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GCTA: A Tool for Genome-wide Complex Trait Analysis

Jian Yang,1,* S. Hong Lee,1 Michael E. Goddard,2,3 and Peter M. Visscher1

For most human complex diseases and traits, SNPs identified by genome-wide association studies (GWAS) explain only a small fraction

of the heritability. Here we report a user-friendly software tool called genome-wide complex trait analysis (GCTA), which was developed

based on a method we recently developed to address the ‘‘missing heritability’’ problem. GCTA estimates the variance explained by all

the SNPs on a chromosome or on the whole genome for a complex trait rather than testing the association of any particular SNP to the

trait. We introduce GCTA’s five main functions: data management, estimation of the genetic relationships from SNPs, mixed linear

model analysis of variance explained by the SNPs, estimation of the linkage disequilibrium structure, and GWAS simulation. We focus

on the function of estimating the variance explained by all the SNPs on the X chromosome and testing the hypotheses of dosage

compensation. The GCTA software is a versatile tool to estimate and partition complex trait variation with large GWAS data sets.
Despite the great success of genome-wide association

studies (GWAS), which have identified hundreds of SNPs

conferring the genetic variation of human complex

diseases and traits,1 the genetic architecture of human

complex traits still remains largely unexplained. For most

traits, the associated SNPs from GWAS only explain a small

fraction of the heritability.2,3 There has not been any

consensus on the explanation of the ‘‘missing heritability.’’

Possible explanations include a large number of common

variants with small effects, rare variants with large effects,

and DNA structural variation.2,4 We recently proposed a

method of estimating the total amount of phenotypic

variance captured by all SNPs on the current generation

of commercial genotyping arrays and estimated that

~45% of the phenotypic variance for human height can

be explained by all common SNPs.5 Thus, most of the

heritability for height is hiding rather than missing

because of many SNPs with small effects.5,6 In contrast to

single-SNP association analysis, the basic concept behind

our method is to fit the effects of all the SNPs as random

effects by a mixed linear model (MLM),

y ¼ XbþWuþ 3 with varðyÞ ¼ V ¼ WW0s2
u þ Is2

3 ;

(Equation 1)

where y is an n 3 1 vector of phenotypes with n being the

sample size, b is a vector of fixed effects such as sex, age,

and/or one or more eigenvectors from principal compo-

nent analysis (PCA), u is a vector of SNP effects with

u � Nð0; Is2uÞ, I is an n3 n identity matrix, and 3 is a vector

of residual effects with 3 � Nð0; Is23 Þ. W is a standardized

genotype matrix with the ijth element wij ¼ ðxij � 2piÞ=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pið1� piÞ

p
, where xij is the number of copies of the refer-

ence allele for the ith SNP of the jth individual and pi is the

frequency of the reference allele. If we define A ¼ WW0=N
and define s2g as the variance explained by all the SNPs,

i.e., s2g ¼ Ns2u, with N being the number of SNPs, then

Equation 1 will be equivalent to:7–9
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y ¼ Xbþ g þ 3 with V ¼ As2
g þ Is2

3 ; (Equation 2)

where g is an n3 1 vector of the total genetic effects of the

individuals with g � Nð0;As2gÞ, and A is interpreted as the

genetic relationship matrix (GRM) between individuals.

We can therefore estimate s2g by the restricted maximum

likelihood (REML) approach,10 relying on the GRM esti-

mated from all the SNPs. Here we report a versatile tool

called genome-wide complex trait analysis (GCTA), which

implements the method of estimating variance explained

by all SNPs, and extend themethod to partition the genetic

variance onto each of the chromosomes and also to esti-

mate the variance explained by the X chromosome and

test for dosage compensation in females. We developed

GCTA in five function domains: datamanagement, estima-

tion of the GRM from a set of SNPs, estimation of the vari-

ance explained by all the SNPs on a single chromosome or

the whole genome, estimation of linkage disequilibrium

(LD) structure, and simulation.
Estimation of the Genetic Relationship

from Genome-wide SNPs

One of the core functions of GCTA is to estimate the

genetic relationships between individuals from the SNPs.

From the definition above, the genetic relationship

between individuals j and k can be estimated by the

following equation:

Ajk ¼ 1

N

XN
i¼1

�
xij � 2pi

��
xik � 2pi

�
2pi

�
1� pi

� : (Equation 3)

We provide a function to iteratively exclude one indi-

vidual of a pair whose relationship is greater than a speci-

fied cutoff value, e.g., 0.025, while retaining the maximum

number of individuals in the data. For data collected from

family or twin studies, we recommend that users estimate

the genetic relationships with all of the autosomal SNPs

and then use this option to exclude close relatives. The
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reason for exclusion is that the objective of the analysis is

to estimate genetic variation captured by all the SNPs, just

as GWAS does for single SNPs. Including close relatives,

such as parent-offspring pairs and siblings, would result

in the estimate of genetic variance being driven by the

phenotypic correlations for these pairs (just as in pedigree

analysis), and this estimate could be a biased estimate of

total genetic variance, for example because of common

environmental effects. Even if the estimate is not biased,

its interpretation is different from the estimate from ‘‘unre-

lated’’ individuals: a pedigree-based estimator captures the

contribution from all causal variants (across the entire

allele frequency spectrum), whereas our method captures

the contribution from causal variants that are in LD with

the genotyped SNPs.

As a by-product, we provide a function in GCTA to

calculate the eigenvectors of the GRM, which is asymptot-

ically equivalent to those from the PCA implemented in

EIGENSTRAT11 because the GRM (Ajk) defined in GCTA is

approximately half of the covariance matrix (Jjk) used in

EIGENSTRAT. The only purpose of developing this func-

tion is to calculate eigenvectors and then include them

in the model as covariates to capture variance due to

population structure. More sophisticated analyses of the

population structure can be found in programs such as

EIGENSTRAT11 and STRUCTURE.12

Estimation of the Variance Explained by Genome-

wide SNPs by REML

The GRM estimated from the SNPs can be fitted subse-

quently in an MLM to estimate the variance explained

by these SNPs via the REML method.10 Previously, we

included only one genetic factor in the model. Here we

extend the model in a general form as

y ¼ Xbþ
Xr

i¼1

gi þ 3;

where gi is a vector of random genetic effects, which could

be the total genetic effects for the whole genome or for

a single chromosome. In this model, the phenotypic vari-

ance (s2P) is partitioned into the variance explained by

each of the genetic factors and the residual variance,

V ¼
Xr

i¼1

Ais
2
i þ Is2

3 ;

where s2i is the variance of the ith genetic factor with its

corresponding GRM, Ai.

In GCTA, we provide flexible options to specify different

genetic models. For example:

(1) To estimate the variance explained by all autosomal

SNPs, we can specify the model as y ¼ Xb þ g þ 3 with

V ¼ Ags
2
g þ Is23 , where g is an n3 1 vector of the aggregate

effects of all the autosomal SNPs for all of the individuals

and Ag is the GRM estimated from these SNPs. This model

is the same as Equation 2.

(2) To estimate the variance of genotype-environment

interaction effects (s2ge), we can specify the model as
The A
y ¼ Xb þ g þ ge þ 3 with V ¼ Ags
2
g þAges

2
ge þ Is23 , where

ge is a vector of genotype-environment interaction effects

for all of the individuals withAge ¼Ag for the pairs of indi-

viduals in the same environment and with Age ¼ 0 for the

pairs of individuals in different environments.

(3) To partition genetic variance onto each of the

22 autosomes, we can specify the model as y ¼ XbþP22
i¼1gi þ 3 with V ¼ P22

i¼1Ais
2
i þ Is23 , where gi is a vector

of genetic effects attributed to the ith chromosome and

Ai is the GRM estimated from the SNPs on the ith chromo-

some.

