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Multivariate analysis

Dorret I. Boomsma, Sanja Franic, Michel Nivard

Factor analysis (FA)
Measurement invariance (MI)

Structural equation models (SEM), e.g. twin
models, longitudinal
Principal components analysis (PCA) &
cholesky decompostion
Genetic structural equation modeling



Multivariate Analysis

*Yes: techniques used to analyze multivariate
data that have been collected in non-
experimental designs and that often involve
latent constructs that are not directly observed.

* No: MANOVA, Regression, Discriminant
analysis (experimental designs)



EXERCISES

1. Factor model IQ data (4 subtests): compare
saturated & one factor model (Michel)

2. Use FA model to examine Measurement
Invariance (Ml): does an |Q test (continuous data)
measure the same trait in men and women?

(Sanja)

3. Use FA model to examine MI for Attention
Problems (ordinal data) (Michel)



Example: depression

| feel lonely

| feel confused or in a fog

| cry a lot

| worry about my future.

| am afraid | might think or do something bad

| feel that | have to be perfect

| feel that no one loves me

| feel worthless or inferior

| am nervous or tense

| lack self confidence | am too fearful or anxious
| feel too guilty

| am self-conscious or easily embarrassed

| am unhappy, sad or depressed

| worry a lot

| am too concerned about how I look

| worry about my relations with the opposite sex

Is there a latent
construct that
underlies the
observed variables
(items) and that
accounts for the
Inter-correlations
between
variables?




Factor analysis

Aims at accounting for covariances among observed
variables / traits in terms of a smaller number of
latent variates or common factors.

Factor Model: y = A f + e, where

y = observed variable(s) such as depression items
f = (unobserved) factor score(s) such as depression
e = unique factor / error

A = matrix of factor loadings



Factor analysis: Regression of observed
variables (y) on latent variables (1)

Assume that the
variance of the
latent factor is 1.

What is the
correlation between
the first and second
item?

One factor model: the latent factor could be depression
and y, ..y, the items that assess depressive symptoms.



Factor analysis
Factor Model: y = A f+ e,
With covariance matrix: X =AVY A '+ 0O

where X = covariance matrix (sigma)

A = matrix of factor loadings (lambda)

Y = correlation matrix of factor scores (psi)

® = (diagonal) matrix of unique variances (theta)

To estimate factor loadings we do not need to know the
individual factor scores, as the expectation for £ only consists
of A, ¥, and @.

*C. Spearman (1904): General intelligence, objectively determined and measured.
American Journal of Psychology, 201-293
L.L. Thurstone (1947): Multiple Factor Analysis, University of Chicago Press



Factor analysis

Factor Model: y = A f+ e,

y is a value (observed) belonging to an individual.
Likewise, f and e are values (unobserved factor scores / errors)
that characterize an individual.

Covariance matrix: X =AY A'+ 0
>, A, ,0 are population parameters [but can be different for

e.g. men and women, or children and adults], they are
estimated from the data.



Factor scores are not observed, but can be estimated

Estimates of factor loadings and
unique variances can be used to
construct individual factor scores:
n =A’P, where A is a matrix with
weights that 1s constant across
subjects, depending on the factor
loadings and the unique variances.

* R.P. McDonald, E.J. Burr (1967): A

comparison of four methods of constructing
factor scores. Psychometrika, 381-401

* W.E. Saris, M. dePyjper, J. Mulder (1978):
Optimal procedures for estimation of factor

scores. Sociological Methods & Research,
85-106









Factor analysis
Covariance matrix: =AY A'+ 0
>(pxp) = covariance matrix: p variables
A(gxp) = matrix of factor loadings: q factors (one or more)

Y(gxq) = correlation matrix of factor scores: the diagonal scales
the variances of the latent factors; the off-diagonal elements
specify correlations among latent variables

O(pxp) = (diagonal) matrix of unique variances.

If there are non-zero off-diagonal elements, then measurement
errors might be correlated



Factor analysis

Factor Model: y = A f+ e,
Covariance matrix: X =AY A'+ 0O

Because the latent factors do not have a “natural” scale, the
user needs to scale them. For example:

fY=1L2X=AA"+0

» factors are standardized to have unit variance
« factors are independent

Another way to scale the latent factors would be to
constrain one factor loading (so that latent factors have the
same scale of measurement as the observed variable).



Confirmatory factor analysis

« a model 1s constructed in advance

e that specifies the number of (latent) factors

e that specifies the pattern of loadings on the factors

« that specifies the pattern of unique variances /measurement errors
e measurement errors may be correlated

» factor loadings can be constrained to be zero (or any other value)
e covariances among latent factors can be estimated or constrained
» multiple group analysis 1s possible

We can TEST if these constraints are consistent with the data.



Distinctions between exploratory (SPSS/SAS)
and confirmatory factor analysis (LISREL/Mx)

In exploratory factor analysis:

* no model that specifies the number of latent factors

* no hypotheses about factor loadings (usually all variables load
on all factors, factor loadings cannot be constrained)

* no hypotheses about interfactor correlations (either no
correlations or all factors are correlated)

e unique factors must be uncorrelated

» all observed variables must have specific variances

* no multiple group analysis possible

 under-identification of parameters









Two common factor model

yii, 1=1...P tests or items, j=1...N subjects
Vi = Ait Nij + Az M2 T €
A matrix of factor loadings:

A1 A
A1 A
Ap1  Ap2

Factor loadings are invariant across subjects

Factor scores are subject specific




Identification

The factor model in which all variables load
on all (2 or more) common factors 1s not
1dentified. It 1s not possible 1n the present

example to estimate all 6x2 loadings.



Identifying constraints

SPSS will produce a factor loading matrix with
6x2 loadings.

Spss automatically imposes the 1identifying
constraint similar to:

A'®'A is diagonal,

Where A is the matrix of factor loadings and @ 1s the
diagonal covariance matrix of the residuals (e1)).



Other 1dentifying constraint are possible

3 factors 2 factors
Ay O 0 A1 O

}\“21 }Lzz 0 }\~21 }\“22
A1 Az Asg A1 A3
Ap1 Apy  Aps Ap1 App

Where you fix the zero 1s not important! Identical solutions.



Identical solutions, but different factor
loadings! How to interpret?

Given more than 1 factor, raw factor loadings
are not interpreted. They are usually subjected
to a transformation called rotation:

A* =AM

M 1is the rotation matrix, chosen to maximize
“Interpretability” of loadings



Rotation

Rotation increases ease of interpretation by
making factor loading large or small.

The common factors can then be interpreted in
terms of the observed variables that load on them.

Varimax — max/min factor loadings but keep common factors
uncorrelated.

Promax — max/min factor loadings, but allow common factors
to correlate.



Structural equation models (SEM)

Sometimes X = A £+ e 1s referred to as the
measurement model.

The part of the model that specifies relations
among latent factors 1s referred to as the
covariance structure model, or the structural
equation model.






Practical:
Fit a saturated and a 1-factor model.

 estimate the means and covariances of 4 1Q
subscales. (Saturated model)

* Then we will fit a single factor model:

— The expected covariance model 1s:
¢« Cov(X,) =2 = APAL+ @

— The expected means model is:
« E(X)= n= 1+Ax



Practical:
Fit a saturated and a 1-factor model.

We start by estimating the saturated Model.

In this model all means and (co) variances are estimated
freely

This model basically results in an covariance matrix and an
means matrix of the data

Means:
— meanSat <- mxMatrix(type="Full”, nrow=1 , ncol=4,
labels=c("m1","m2","m3","m4"), values=10,free=T,name="M")
Covariances:

— covSat <- mxMatrix(type="Symm", nrow=4, ncol=4, free=T,
values=startcov, name="cov"



Practical:
Fit a saturated and a 1-factor model.

You will be provided with all matrices, objects and code
needed to fit the 1-factor model.

You will have to write your own expression for the
expected covariance

Cov(X) = AYAH 0O

facLoadings%*% facVariances %*% t(facLoadings) + resVariances

oooooooooooooo

name="expCov" )




Measurement invariance
in the linear factor model: practical



Measurement invariance
in the linear factor model: practical

|

model that relates a continuous latent variable to continuous indicators




Linear factor model




Linear factor model

IQ test (e.g. WAIS):

vci -- Verbal Comprehension Index
poi -- Perceptual Organization Index
wmi -- Working Memory Index

psi -- Processing Speed Index



Linear factor model

Do males, on average ,score differently than the females?

Men score significantly higher: MANOVA -> p<.01

Does this imply that women have a lower level of g?




Linear factor model

Do males, on average ,score differently than the females?

Men score significantly higher: MANOVA -> p<.01

Does this imply that women have a lower level of g?

Not necessarily.

It depends on whether the test measures the same
construct in males as it does in females.



Linear factor model

Conditional distributions in 2 groups (conditional on a
given value of n (n*)):

Yail N~ N (T, + Ayn%, ©y)
Yzl N° ~ N (T, + A;n%, ©,)

MI requires these distributions to be equal.



Linear factor model

Z2=AWYAt+0

Conditional distributions in 2 groups (conditional on a
given value of n (n*)):

Yail N~ N (T, + Ayn%, ©y)
Yzl N° ~ N (T, + A;n%, ©,)

MI requires these distributions to be equal.



Linear factor model

Z2=AWYAt+0

Conditional distributions in 2 groups (conditional on a
given value of n (n*)):

Yil n° ~N(T, + A;{n%, ©y)
Yzl N*~ N (T, + A;n% ©,)

MI requires these distributions to be equal.



Linear factor model

Z2=AWYAt+0

Conditional distributions in 2 groups (conditional on a
given value of n (n*)):

Vil n* ~ N (T, + Ajn%, ©y)
Yzl N*~ N (T, + A;n% ©,)

MI requires these distributions to be equal.



Linear factor model

Z2=AWYAt+0

Conditional distributions in 2 groups (conditional on a
given value of n (n*)):

Yil "~ N(Ty + A;n%, ©,)
Yzl N° ~ N (T, + A;n%, ©,)

MI requires these distributions to be equal.



Linear factor model

Z2=AWYAt+0

Conditional distributions in 2 groups (conditional on a
given value of n (n*)):

Yil N~ N(Ty + A;n*, O,)
Yzl N° ~ N (T, + A;n%, ©,)

MI requires these distributions to be equal.



Linear factor model

Z2=A0A*+0

Conditional distributions in 2 groups (conditional on a
given value of n (n*)):

Yil N~ N(Ty + A;n*, O,)
Yzl N° ~ N (T, + A;n%, ©,)

MI requires these distributions to be equal.



Linear factor model

Z2=A0A*+0

=0

Conditional distributions in 2 groups (conditional on a
given value of n (n*)):

Yil N~ N(Ty + A;n*, O,)
Yzl N° ~ N (T, + A;n%, ©,)

MI requires these distributions to be equal.



Linear factor model

Z2=A0A*+0

=0

Elyln*]=T+An"

Conditional distributions in 2 groups (conditional on a
given value of n (n*)):

Yil N~ N(Ty + A;n*, O,)
Yzl N° ~ N (T, + A;n%, ©,)

MI requires these distributions to be equal.



Linear factor model

Z2=A0A*+0
=0

Elyln*]=T+An"

Conditional distributions in 2 groups (conditional on a
given value of n (n*)):

Yil N~ N(Ty + A;n*, O,)
Yzl N° ~ N (T, + A;n%, ©,)

MI requires these distributions to be equal.



Linear factor model

Z2=A0A*+0
=0

Elyln*]=T+An"

Conditional distributions in 2 groups (conditional on a
given value of n (n*)):

Yil N~ N(Ty + A;n*, O,) -—
Yzl N° ~ N (T, + A;n%, ©,)

MI requires these distributions to be equal.



Linear factor model

Z2=A0A*+0
=0

Elyln*]=T+An"

Conditional distributions in 2 groups (conditional on a
given value of n (n*)):

Yil N~ N(Ty + A;n*, O,) -—
Yzl N° ~ N (T, + A;n%, ©,)

MI requires these distributions to be equal.



Linear factor model

Z2=A0A*+0
=0

Elyln*]=T+An"

Conditional distributions in 2 groups (conditional on a
given value of n (n*)):

Yul n" ~N(T, + A;n%, O,)
Yal N° ~ N (T, + AN, ©,)
MI requires these distributions to be equal.

This is the case if and only if:



Linear factor model

Z2=A0A*+0
=0

Elyln*]=T+An"

Conditional distributions in 2 groups (conditional on a
given value of n (n*)):

Yul n" ~N(T, + A;n%, O,)
Yal N° ~ N (T, + AN, ©,)
MI requires these distributions to be equal.

This is the case if and only if:

T,=T,
AN =N\,
©,=0,

The test is MI with respect to group if the observed
group differences in summary statistics (means and
covariance matrix) are attributable to differences in the
means and variance of the latent trait or common factor
(Wkand ak).

-> if the test measures the same latent variable in the
two groups, then that latent variable should be the only
source of differences between the groups.



Linear factor model

gender

Measurement
invariance




Linear factor model

gender

Lack of
measurement
invariance




Establishing MI: testing a number of increasingly restrictive models

MODEL 1: Configural invariance -> in the 2 groups the same indicators load on the same factors
(i.e., the pattern or configuration of A and © are the same over groups)

Group 1: males Group 2: females




Establishing MI: testing a number of increasingly restrictive models

MODEL 2: Metric invariance -> equal factor loadings over the groups

Group 1: males Group 2: females




Establishing MI: testing a number of increasingly restrictive models

MODEL 3: Strong factorial invariance -> equal factor loadings and intercepts over the groups

Group 1: males Group 2: females




Establishing MI: testing a number of increasingly restrictive models

MODEL 4: Strict factorial invariance -> equal factor loadings, intercepts and residual variances over the groups

Group 1: males Group 2: females




Current practical: Are the 4 subscales of the WAIS-III measurement invariant with respect to gender?

Data:

VCi poi wmi psi

gender scalel scale2 scale3 scale4
2 11 9.33 10.33 13.5

2 10.67 9 10.33 15
2 9.67 7.67 9.33 8.5
2 13 10 8.67 9
2 11 11 13.67 17
2 10 12 9.33 11
N = 180 individuals (80 male, 100 female)

Subscales:

vci -- Verbal Comprehension Index
poi -- Perceptual Organization Index
wmi -- Working Memory Index

psi -- Processing Speed Index



Current practical: Are the 4 subscales of the WAIS-III measurement invariant with respect to gender?

OpenMx code:

nv <-4 # number of phenotype variables to be analyzed

nf <- 1 # number of common factors in the model

selVars <- paste("scale",1:nv,sep="") # phenotype variables to be analyzed
grVars <- c('gender') # grouping variable

data <- read.table(paste(getwd(),"/Measurement_invariance_data.dat",sep=""),header=TRUE)
mData <- round(data[data$gender==1, selVars],2)
fData <- round(data[data$gender==2, selVars],2)

# Generate descriptive statistics
colMeans(mData,na.rm=TRUE)
colMeans(fData,na.rm=TRUE)
cov(mData,use="complete")
cov(fData,use="complete")

# Test for a mean difference between males and females (MANOVA)
summary(manova(cbind(scalel,scale2,scale3,scale4) ~ gender, data = data), test = "Pillai")



Current practical: Are the 4 subscales of the WAIS-III measurement invariant with respect to gender?

OpenMx code:

# Matrices to store factor loadings of the WAIS subscales on g

loadings1 <- mxMatrix( type="Full", nrow=nv, ncol=nf, free=c(F, rep(T,nv-1)),
values=1, label=paste("I_1", 1:nv, sep=""), name="load1" )

loadings2 <- mxMatrix( type="Full", nrow=nv, ncol=nf, free=c(F, rep(T,nv-1)),
values=1, label=paste("l_2", 1:nv, sep=""), name="load2" )

# Matrices to store the residual variances of the WAIS subscales
residualsl <- mxMatrix( type="Diag", nrow=nv, free=T, values=2,
label=paste("res_1", 1:nv, sep=""), name="res1" )

residuals2 <- mxMatrix( type="Diag", nrow=nv, free=T, values=2,
label=paste("res_2", 1:nv, sep=""), name="res2" )

# Matrices to store the mean and variance of g (variance estimated, mean set to 0)
latVariancel <- mxMatrix( type="Symm", nrow=nf, ncol=nf, free=T, values=4,
label=paste("IVar_1", 1:nf, sep=""), nhame="latVar1" )

latVariance2 <- mxMatrix( type="Symm", nrow=nf, ncol=nf, free=T, values=4,
label=paste("IVar_2", 1:nf, sep=""), nhame="latVar2" )

latMean1 <- mxMatrix( type="Full", nrow=1, ncol=nf, free=F, values=0,
label=paste("IMean_1",1:nf, sep=""), name="latM1" )
latMean2 <- mxMatrix( type="Full", nrow=1, ncol=nf, free=F, values=0,
label=paste("IMean_2",1:nf, sep=""), name="latM2" )



Current practical: Are the 4 subscales of the WAIS-III measurement invariant with respect to gender?
OpenMx code:

# Vectors to store intercepts of the WAIS subscales

interceptsl <- mxMatrix( type="Full", nrow=nv, ncol=1, free=T, values=8,
label=paste("int_1",1:nv,sep=""), name="int1" )

intercepts2 <- mxMatrix( type="Full", nrow=nv, ncol=1, free=T, values=8,
label=paste("int_2",1:nv,sep=""), name="int2" )

# Algebra for the expected means and covariances of the WAIS scores

meansl <- mxAlgebra( expression=t(intl + load1%*%IlatM1), name="m1" )

means2 <- mxAlgebra( expression=t(int2 + load2%*%IlatM2), name="m2" )

variancesl <- mxAlgebra( expression=loadl %*% latVarl %*% t(loadl) + resl, name="v1" )
variances2 <- mxAlgebra( expression=Iload2 %*% latVar2 %*% t(load2) + res2, name="v2" )

# Data objects for the two groups
datal <- mxData( observed=mData, type="raw" )
data2 <- mxData( observed=fData, type="raw" )

# Objective objects for the two groups
obj1 <- mxFIMLObijective( covariance="v1", means="m1", dimnames=selVars )
obj2 <- mxFIMLObijective( covariance="v2", means="m2", dimnames=selVars )

# Combine Groups

modelMales <- mxModel( loadingsl, residualsl, latVariancel, latMeanl,

interceptsl, meansl, variancesl, datal, objl, name="males")

modelFemales <- mxModel( loadings2, residuals2, latVariance2, latMean2,

intercepts2, means2, variances2, data2, obj2, name="females")

minus2ll <- mxAlgebra( expression=males.objective + females.objective, name="m2LL" )
obj <- mxAlgebraObjective( "m2LL" )

CImodel <- mxModel( "CI", modelMales, modelFemales, minus2ll, obj )



Current practical: Are the 4 subscales of the WAIS-III measurement invariant with respect to gender?

OpenMx code:

# RUN MODEL: CONFIGURAL INVARIANCE
# - equal configuration of factor loadings over the groups

CImodelFit <- mxRun(CImodel)
CImodelSumm <- summary(CImodelFit)
CImodelSumm



Current practical: Are the 4 subscales of the WAIS-III measurement invariant with respect to gender?

OpenMx code:
#===================================================================
# RUN MODEL: METRIC INVARIANCE

# - equal configuration of factor loadings over the groups

# - equal factor loadings over the groups
#===================================================================

# Matrices to store factor loadings of the WAIS subscales on g
loadings1 <- mxMatrix( type="Full", nrow=nv, ncol=nf, free=c(F, rep(T,nv-1)),

values=1, label=paste("l_", 1:nv, sep=""), name="load1" )
loadings2 <- mxMatrix( type="Full", nrow=nv, ncol=nf, free=c(F, rep(T,nv-1)),
values=1, label=paste("l_", 1:nv, sep=""), name="load2" )

# Combine Groups

modelMales <- mxModel( loadingsl, residualsl, latVariancel, latMeanl,

interceptsl, meansl, variancesl, datal, objl, name="males")

modelFemales <- mxModel( loadings2, residuals2, latVariance2, latMean2,

intercepts2, means2, variances2, data2, obj2, name="females")

minus2ll <- mxAlgebra( expression=males.objective + females.objective, name="m2LL" )
obj <- mxAlgebraObjective( "m2LL" )

MImodel <- mxModel( "MI", modelMales, modelFemales, minus2ll, obj )

MImodelFit <- mxRun(MImodel)
MImodelSumm <- summary(MImodelFit)
MImodelSumm



Current practical: Are the 4 subscales of the WAIS-III measurement invariant with respect to gender?

OpenMx code:
#===================================================================
# RUN MODEL: STRONG FACTORIAL INVARIANCE - YOUR TASK

# - equal configuration of factor loadings over the groups

# - equal factor loadings over the groups

# - equal intercepts over the groups
#===================================================================
# Vectors to store intercepts of the WAIS subscales

7?7

77

77

77

# Combine Groups

modelMales <- mxModel( loadingsl1, residualsl, latVariancel, latMeanl,

interceptsl, meansli, variancesl, datal, objl, name="males")

modelFemales <- mxModel( loadings2, residuals2, latVariance2, latMean2,

intercepts2, means2, variances2, data2, obj2, name="females")

minus2ll <- mxAlgebra( expression=males.objective + females.objective, name="m2LL" )
obj <- mxAlgebraObjective( "m2LL" )

SFImodel <- mxModel( "SFI", modelMales, modelFemales, minus2ll, obj )

SFImodelFit <- mxRun(SFImodel)
SFImodelSumm <- summary(SFImodelFit)
SFImodelSumm



Current practical: Are the 4 subscales of the WAIS-III measurement invariant with respect to gender?

OpenMx code:
#===================================================================
# RUN MODEL: STRONG FACTORIAL INVARIANCE - YOUR TASK

# - equal configuration of factor loadings over the groups

# - equal factor loadings over the groups

# - equal intercepts over the groups
#===================================================================

# Vectors to store intercepts of the WAIS subscales

interceptsl <- mxMatrix( type="Full", nrow=nv, ncol=1, free=T, values=8,
label=paste("int_",1:nv,sep=""), name="int1" )

intercepts2 <- mxMatrix( type="Full", nrow=nv, ncol=1, free=T, values=8,
label=paste("int_",1:nv,sep=""), name="int2" )

# Combine Groups

modelMales <- mxModel( loadingsl1, residualsl, latVariancel, latMeanl,

interceptsl, meansli, variancesl, datal, objl, name="males")

modelFemales <- mxModel( loadings2, residuals2, latVariance2, latMean2,

intercepts2, means2, variances2, data2, obj2, name="females")

minus2ll <- mxAlgebra( expression=males.objective + females.objective, name="m2LL" )
obj <- mxAlgebraObjective( "m2LL" )

SFImodel <- mxModel( "SFI", modelMales, modelFemales, minus2ll, obj )

SFImodelFit <- mxRun(SFImodel)
SFImodelSumm <- summary(SFImodelFit)
SFImodelSumm



Current practical: Are the 4 subscales of the WAIS-III measurement invariant with respect to gender?

OpenMx code:

# RUN MODEL: STRICT FACTORIAL INVARIANCE - YOUR TASK
# - equal configuration of factor loadings over the groups
# - equal factor loadings over the groups

# - equal intercepts over the groups

# - equal residuals over the groups

#

STFImodelFit <- mxRun(STFImodel)
STFImodelSumm <- summary(STFImodelFit)
STFImodelSumm



Current practical: Are the 4 subscales of the WAIS-III measurement invariant with respect to gender?

OpenMx code:

# RUN MODEL: STRICT FACTORIAL INVARIANCE - YOUR TASK

- equal configuration of factor loadings over the groups
- equal factor loadings over the groups

- equal intercepts over the groups

- equal residuals over the groups

HHHHHF

# Matrices to store the residual variances of the WAIS subscales
residualsl <- mxMatrix( type="Diag", nrow=nv, free=T, values=2,
label=paste("res_", 1:nv, sep=""), name="res1" )

residuals2 <- mxMatrix( type="Diag", nrow=nv, free=T, values=2,
label=paste("res_", 1:nv, sep=""), name="res2" )

# Combine Groups

modelMales <- mxModel( loadingsl1, residualsl, latVariancel, latMeanl,

interceptsl, meansl, variancesl, datal, objl, name="males")

modelFemales <- mxModel( loadings2, residuals2, latVariance2, latMean2,

intercepts2, means2, variances2, data2, obj2, name="females")

minus2ll <- mxAlgebra( expression=males.objective + females.objective, name="m2LL" )
obj <- mxAlgebraObjective( "m2LL" )

STFImodel <- mxModel( "STFI", modelMales, modelFemales, minus2ll, obj )

STFImodelFit <- mxRun(STFImodel)
STFImodelSumm <- summary(STFImodelFit)
STFImodelSumm



Current practical: Are the 4 subscales of the WAIS-III measurement invariant with respect to gender?

OpenMx code:

# Matrix to store variances/covariances

startCov=cov(data[,selVars])

covariancesl <- mxMatrix( type="Symm", nrow=nv, ncol=nv, free=T,
values=startCov, name="covs1" )

covariances2 <- mxMatrix( type="Symm", nrow=nv, ncol=nv, free=T,
values=startCov, name="covs2" )

# Vector to store the means

meansl <- mxMatrix( type="Full", nrow=1, ncol=4, free=T, values=8,
labels=paste("mean_2",1:nv,sep=""), name="m1" )

means2 <- mxMatrix( type="Full", nrow=1, ncol=4, free=T, values=8,
labels=paste("mean_1",1:nv,sep=""), name="m2" )

# Data object
Datal <- mxData( observed=mData[,selVars], type="raw" )
Data2 <- mxData( observed=fData[,selVars], type="raw" )

# Objective object
objl <- mxFIMLObjective( covariance="covsl", means="m1", dimnames=selVars )
obj2 <- mxFIMLObjective( covariance="covs2", means="m2", dimnames=selVars )



Current practical: Are the 4 subscales of the WAIS-III measurement invariant with respect to gender?
OpenMx code:

# Combine the groups

satModelMales <- mxModel( covariancesl, meansl, Datal, objl, name="satMales")
satModelFemales <- mxModel( covariances2, means2, Data2, obj2, name="satFemales")
minus2ll <- mxAlgebra( expression=satMales.objective + satFemales.objective, name="m2LL" )
obj <- mxAlgebraObjective( "m2LL" )

satModel <- mxModel( "CI", satModelMales, satModelFemales, minus2ll, obj )

# Run the model

satFit <- mxRun(satModel)
satSumm <- summary(satFit)
satSumm



Current practical: Are the 4 subscales of the WAIS-III measurement invariant with respect to gender?

OpenMx code:

tableFitStatistics(satFit,CImodelFit) # test of configural invariance
tableFitStatistics(CImodelFit, MImodelFit) # test of metric invariance
tableFitStatistics(MImodelFit,SFImodelFit) # test of strong f. invariance
tableFitStatistics(SFImodelFit, STFImodelFit) # test of strict f. invariance



Current practical: Are the 4 subscales of the WAIS-III measurement invariant with respect to gender?

OpenMx code:

tableFitStatistics(satFit,CImodelFit) # test of configural invariance
tableFitStatistics(CImodelFit, MImodelFit) # test of metric invariance
tableFitStatistics(MImodelFit,SFImodelFit) # test of strong f. invariance
tableFitStatistics(SFImodelFit, STFImodelFit) # test of strict f. invariance

Conclusion...?



