204 
>  
>  
> thresholds 
     [,1]       [,2]       [,3] [,4] 
[1,] -Inf -0.8416212  0.0000000  Inf 
[2,] -Inf -0.8416212 -0.2533471  Inf 
[3,] -Inf -0.5244005  0.2533471  Inf 
[4

 
,] -Inf -0.8416212 -0.2533471  Inf 

Mplus input: true values all fixed. 
 
Title: 
 model check fixed to true values 
 Multiple-group discrete analysis 
    1-factor CFA on 4 items 
Data:  
 file is ddat2;       
Variable:  
 names are v1 v2 v3 v4 sex;   
 usev are v1 v2 v3 v4; 
    categorical are v1 v2 v3 v4;  
    grouping = sex (1 = female 2= male)                                                    
Analysis:   
! type =  meanstructure; 
    parameterization = theta; 
Model: 
    f by v1@.7071068 v2@.7745969 v3@.7416198 v4@.6708204; 
    f@1; 
    [f@0]; 
    [v1$1@-0.8416212   v1$2@0.0000000  ]; 
    [v2$1@-0.8416212   v2$2@-0.2533471]; 
    [v3$1@-0.5244005   v3$2@0.2533471]; 
    [v4$1@-0.8416212   v4$2@-0.2533471]; 
Model female: 
    v1@0.5 v2@0.4 v3@0.45 v4@0.55; 
Model male: 
    f@1; 
    [f@-.5]; 
    v1@0.5 v2@0.4 v3@0.45 v4@0.55; 
Output: 
    standardized tech1 tech2; 
 
 
Th
 
e model should fit the data well! 

Chi-Square Test of Model Fit 
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          Value                             28.952* 
          Degrees of Freedom                    28 
          P-Value                           0.4150 
 
CFI/TLI 
 
          CFI                                0.999 
          TLI                                1.000 
 
Number of Free Parameters                        0 
 
RMSEA (Root Mean Square Error Of Approximation) 
 
          Estimate                           0.008 
 
 
  
Assignment:  
 
Using the R code given above (page 4-5), simulate a dataset with parameter 
values of your own choice, and fit the models in  Mplus as described above. 
In each analysis, state the meaning of the model, list the parameter 
estimates, and state what they mean.    
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Lecture note VI. 
 
Reference. 
 
Muthen, B. and Asparouhov, T. (2002). Latent variable analysis with categorical outcomes: 
multi-group and growthmodeling in Mplus. Mplus Web Notes, no. 4  .
 [an clear account of ordinal factor analysis in Mplus]. 
 
The aims of these final lecture notes are the following:  
 
1) To return to the ordinal factor model with the specific aim of 
explaining, in more detail, the delta and theta parameterizations in Mplus. 
 
2) To return to the original definition of measurement invariance to 
outline how the definition gives to a highly constrained multigroup ordinal 
factor model (note that you have already fitted this model). 
 
3) To briefly discuss other measurement invariance in other measurement 
models, and finally some remaining details. 
 
1.0: Delta parameterization, theta parameterization. 
We return to the delta and theta parameterizations of the ordinal factor 
model in Mplus. As before we consider a two group model. Again we assume 
that the observed indicators in the factor model are ordinal (y), and that 
underlying each ordinal indicator there is a latent continuous indicator 
(y*). The latent continuous variance satisfy:  
 

yi* =  + i + i.  
 
As discussed previously, the observed indicators are related to the latent 
indicators as follows. In the case of C categories, we have y=c, if 
tc<y*≤tc+1, where c=0,1,...,C-1, and t0=-inf; tC=+inf. The parameters t1 and 
t2 are thresholds, i.e., points on the normal distribution, i.e., the 
distribution of y*. For instance in the case of C=3, we have 
 
y=0 if t0<y*≤t1, or y=0 if -∞<y*≤t1 
y=1 if t1<y*≤t2, 
y=2 if t2<y*<t3, or y=2 if t2<y*≤+∞ 
 
The means and covariance matrix of the underlying indicators y* is modeled 
as follows (in a given group k): 
 

k = kk+ k 
k = kkkk

t+ k)kt 
 
The latent underlying indicators are assumed to be multivariate normally 

distributed: y* ~ N(k, k). 
 As they are latent, we have to impose some scale on the y* to arrive 

at identified models. To this end we shall assume that k is zero and k is 
a correlation matrix. So that we impose y* ~ N(k, k), with diag(k) = 

diag(I) (unit variances). In fitting this model, the matrix k cannot be 
considered to be free. In the case of a single factor model, we have 

var(yj*) = j1j1 + 2ej = 1, where 2ej is the j-th diagonal element of k. 
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Given appropriate scaling () we can estimate the factor loading. But 

given the factor loading we already know the value of 2ej: 2ej = 1 - 
j1j1. More generally we have diag() diag() - diag(t). This forms 

the basis of the delta parameterization. In a single group analysis, k=, 
k=and k = kkkk

t+ k)kt is a correlation matrix.  
 
Example output (4 three points scales) 
 
                   Estimates     S.E.   
 F1       BY 

    V1                 0.681    0.043   factor loadings 
    V2                 0.716    0.045   
    V3                 0.827    0.038   
    V4                 0.661    0.046   
 
 Means 

    F1                 0.000    0.000   factor mean 
 
 Thresholds 
    V1$1              -0.885    0.065   t11 threshold 1,1 
    V1$2              -0.055    0.056   t12 threshold 1,2 
    V2$1              -0.885    0.065   t21  etc.  
    V2$2              -0.316    0.057   t22 
    V3$1              -0.601    0.060   t31 
    V3$2               0.238    0.057   t32 
    V4$1              -0.915    0.065   t41 
    V4$2              -0.337    0.057   t42 
 
 Variances 

    F1                 1.000    0.000    factor variance 
 
 Scales 

    V1                 1.000    0.000    diag() delta matrix  
    V2                 1.000    0.000    
    V3                 1.000    0.000    
    V4                 1.000    0.000    
 
R-SQUARE 
 
    Observed  Residual 
    Variable  Variance  R-Square 
      residuals are not free parameters: 
    V1           0.537     0.463  .537 = 1-.681*1*.681  
    V2           0.488     0.512  .488 = 1-.716*1*.716 
    V3           0.317     0.683  .317 = 1-.827*1*.827 
    V4           0.563     0.437  .563 = 1-.563*1*.653 

 
Note that the residual variances are given, but they are a function of the 
factor loadings. The chi2(2) for this model is 1.603.  

 An alternative method of treating the elements of  is by fixing them 

to arbitrary values, say diag(k) = [.5,.5,.5,.5]. This parameterization is 

called the theta parameterization. In a single group analysis again, k = , 
and k = kkkk

t+ k)kt is a correlation matrix. But now k are included 

and are chosen to ensure that k is indeed a correlation matrix, i.e., 
diag(kdiagkkk

t+ k)-1/2.  
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example output 
 
                   Estimates     S.E.   
 F1       BY 
    V1                 0.657    0.077   
    V2                 0.725    0.094   
    V3                 1.039    0.149   
    V4                 0.623    0.077   
 
 Means 
    F1                 0.000    0.000   
 
 Thresholds 
    V1$1              -0.854    0.071   
    V1$2              -0.053    0.054   
    V2$1              -0.896    0.082   
    V2$2              -0.320    0.061   
    V3$1              -0.755    0.098   
    V3$2               0.299    0.075   
    V4$1              -0.863    0.071   
    V4$2              -0.318    0.056   
 
 Variances 
    F1                 1.000    0.000   
 
 Residual Variances 

    V1                 0.500    0.000    fixed diagonal elements of  
    V2                 0.500    0.000   
    V3                 0.500    0.000   
    V4                 0.500    0.000   
 
 
R-SQUARE 
 
    Observed   Scale 
    Variable   Factors  R-Square 
 

    V1           1.036     0.463    (scale factors) 
    V2           0.988     0.512 
    V3           0.796     0.683 
    V4           1.061     0.437 
 
We can derive 1.036 as 1/sqrt(.657*1*.657+.5), or in matrix terms using R: 
 
> ly=matrix(c(.657,.725,1.039,.623),4,1) 
> te=diag(.5,4) 
> s=ly%*%t(ly)+te 
> delta=diag(1/(sqrt(diag(s)))) 
> diag(delta) 
[1] 1.036 0.988 0.796 1.061 

 
The chi2(2)=1.603, as expected given that these parameterizations produce 

equivalent results. Note that k = kkkk
tkt+ kkkt in the theta 

parameterization must equal k = kkk
t+ k in the delta parameterization, 

so (in R): 
 

residual variances (delta%*%te%*%delta): kkkt  
[1,] 0.5366828 0.0000000 0.0000000 0.0000000 
[2,] 0.0000000 0.4875076 0.0000000 0.0000000 
[3,] 0.0000000 0.0000000 0.3165517 0.0000000 
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[4,] 0.0000000 0.0000000 0.0000000 0.5629813 
 

delta parameterization factor loadings (delta%*%ly): kk 
[1,] 0.6806741 
[2,] 0.7158857 
[3,] 0.8267093 
[4,] 0.6610739 

  
These results equal those obtained in the delta parameterization.  
 
1.1: The two-group models: the six steps towards measurement invariance. 
I briefly revisit the models that were discussed in lecture notes III. We 
again assume that the factor model holds for the latent continuous 
indicators y*, and we specifically consider the single factor model1.  
 

k = kk+ k 
k = kkkk

t+ k)kt 
 
Step 1: In step one we merely estimated the polychoric correlations and the 
thresholds of the 4 items simultaneously in the two groups. We used the 

delta parameterization, so diag() diag() - diag(t). We obtained the 

thresholds (tk) and the polychoric correlations (k) in each group. We 
consider these as simple summary statistics in each group.  
 
Step 2: In step two we imposed the constraint that the thresholds are equal 
over the groups (t1 = t2). With this constraint, we can estimate the 
polychoric correlation matrix in one group, and the polychoric covariance 
matrix in the other group. In addition, we fixed the means of y* to zero in 
the first group, and estimated them freely in the second group. In this 

analysis we again used the delta parameterization. But while 1 is fixed to 

an identity matrix in group 1, 1 is freely estimated in group 2 (see 
Figure 1-1).  
 

1 = 0 

1 = 2 (standardized)


2 = 2 
2 = 222t 
 
This model fitted exactly as well as the step 1 model. This is however is 
specific to three point scale item. With fewer than 3 response categories 
this model is not identified, with more that 3 categories, the model 
represents a testable (df>0) proposition, and therefore may be rejected (in 
term of poor fit).   
 

                                                 
1 Note that the generalization to more than two groups or more than two common factors should 
not pose any problems.  



Lecture notes IV: Measurement Invariance (RM20; Jelte Wicherts).  5

-4 -2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

-4 -2 0 2 4

0.
00

0.
10

0.
20

0.
30

-4 -2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

-4 -2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

 
Figure 1.1. Top left and bottom left: same thresholds in two populations, 
but the populations differ with respect to the distribution of y*, the 
continuous indicators (m=0,s=1 in group 1; m=-1, s=1.22 in group 2). Top 
right and bottom right: y* standardized in both group (m=0, s=1). The 
thresholds in bottom right have changed to ensure that the response 
frequencies remain the same. That is, the probabilities of responses 0,1, 
and 2 are the same in bottom right and bottom left.  
 
Step 3: In step three, we retain the equality of the thresholds, and fitted 
the otherwise unconstrained factor model within the groups. Note that we 

can convey the model as: 1 = 11 1
t+ 1, and 2 = 22 2

t+ 2, but using 
the delta parameterization we actually fit the model as follows: 


1 = [11 1

t+ 1], 1 = 1 (standard scaling) 

2 = 2[22 2
t+ 2]2, 2 = 1 (standard scaling) 

 

where, in both groups k = diag() - diag(kkk
t). In this analysis the 

means in group 1 are 1 = 0 and in group 2, 2 = 2, as before. 
 
Step 4: In step four, we retain the equality of the thresholds, and fitted 
the otherwise factor model subject to equal factor loadings. Using the 
delta parameterization we actually fit the model as follows: 


1 = [1 t+ 1], 1 = 1 (standard scaling) 

2 = 2[2 t+ 2]2, 2 free parameter  
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where, in both groups k = diag() - diag(kkk
t). In this analysis the 

means in group 1 are 1 = 0 and in group 2, 2 = 2, as before. 
 
Step 5: In step five, we retain the equality of the thresholds, and fitted 
the otherwise factor model subject to equal factor loadings, and structured 
mean. Using the delta parameterization we actually fit the model as 
follows: 


1 = [1 t+ 1], 1 = 1   (standard scaling) 

2 = 2[2 t+ 2]2, 2 free parameter  
 

1 = 0 

2 = 2, 
 

where, in both groups k = diag() - diag(kkk
t). In this analysis the 

means in group 1 are 1 = 0 and in group 2, 2 = 2, as before. You may 

wonder why we do not fit 2 = + 2, as in the continuous indicator case. 
This is not possible because of the factor that the continuous indicators 

are unobserved. That is, the parametersare not identified. 
 
Step 6: In step six we switched to the theta parameterization. We did this 

because the delta parameterization k = diag() - diag(kt) does not let 

itself to the imposition of equality constraints on k. This is because the 

matrix kt is not necessarily equal over the groups (1=1, 2 is freely 

estimated, and it is not likely that 1=1). So we fix the parameters in k 
to equal sensible value. We now fit the model: 


1 = 1[1 t+ ]1, 1 = 1   (standard scaling) 

2 = 2[2 t+ ]2, 2 free parameter  
 

1 = 0 

2 = 22, 
 
In this final model the correlation matrices of y* in the two group, i.e., 

2 and 2, differ only because of a difference in factor variance, 1 vs. 

2. Similarly, 1 and 2 differ only as a function of the factor mean (2). 

The values in 1 and 2 differ, but the difference is a function of 1 vs. 

2: diag(kdiagkt+ )-1/2. 
 
2.0 Measurement invariance in the multigroup ordinal factor model 
In lecture notes I, we know that:  
 

The distribution of the observed data conditional on group is given 
(i.e., multivariate normality). Within a given group k, we consider 

the conditional distribution of yki given k=*, f(yki|*): 
 

yki|* ~ N(k + k*, k),        
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So f(yki|*) is again a multivariate normal distribution, with the 
specific covariance matrix and mean vector. Specifically, the 
conditional means and covariance matrix within group k are: 
 

E[yk|ki = *] =  k + k*, and k|* = k. 
 
The definition of MI in the linear factor model requires the 
explicit conditioning on group: 
 

Definition of MI:  f(yi|*) = f(yi|* & group=k) 
 
In the case of the ordinal factor model, we can consider the same 
definition of measurement invariance. Consider a single continuous 

underlying item y* and denote the fixed value of * as • (to avoid 
notational mix-up): 
 

[yk*|•] ~ N(k + k•, ek), 
 

The probability that yk*|• is greater than or equal to some point p 
equals: 
 

prob([yk*≥p|•]) = 1-(p-(k + k•)/ek) 
 

Note that b-(k + k•)/ek) is just a standardization to express the value 
b on the standard normal scale2. This allows us to evaluate the probability 

as (z), i.e., using the cumulative standard normal distributions from -∞ 

to z. So 1-(z) is the cumulative standard normal distribution from z to 

+∞, i.e., prob(z≥b) = 1-(z).  
 Now consider the ordinal item y. For the single item in group k, the 
condition probability of choosing response category c or great, conditional 

on a fixed value of , •, equals: 
 

(yk≥c|*) = 1-((tkc-(k+k*))/ek2) = 1-((tkc-k*)/ke2)  
 

Note that (tkc-k*)/ek2 again expresses the threshold tkc on the standard 

normal scale. The intercept k is fixed to zero for reasons of 
identification. The intercept are not identified. Now clearly  
 

F(y≥c|*) = F(y≥c|* & group=k) 
 

if and only if tkc= tc, ek2= e2, and k =. Hence returning to the 
multigroup model, we define the multigroup ordinal factor model subject to 
measurement invariance as one in which  
 

k = k 

k = kkt+ )kt, 
 

                                                 
2 That is if y~N(m,s), and y is standardized z=(m-y)/s, then z~N(0,1). 
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must hold. 
 
3.0 Measurement invariance in other measurement models, say the latent 
profile model. 
The definition of MI with respect to group (k=1...K) is: 
 

Definition of MI:  f(yi|*) = f(yi|* & group=k)   eq 1-8. 
 

for all values of * and all values of k. We have seen above that this 
definition can be applied readily in the linear factor model and in the 
ordinal factor model. It is important to realize that it applies equally 
well to any measurement model, i.e., any model in which observed indicators 
of a latent variable are related to the latent variable by means of a 
explicit function. In the linear factor model, this function is the linear 
regression function. For instance, consider the following model simple 
model. We assume that the latent variable is a nominal two class variable 
(depressed vs. not-depressed; addicted vs. not-addicted; liberal vs. 
conservative, etc.). The distribution of the latent variable is: 
 

~Bernoulli(), i.e., prob(=j) = (1-j)*j,  
 

where j=0,1. So prob(=0) = (1-0)*0 =  and prob(=1) = (1-1)*(1-)1 = 

(1-).The latent variable is a dichotomy, i.e. a discrete (nominal) latent 
variable that can assume just two values (two latent classes). Now we 
assume that we have continuous indicators of the latent classes, y, that 
are distributed as follows: 
 

y|=j ~ N(j,j),  
 

where the conditional covariance matrix i is diagonal. This assumption can 
be viewed as the psychometric assumption of local independence: if you 
condition on the common underlying latent trait (common factor), then the 
observed item responses are uncorrelated (as we have already seen in the 

factor model yki|* ~ N(k + k*, k), where k is diagonal).  
 This model is called a latent profile model. In its more general form 
the number of latent classes in not restricted to two. Here we consider two 
classes just to ease presentation. Now suppose that we want to establish 
measurement invariance of the indicators y with respect to, say, sex. We 

already have f(y|*), namely defined as y|=j ~ N(j,j). We require that 

f(y|*)=f(yi|* & group=k) so this implies that  
 

f(y|=j & group=male) = f(y|=j & group=female), 
 

or simply that the conditional distributions be equal over sex. y|=j ~ 

N(j,j) must hold in the male and female sample. Note that this does not 
mean that the sizes of the latent classes should be equal. That is, the 
latent distribution may differ over the groups (i.e., sex):  
 

k~Bernoulli(k), prob(k=j) = k (1-j)* kj,  
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where k denotes group (sex). Of course this is no different from the 
observation that subject to measurement invariance with respect to groups, 
the common factor distribution may differ over group.  
 The latent profile model is a model in which the latent variable of 
interest is discrete (nominal), and the observed indicators are continuous. 
As such it fits in our taxonomy of measurement models.  
 
Taxonomy of psychometric models.  
 Latent variable / trait / common factor 

 discrete continuous 
discrete latent class 

model 
IRT: Rasch, 
Birmbaum, 
Discrete factor 
model  

 
 
 
observed 
indicators 

continuous latent profile 
model 

linear factor 
model 

  
 
Generally speaking, in each of the models in this taxonomy, the define 1) a 
distribution function of the latent variable; 2) a function relating the 
observed indicators to the latent variable; 3) the distribution of the 
observed indicators given a fixed value on the latent variable. The 
constraints associated with measurement invariance with respect to a given 
variable x, pertain only to the conditional distribution of the indicators 
given the latent variables. Measurement invariance implies that the 
parameters of this conditional distribution be invariance for all values of 
the latent variable and for all values of the variable x (with respect to 
which measurement invariance is defined).   
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