GCTA implements the REML method via the average

information (AI) algorithm.13 In the REML iteration pro-

cess, the estimates of variance components from the tth

iteration are updated by qðtþ1Þ ¼ qðtÞ þ ðAIðtÞÞ�1vL=vqjqðtÞ,
where q is a vector of variance components (s21, ., s2r
and s23 ); L is the log likelihood function of the MLM

(ignoring the constant), L ¼ �1=2ðlogjVj þ logjX0V�1Xjþ
y0PyÞ with P ¼ V�1 �V�1XðX0V�1XÞ�1X0V�1; AI is the

average of the observed and expected information

matrices,

AI¼1=2

y0PA1PA1Py / y0PA1PArPy y0PA1PPy
« « « «

y0PArPA1Py / y0PArPArPy y0PArPPy
y0PPA1Py / y0PPArPy y0PPPy

2
664

3
775;

and vL=vq is a vector of first derivatives of the log likeli-

hood function with respect to each variance component,

vL=vq ¼ �1=2

trðPA1Þ � y0PA1Py
«

trðPArÞ � y0PArPy
trðPÞ � y0PPy

2
664

3
775.13 At the beginning

of the iterationprocess, all of the components are initialized

by an arbitrary value, i.e., s
2ð0Þ
i ¼ s2P=ðr þ 1Þ, which is sub-

sequently updated by the expectation maximization (EM)

algorithm, s
2ð1Þ
i ¼ ½s4ð0Þi y0PAiPyþ trðs2ð0Þi I� s

4ð0Þ
i PAiÞ�=n.

The EM algorithm is used as an initial step to determine

the direction of the iteration updates because it is robust

to poor starting values. After one EM iteration, GCTA

switches to the AI algorithm for the remaining iterations

until the iteration converges with the criteria of L(t þ 1) –

L(t)<10�4,whereL(t) is the log likelihoodof the tth iteration.

In the iteration process, any component that escapes from

the parameter space (i.e., its estimate is negative) will be

set to 10�6 3 s2P. If a component keeps escaping from the

parameter space, it will be constrained at 10�6 3 s2P.

From the REML analysis, GCTA has an option to provide

the best linear unbiased prediction (BLUP) of the total

genetic effect for all individuals. BLUP is widely used by

plant and animal breeders to quantify the breeding value

of individuals in artificial selection programs14 and also

by evolutionary geneticists.15 Consider Equations 1 and

2, i.e., y¼XbþWuþ 3 and y¼Xbþ gþ 3. Because these

two models are mathematically equivalent,7–9 the BLUP of

g can be transformed to the BLUP of u by bu ¼ W0A�1bg=N.
Here the estimate of ui corresponds to the coefficient

wij, which is then rescaled for the original xij by
merican Journal of Human Genetics 88, 76–82, January 7, 2011 77



bu�
i ¼ bui=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pið1� piÞ

p
. We could obtain the BLUP of SNP

effects in a discovery set by GCTA and predict genetic

values of the individuals in a validation set (bgnew ¼
Wnew

bu). For example, GCTA could be used to predict

SNP effects in a discovery set, and the SNP effects could

be used in PLINK to predict whole-genome profiles via

the scoring approach in a validation set. If the predictions

are unbiased, then the regression slope of the observed

phenotypes on the predicted genetic values is 1.14 In that

case, the genetic value calculated based on the BLUP of

SNP effects is an unbiased predictor of the true genetic

value in the validation set (gnew), in the sense that

EðgnewjbgnewÞ ¼ bgnew.
16,17 Prediction analyses of human

complex traits have demonstrated that many SNPs that

do not pass the genome-wide significance level have

substantial contribution to the prediction.18,19 This option

is therefore useful for the whole-genome prediction anal-

ysis with all of the SNPs, irrespective of their association

p values.
Estimation of the Variance Explained by the SNPs

on the X Chromosome

The method of estimating the genetic relationship from

the X chromosome is different to that for the autosomal

SNPs, because males have only one X chromosome. We

modified Equation 3 for the X chromosome as:

AM
jk ¼

XN
i¼1

�
xMij � pi

��
xMik � pi

�
pi
�
1� pi

� for a male-male pair;

AF
jk ¼

XN
i¼1

�
xFij � 2pi

��
xFik � 2pi

�
2pi

�
1� pi

� for a female-female pair; and

AMF
jk ¼

XN
i¼1

�
xMij � pi

��
xFik � 2pi

�
ffiffiffi
2

p
pi
�
1� pi

� for a male-female pair;

where xMij and xFij are the number of copies of the reference

allele for an X chromosome SNP for a male and a female,

respectively.

Assuming the male-female genetic correlation to be 1,

the X-linked phenotypic covariance between a pair of indi-

viduals is:20

covX

�
yMj ; yMk

�
¼ E

�
AM

jk

�
s2
XðMÞ for a male-male pair;

covX

�
yFj ; y

F
k

�
¼ E

�
AF

jk

�
s2
XðFÞ for a female-female pair; and

covX

�
yMj ; yFk

�
¼ E

�
AMF

jk

�
sXðMÞsXðFÞ for a male-female pair;

where s2XðMÞ and s2XðFÞ are the genetic variance attributed to

the X chromosome for males and females, respectively.

The relative values of s2XðMÞ and s2XðFÞ depend on the

assumption made regarding dosage compensation for X
78 The American Journal of Human Genetics 88, 76–82, January 7, 20
chromosome genes. There are two alleles per locus in

females, but only one in males. If we assume that each

allele has a similar effect on the trait (i.e., no dosage com-

pensation), the genetic variance on the X chromosome for

females is twice that for males: i.e., s2X ¼ s2XðFÞ ¼ 2s2XðMÞ.
Thus,

covX

�
yMj ; yMk

�
¼ 1=2E

�
AM

jk

�
s2
X for a male-male pair;

covX

�
yFj ; y

F
k

�
¼ E

�
AF

jk

�
s2
X for a female-female pair; and

covX

�
yMj ; yFk

�
¼ 1=

ffiffiffi
2

p
E
�
AMF

jk

�
s2
X for a male-female pair:

This can be implemented by redefining GRM for the X

chromosome as AND
X ¼ 1=2AX for male-male pairs,

AND
X ¼ AX for female-female pairs, and AND

X ¼ 1=
ffiffiffi
2

p
AX

for male-female pairs. If we assume that each allele in

females has only half the effect of an allele in males (i.e.,

full dosage compensation), the X-linked genetic variance

for females is half that for males: i.e., s2X ¼ s2XðFÞ ¼
1=2s2XðMÞ. Thus,

covX

�
yMj ; yMk

�
¼ 2E

�
AM

jk

�
s2
X for a male-male pair;

covX

�
yFj ; y

F
k

�
¼ E

�
AF

jk

�
s2
X for a female-female pair; and

covX

�
yMj ; yFk

�
¼

ffiffiffi
2

p
E
�
AMF

jk

�
s2
X for a male-female pair:

Therefore, the raw AX matrix should be parameterized as

AFD
X ¼ 2AX for male-male pairs, AFD

X ¼ AX for female-

female pairs, and AND
X ¼ ffiffiffi

2
p

AX for male-female pairs.

The third possibility is to assume equal genetic variance

on the X chromosome for males and females, i.e., s2X ¼
s2XðFÞ ¼ s2XðMÞ, in which case the AX matrix is not redefined

at all.

We can estimate s2X by fitting the model

y ¼ Xbþ gX þ g þ 3, where gX is a vector of genetic

effects attributable to the X chromosome, with

varðgXÞ ¼ AND
X s2X assuming no dosage compensation,

varðgXÞ ¼ AFD
X s2X assuming full dosage compensation,

and varðgXÞ ¼ AXs
2
X assuming equal X-linked genetic vari-

ance for males and females. Test of dosage compensation

can be achieved by comparing the likelihoods of model

fitting under the three assumptions.
Estimation of the Variance Explained

by Genome-wide SNPs for a Case-Control Study

The methodology described above is also applicable for

case-control data, for which the estimate of variance ex-

plained by the SNPs corresponds to variation on the

observed 0–1 scale. Under the assumption of a threshold-

liability model for a disease, i.e., disease liability on the

underlying scale follows standard normal distribution,21

the estimate of variance explained by the SNPs on the
11



observed 0–1 scale can be transformed to that on the unob-

served continuous liability scale by a linear transforma-

tion.22 The relationship between additive genetic variance

on the observed 0–1 and unobserved liability scales was

proposed more than a half century ago,23,24 and we

recently extended this transformation to account for ascer-

tainment bias in a case-control study, i.e., a much higher

proportion of cases in the sample than in the general pop-

ulation (unpublished data). We provide options in GCTA

to analyze a binary trait and to transform the estimate on

the 0–1 scale to that on the liability scale with an adjust-

ment for ascertainment bias. There is an important caveat

in applying the methods described herein to case-control

data. Any batch, plate, or other technical artifact that

causes allele frequencies between case and control on

average to be more different than that under the null

hypothesis stating that the samples come from the same

population will contribute to the estimation of spurious

genetic variation, because cases will appear to be more

related to other cases than to controls. Therefore, stringent

quality control is essential when applying GCTA to case-

control data. Quantitative traits are less likely to suffer

from technical genotyping artifacts because they will

generally not lead to spurious association between contin-

uous phenotypes and genotypes.
Estimation of the Inbreeding Coefficient

from Genome-wide SNPs

Apart from estimating the genetic relatedness between

individuals, GCTA also has a function to estimate the

inbreeding coefficient (F) from SNP data, i.e., the relation-

ship between haplotypes within an individual. Two esti-

mates have been used: one based on the variance of addi-

tive genetic values (diagonal of the SNP-derived GRM)

and the other based on SNP homozygosity (implemented

in PLINK).25 Let (1 – pi)
2 þ pi(1 – pi)F, 2pi(1 – pi)(1 – F),

and pi
2 þ pi(1 – pi)F be the frequencies of the three geno-

types of a SNP i and let hi ¼ 2pi(1 – pi). The estimate based

on the variance of additive genotype values is

bF I

i ¼ ½xi � EðxiÞ�2=hi � 1 ¼ �
xi � 2pi

�2
=hi � 1 and var

�bF I

i j F
�

¼ ð1� hiÞ=hi þ 7ð1� 2hiÞF=hi � F2;

where xi is the number of copies of the reference allele for

the ith SNP. This is a special case of Equation 3 for a single

SNP when j ¼ k. The estimate based upon excess homozy-

gosity is

bF II

i ¼ ½Oð#homÞ � Eð#homÞ�=½1� Eð#homÞ�
¼ 1� xið2� xiÞ=hi and var

�bF II

i j F
�
¼ ð1� hiÞ=hi

� ð1� 2hiÞF=hi � F2;

where O(# hom) and E(# hom) are the observed and ex-

pected number of homozygous genotypes in the sample,

respectively. Both estimators are unbiased estimates of F

in the sense that EðbF I

i jFÞ ¼ EðbF II

i jFÞ ¼ F, but their sampling
The A
variances are dependent on allele frequency, i.e., varðbF I

iÞ ¼
varðbF II

i Þ ¼ (1 – hi) / hi if F ¼ 0. In addition, the covariance

between the two estimators is (3hi – 1) / hi þ (1 – 2hi)F /

hi – F2, so that the sampling covariance between the esti-

mators is (3hi – 1) / hi and the sampling correlation is

(3hi – 1) / (1 – hi) when F ¼ 0. We proposed an estimator

based upon the correlation between uniting gametes:5

bF III

i ¼ �
x2i �

�
1þ 2pi

�
xi þ 2p2i

�	
hi and var

�bF III

i j F
�

¼ 1þ 2ð1� 2hiÞF=hi � F2:

bF III

i is also an unbiased estimator of F in the sense that

E ðbF III

i jFÞ ¼ F. If F ¼ 0, varðbF III

i Þ ¼ 1 regardless of allele

frequency, which is smaller than the sampling variance

of bF I

i and
bF II

i , i.e., 1 % (1 – hi) / hi. When 0 < F < 1/3, bF III

i

also has a smaller variance than bF I

i and
bF II

i . In GCTA, we

use 1 þ bF III

i rather than 1 þ bF I

i to calculate the diagonal

of the GRM. For multiple SNPs, we average the estimates

over all of the SNPs, i.e., bF ¼ 1=N
PN

i¼1
bFi.

Estimating LD Structure

In a standard GWAS, particularly with a large sample size,

the mean (lmean) or median (lmedian) of the test statistics

for single-SNP associations often deviates from its expected

value under the null hypothesis of no association between

any SNP and the phenotype, which is usually interpreted

as the effect due to population stratification and/or cryptic

relatedness.11,26,27 An alternative explanation is that poly-

genic variation causes the observed inflated test statistic.18

To predict the genomic inflation factors, lmean and lmedian,

from polygenic parameters such as the total amount of

variance that is explained by all SNPs, we need to quantify

the LD structure between SNPs and putative causal variants

(unpublished data). GCTA provides a function to search for

all the SNPs in LD with the ‘‘causal variants’’ (mimicked by

a set of SNPs chosen by the user). Given a causal variant, we

use simple regression to test for SNPs in LD with the causal

variant within dMb distance in either direction. PLINK has

an option (‘‘show targets’’) to select SNPs in LDwith a set of

target SNPs with LD r2 larger than a user-specified cutoff

value. This function is very useful to distinguish indepen-

dent association signals but less suited to predict lmean and

lmedian, because the test statistics of the SNPs in modest LD

with causal variants (SNPs at Mb distance with low r2) will

also be inflated to a certain extent, and these test statistics

will contribute to the genomic inflation factors.

GWAS Simulation

Weprovided a function to simulateGWASdatabasedon the

observed genotype data. For a quantitative trait, the pheno-

types are simulated by the simple additive genetic model

y¼Wuþ 3, where the notation is the same as above. Given

a set of SNPs assigned as causal variants, the effects of the

causal variants are generated from a standard normal distri-

bution, and the residual effects are generated from anormal

distribution with mean of 0 and variance of s2g ð1=h2 � 1Þ,
merican Journal of Human Genetics 88, 76–82, January 7, 2011 79



where s2g is the empirical variance ofWu and h2 is the user

specified heritability. For a case-control study, assuming

a threshold-liability model, disease liabilities are simulated

in the sameway as that for the phenotypes of a quantitative

trait. Any individual with disease liability exceeding

a certain threshold T is assigned to be a case and a control

otherwise, where T is the threshold of normal distribution

truncating the proportion of K (disease prevalence). The

only purpose of this function is to do a simple simulation

based on the observed genotype data. More complicated

simulation can be performed with programs such as ms,28

GENOME,29 FREGENE,30 and HAPGEN.31
Data Management

We chose the PLINK25 compact binary file format (*.bed,

*.bim, and *.fam) as the input data format forGCTAbecause

of its popularity in the genetics community and its effi-

ciency of data storage. For the imputed dosage data, we

use the output files of the imputation program MACH32

(*.mldose.gz and *.mlinfo.gz) as the inputs for GCTA. For

the convenience of analysis, we provide options to extract

a subset of individuals and/or SNPs and to filter SNPs based

on certain criteria, such as chromosome position, minor

allele frequency (MAF), and imputation R2 (for the imputed

data). However, we donot provide functions for a thorough

quality control (QC) of the data, such as Hardy-Weinberg

equilibrium test and missingness, because these functions

have been well developed in many other genetic analysis

packages, e.g., PLINK, GenABEL,33 and SNPTEST.34 We

assume that the data have been cleaned by a standard QC

process before entering into GCTA.
Estimating Total Heritability

The method implemented in GCTA is to estimate the vari-

ance explained by chromosome- or genome-wide SNPs

rather than the trait heritability. Estimating the heritability

(i.e., variance explained by all the causal variants), however,

relies on the genetic relationship at causal variants that is

predicted with error by the genetic relationship derived

from the SNPs as a result of imperfect tagging. We have

previously established that the prediction error is c þ 1 / N,

with c depending on the distribution of the MAF of causal

variants.We therefore developed amethod based on simple

regression to correct for the prediction error by

A�
jk ¼

8<
:

1þ b
�
Ajj � 1

�
; j ¼ k

bAjk; jsk;

where b ¼ 1� ðc þ 1=NÞ=varðAjkÞ. The estimate of variance

explained by all of the SNPs after such adjustment is an

unbiased estimate of heritability only if the assumption

about the MAF distribution of causal variants is correct.
Efficiency of GCTA Computing Algorithm

