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Abstract

The sandwich estimator, often known as the robust covariance matrix estimator or the em-
pirical covariance matrix estimator, has achieved increasing use with the growing popularity of
generalized estimating equations. Its virtue is that it provides consistent estimates of the covari-
ance matrix for parameter estimates even when a parametric model fails to hold, or is not even
specified. Surprisingly though, there has been little discussion of the properties of the sandwich
method other than consistency. We investigate the sandwich estimator in quasilikelihood models
asymptotically, and in the linear case analytically. We show that when the quasilikelihood model
is correct, the sandwich covariance matrix estimate is often far more variable than the usual
parametric variance estimate, and its coverage probabilities can be abysmal. The increased
variance is a fixed feature of the method, and the price one pays to obtain consistency even
when the parametric model fails. We make some simple suggestions for modifying the method
which improve coverage probabilities.
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1 INTRODUCTION

The sandwich estimation procedure is a general method for estimating the covariance matrix of

parameter estimates. Traceable back at least to Huber (1967) and White (1982), the method yields

asymptotically consistent covariance matrix estimates

• without making distributional assumptions; and

• even if the assumed model underlying the parameter estimates is incorrect.

Because of these two desirable model–robustness properties, the sandwich estimator is often called

the robust covariance matrix estimator, or the empirical covariance matrix estimator. The sandwich

method is widely employed in marginal methods such as generalized estimating equations (Diggle,

Liang & Zeger, 1994; Liang & Zeger, 1986; Liang, Zeger & Qaqish, 1992), and has achieved in-

creasing popularity to the point that estimation of the covariance matrix of parameter estimates is

no longer considered much of an issue.

For example, consider linear regression. The usual mean squared error based covariance matrix

estimate of the least squares regression parameter estimates is used almost uniformly, but it is

inconsistent if the errors are heteroscedastic. In contrast, the sandwich estimate is consistent even

under heteroscedasticity, under some reasonable regularity conditions. The argument in favor of

the sandwich estimate is that it is only estimating the variance of an estimator, and asymptotic

normality and proper coverage confidence intervals only require a consistent variance estimate, so

that there really is no great need to construct a highly accurate covariance matrix estimate.

There have been, however, some intimations that the sandwich estimator might not be a very

good estimator. In his discussion of a paper of Wu (1986), Efron (1986) gives simulation evidence of

this phenomenon. Breslow (1990) demonstrated this in a simulation study of overdispersed Poisson

regression. Firth (1992) and McCullagh (1992) both raise concerns that the sandwich estimator

may be particularly inefficient. Diggle, et al. (1994, page 77) suggest that it is best used when the

data come from “many experimental units”.

The purposes of this paper are to investigate two questions:

• How bad is the sandwich estimate when compared to a parametric estimate, when the para-

metric model is true; and

• Does inefficiency have any impact on inference for samples of moderate size?
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The first question turns out to have a fairly precise asymptotic answer, and sometimes a fairly

precise small sample answer, neither of which appear to have been quantified precisely before.

For example, the sandwich method in simple linear regression when estimating the slope has an

asymptotic inefficiency equal to the inverse of the sample kurtosis of the design values, so that

for example if the predictors were generated according to the Laplace distribution, the sandwich

method has asymptotic efficiency 1/6 compared to the usual estimate when the linear model holds.

In fact we show that the sandwich estimate is much more affected by leverage than is the usual

estimate. This inefficiency still holds in generalized linear models. For example, in simple linear

logistic regression, at the null value that there is no effect due to the predictor, the sandwich

method’s asymptotic relative efficiency is again the inverse of the kurtosis of the predictors. In

Poisson regression, the sandwich method has even less efficiency.

The problem of coverage is far more difficult to answer, because there is no precise definition

of “samples of moderate size”, and because the results vary according to the situation. The major

evidence of which we are aware consists of the simulation studies of Wu (1986) and Breslow (1990),

both of whom find somewhat elevated levels of Wald–type tests based on the sandwich estimator.

We have run our own simulations of linear and logistic regression. In simple linear regression,

with samples of size 20, with the predictors generated from a Laplace distribution, the simulated

coverage probability of a nominal 95% confidence interval using the usual implementation of the

sandwich method has only 88.1% coverage, and even with leverage adjustments and using n − p

degrees of freedom the coverage is only 91.9%. Coverage is closer to the nominal as the distribution

of the predictor becomes lighter tailed, and worse if the predictor is heavier tailed.

In logistic regression, the important part of sample size considerations is usually thought to be

the number of events. When the number of events is small, undercoverage of Wald–type tests using

the sandwich estimator also can be a problem, again especially for heavy–tailed design distributions.

With samples of size 200, 300, 400 and a response rate of 5%, with Laplace distributed predictors,

at the null model the coverage of the usual sandwich method based on 5, 000 simulations is only

88.7%, 91.0% and 91.4%. With the same sample sizes, but with the response rate chosen so that

the expected number of events is 15, the coverage probabilities are 91.7%, 91.0% and 90.6%.

The paper is organized as follows. In Section 2 we compare the sandwich estimator to the usual

parametric regression estimator in the homoscedastic linear regression model. Section 3 makes an

asymptotic comparison of the methods for quasilikelihood models. Some simulations are discussed

in Section 4, in which we suggest some simple modifications to the sandwich method which improve
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coverage probabilities. Section 5 contains concluding remarks. Proofs are given in the appendix.

2 LINEAR REGRESSION

2.1 The Estimators

Consider the linear regression model Yi = Xt
iβ + εi, where the random errors εi are normally

distributed with mean zero and common variance σ2. Let β̂ be the ordinary least squares estimator

of β, and define Z̃ = (X1, ...,Xn)t. Let the hat matrix H = Z̃(Z̃tZ̃)−1Z̃t = (hij).

We are interested in estimating the linear combination Ltβ. Our particular interest here is in

estimating the variance of Ltβ̂, this variance given by σ2Lt(Z̃tZ̃)−1L. The classical estimator is

given by Vols = s2Lt(Z̃ tZ̃)−1L, where s2 = (n − p)−1∑n
i=1 r2

i , p is the dimension of β and the

residuals are ri = Yi −Xt
iβ̂.

We will distinguish between two versions of the sandwich variance estimator. The sand-

wich estimator as commonly employed, which we call Vsand, is defined as follows. Let R =

(r1, ..., rn)t(r1, ..., rn) and Dr = diag(R). Define ai = Lt(Z̃ tZ̃)−1Xi. Then

Vsand = Lt(Z̃tZ̃)−1Z̃tDrZ̃(Z̃tZ̃)−1L =
n∑
i=1

a2
i r

2
i . (1)

In linear regression, (1) is often multiplied by n/(n − p) (Hinkley, 1977). While Vsand is most

commonly applied, it is a biased estimator because E(r2
i ) = σ2(1− hii). This suggests replacing ri

in (1) by ti = ri/(1 − hii)1/2, an estimator we refer to as Vsand,u (Wu, 1986, equation 2.6).

2.2 Properties of the Ordinary Sandwich Estimator

We have that E(Vsand) = σ2∑n
i=1(1−hii)a2

i , for i = 1, . . . , n. Observing that
∑n
i=1 a2

i = Lt(Z̃tZ̃)−1L,

the expectation becomes

E(Vsand) = σ2Lt(Z̃tZ̃)−1L(1− bn), (2)

where 0 ≤ bn =
∑n
i=1 hiia

2
i /
∑n
i=1 a2

i ≤ max1≤i≤n hii. In general the sandwich estimator is biased

downward.

We have observed that in simulations, the bias of the usual sandwich estimator tends to be

substantial when there are leverage points. The following result confirms this and is easy to

show by making the first point a leverage point such that h11 = max1≤i≤n hii and setting L =

X1/
√

Xt
1(Z̃

tZ̃)−1X1.
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Theorem 1: The sandwich estimator has

max
var(Ltβ̂)=σ2

|bias(Vsand)| ≥ max
1≤i≤n

h2
ii.

Thus, if there is a large leverage point, the usual sandwich estimator can be expected to have poor

behavior relative to the classical formula.

Even in problems without leverage points, the usual sandwich estimator is typically inefficient.

Using well–known results on higher moments of the multivariate normal distribution we obtain

var(r2
i ) = 2(1 − hii)2σ4, and cov(r2

i , r
2
j ) = 2h2

ijσ
4 (i 6= j). It follows that the variance of the

sandwich estimator is given by

var(Vsand) =
n∑
i=1

a4
i var(r

2
i ) +

∑
i6=j

a2
i a

2
jcov(r2

i , r
2
j ) = 2σ4

n∑
i=1

a4
i (1− hii)2 + 2σ4

∑
i6=j

a2
i a

2
jh

2
ij , (3)

We combine this calculation with the the result that var(Vols) ≈ 2σ4{Lt(Z̃ tZ̃)−1L}2/n to obtain

the asymptotic relative efficiency versus the classical estimate for regular designs.

Theorem 2: If the design sequence is regular, i.e., if max1≤i≤n hii = o(n−1/2), then

ARE(Sandwich |Classical) ∼
{

n−1
n∑
i=1

a2
i

}2{
n−1

n∑
i=1

a4
i

}−1

≤ 1. (4)

Example 1 (the intercept): Suppose the first column of Z̃ is a vector of ones, the other columns

have means of zero, and Lt = (1, 0, . . . , 0). We then have ai = n−1 and the asymptotic relative

efficiency in (4) is 1.

Example 2 (the slope in simple linear regression): Assume Xt
i = (1, Ui) where

∑
Ui = 0.

Suppose Lt = (0, 1) so Ltβ̂ is the slope estimate. Because hii = n−1(1 + U2
i ), the design sequence

is regular as long as max(|Ui|) = o(n1/4), in which case the asymptotic relative efficiency is M−1
n ,

where Mn = n−1∑U4
i /(n

−1∑n
i=1 U2

i )2 ≥ 1.

Example 2 shows that the distribution of the design points has an important role to play in

the properties of the sandwich estimator. The asymptotic efficiency is inversely proportional to

the kurtosis of the design points, where the kurtosis equals 3 for normally distributed observations.

Thus in particular, if the design points (U1, ..., Un) were realizations of a normal distribution, the

sandwich estimator Vsand has 3 times the variability of the usual estimator Vols. If the design points

were generated from a Laplace distribution, the usual sandwich estimator is 6 times more variable.

2.3 The Unbiased Sandwich Estimator

Similar calculations can be performed for the unbiased sandwich estimator Vsand,u. The compu-

tation of the variance is similar to the computation for the ordinary sandwich estimator Vsand.
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The calculations are based on the facts var(t2
i ) = 2σ4 and cov(t2

i , t
2
j ) = 2h2

ijσ
4/{(1 − hii)(1− hjj)}

for i 6= j. We can bound the relative efficiency without design regularity conditions. Regularity

conditions allow evaluation of the asymptotic relative efficiency, which we state without proof.

Theorem 3: Under the homoscedastic linear model the unbiased sandwich and classical variance

estimates for Ltβ̂ satisfy:

Efficiency(Sandwich | Classical) ≤ {n−1
n∑
i=1

a2
i }2{n−1

n∑
i=1

a4
i }−1 ≤ 1.

If in addition max(hii) = o(n−1/2), then the middle term is the asymptotic relative efficiency, which

is of course the same as for the usual sandwich estimator.

3 QUASILIKELIHOOD

We now derive an asymptotic comparison between the sandwich and usual estimators in a quasi-

likelihood model. The mean of Y given X is µ(Xtβ) and its variance is σ2V(Xtβ), where the

functions µ(·) and V(·) are known. In some problems, σ2 is estimated, which we indicate by setting

ξ = 1, while when σ2 is known we set ξ = 0. The quasilikelihood estimate of β is the solution β̂ to

0 =
n∑
i=1

{Yi − µ(Xt
iβ̂)}Xiµ

(1)(Xt
iβ̂)/V(Xt

iβ̂),

where in general the jth derivative of a function f(x) is denoted by f (j)(x).

The usual estimator of the covariance matrix of n1/2Lt(β̂ − β) is

Vql = σ̂2(β̂)LtA−1
n (β̂)L,

where An(β) = n−1∑n
i=1 XiXt

iQ(Xt
iβ); Q(x) = {µ(1)(x)}2/V(x), and

σ̂2(β) = ξn−1
n∑
i=1

{Yi − µ(Xt
iβ)}2/V(Xt

iβ) + σ2(1− ξ).

Defining Bn(β) = n−1∑n
i=1 XiXt

iM(Xt
iβ){Yi − µ(Xt

iβ)}2 and M(x) = {µ(1)(x)/V(x)}2, the usual

sandwich estimator is

Vsand = LtA−1
n (β̂)Bn(β̂)A−1

n (β̂)L. (5)

There is a version of the hat matrix for quasilikelihood models, see Cook & Weisberg (1982, pages

191–192) for logistic regression and Carroll & Ruppert (1987, page 74) for other models. In either

case, we use the notation H = (hij) for the hat matrix. In particular, let Ŵ = diag{Q(Xt
iβ̂)}.

Then the hat matrix is H = (Ŵ 1/2Z̃)(Z̃tŴ Z̃)−1(Z̃tŴ 1/2). Thus, hii = Q(Xt
iβ̂)Xt

iA
−1
n (β̂)Xi.
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The “unbiased” sandwich estimator is defined similarly to (5) but with the term {Yi − µ(Xt
iβ)}2

in the definition of Bn(β) replaced by {Yi − µ(Xt
iβ)}2/(1 − hii).

Make the following definitions: Vasymp = σ2LtA−1
n (β)L; Rn = ξn−1∑n

i=1 g(Xt
iβ)Xi; g(x) =

(∂/∂x) log{V(x)}; εi = {Yi − µ(Xt
iβ)}/V1/2(Xt

iβ); qin = Xt
iA
−1
n (β)L; an = LtA−1

n (β)L; Cn =

n−1∑n
i=1 q2

inQ
(1)(Xt

iβ)Xi and

`in = A−1
n (β)Xiµ

(1)(Xt
iβ)/V1/2(Xt

iβ);

vi = {Yi − µ(Xt
iβ)}2M(Xt

iβ)− σ2Q(Xt
iβ);

Wn = n−1
n∑
i=1

q2
inV(Xt

iβ)M (1)(Xt
iβ)Xi.

In linear regression, we were able to perform exact calculations, and we did not rely on asymp-

totics. In quasilikelihood models, such exact calculations are not feasible, and asymptotics are

required. In what follows, we will treat the X’s as a sample from a distribution, and terms without

the subscript n will refer to probability limits. We will not write down formal regularity conditions,

but essentially what is necessary is that sufficient moments of the components of X and Y exist, as

well as sufficient smoothness of µ(·). Under such conditions, at least asymptotically there will be no

leverage points, so that the usual and unbiased sandwich estimators will have similar asymptotic

behavior. Thus A(β) = E{An(β)}, q = XtA−1(β)L, a = LtA−1(β)L, C = E{q2Q(1)(Xtβ)X},

etc.

Theorem 4: As n→∞,

n1/2(Vql − Vasymp) ⇒ Normal[0,Σql = E{aξ(ε2 − σ2)− σ2(aR + C)t`ε}2];

n1/2(Vsand − Vasymp) ⇒ Normal[0,Σsand = E{q2v + (W − 2σ2C)t`ε}2].

The terms Vql and Vsand can be computed and compared in a few special cases with a scalar

predictor where the slope is of interest, so that X = (1, U)t and β = (β0, β1)t.

• In linear homoscedastic regression, µ(x) = x, V(x) = 1. When U has a symmetric dis-

tribution, then simple calculations show that Σsand/Σql = κ, the kurtosis of U , i.e., κ =

E(U4)/{E(U2)}2. This is the asymptotic version of Theorems 2 and 3.

• In logistic regression, V(x) = µ(1)(x) = Q(x) = µ(x){1 − µ(x)}, σ2 = 1, ξ = 0, