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Principal Components Analysis (PCA)

a technique for finding patterns in data of high dimension
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Covariance matrix:
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Compression and reduced dimensionality:

- the eigenvector associated with the highest eigenvalue is the principal component of the dataset; it captures the most 
significant relationship between the data dimensions

- ordering eigenvalues from highest to lowest gives the components in order of significance 

- if we want, we can ignore the components of lesser significance – this results in a loss of information, but if the 
eigenvalues are small, the loss will not be great

- thus, in a dataset with n dimensions/variables, one may obtain the n eigenvectors & eigenvalues and decide to retain p
of them → this results in a final dataset with only p dimensions

- feature vector – a vector containing only the eigenvectors representing the dimensions we want to keep – in our example 
data, 2 choices:

- the final dataset is obtained by multiplying the transpose of the feature vector (on the left) with the transposed original 
dataset

- this will give us the original data solely in terms of the vectors we chose

0.706543 -0.70767

0.70767 0.706543
or

0.706543

0.70767



Our example:
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Thus: we transformed the data so that is expressed in terms of the patterns, where the patterns are the lines that most 
closely describe the relationships between the data.
Now, the values of the data points tell us exactly where (i.e., above/below) the trend lines the data point sits.



- similar to Cholesky decomposition as one can use both to fully decompose the original covariance matrix

- in addition, both produce uncorrelated factors

Eigenvalue decomposition:

Cholesky decomposition:

Eigenvalue: decomposition

C = E V E-1

Cholesky decomposition:

C = Λ Ψ Λt

c11 c21

c21 c22

* =  v1 *
e11

e21

e11

e21

c11 c21

c21 c22

=
e11 e12

e21 e22

v11

v22

e11 e12

e21 e22

-1

c11 c21

c21 c22

=
l11

l21 l22

va11

va22

l11 l21

l22 ch1 ch2

var1 var2

va1 va2

l11 l22l21

pc1 pc2

var1 var2

v11 v22

e11 e22e21 e12



Thank you for your attention.