GCTA implements the REML method based on the vari-

ance-covariance matrix V and the projection matrix P.
80 The American Journal of Human Genetics 88, 76–82, January 7, 20
In some of the mixed model analysis packages, such as

ASREML,35 to avoid the inversion of the n 3 n V matrix,

people usually use Gaussian elimination of the mixed

model equations (MME) to obtain the AI matrix based

on sparse matrix techniques. The SNP-derived GRM

matrix, however, is typically dense, so the sparse matrix

technique will bring an extra cost of memory and CPU

time. Moreover, the dimension of MME depends on the

number of random effects in the model, whereas the V

matrix does not. For example, when fitting the 22 chromo-

somes simultaneously in the model, the dimension of

MME is 22n 3 22n (ignoring the fixed effects), whereas

the dimension of V matrix is still n 3 n. We compared

the computational efficiency of GCTA and ASREML.

When the sample size is small, e.g., n < 3000, both

GCTA and ASREML take a few minutes to run. When the

sample size is large, e.g., n> 10,000, especially when fitting

multiple GRMs, it takes days for ASREML to finish the anal-

ysis, whereas GCTA needs only a few hours.

System Requirements

We have released executable versions of GCTA for the

three major operating systems: MS Windows, Linux/

Unix, and Mac OS. We have also released the source codes

so that users can compile them for some specific platforms.

GCTA requires a large amount of memory when calcu-

lating the GRM or performing an REML analysis with

multiple genetic components. For example, it requires

~4.8 GB memory to calculate the GRM for a data set with

3925 individuals genotyped by 294,831 SNPs, and it takes

~4 CPU hours (AMD Opteron 2.8 GHz) to finish the

computation. We therefore recommend using the 64-bit

version of GCTA for large memory support.

Nonadditive Genetic Variance

The analysis approach we have adapted is a logical exten-

sion of estimation methods based on pedigrees. It allows

estimation of additive genetic variation that is captured

by SNP arrays and is therefore informative with respect

to the genetic architecture of complex traits. The estimate

of variance captured by all of the SNPs obtained in GCTA is

directly comparable to the heritability estimated from

pedigree analysis in family and twin studies, as well as

the variance explained by GWAS hits, so that missing

and hiding heritability can be quantified.5 Other sources

of genetic variations such as dominance, gene-gene inter-

action, and gene-environment interaction are also impor-

tant for complex trait variation but are less relevant to

the ‘‘missing heritability’’ problem if the total heritability

refers to the narrow-sense heritability, i.e., the proportion

of phenotypic variance due to additive genetic variance.

The current version of GCTA only provides functions to

estimate and partition the variances of additive and

additive-environment interaction effects. It is technically

feasible to extend the analysis to include dominance

and/or gene-gene interaction effects in the future.

However, the power to detect the high-order genetic
11



variation will be limited, i.e., the sampling variance of esti-

mated variance components will be very large. Future

developments will also include options to do multivariate

analyses, to read genotype or imputed probability data in

different formats, and to implement other applications of

whole-genome or chromosome segment approaches.

In summary, we have developed a versatile tool to esti-

mate genetic relationships from genome-wide SNPs that

can subsequently be used to estimate variance explained

by SNPs via a mixed model approach. We provide flexible

options to specify different genetic models to partition

genetic variance onto each of the chromosomes. We devel-

oped methods to estimate genetic relationships from the

SNPs on the X chromosome and to test the hypotheses

of dosage compensation. GCTA is not limited to the anal-

ysis of data on human complex traits, but in this report we

only use examples and specifications (e.g., the number of

autosomes) for humans.
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Web Resources

The URLs for data presented herein are as follows:

Genome-wide Complex Trait Analysis (GCTA), http://gump.qimr.

edu.au/gcta

MACH 1.0: A Markov Chain-based haplotyper, http://www.sph.

umich.edu/csg/yli/mach

PLINK, http://pngu.mgh.harvard.edu/~purcell/plink
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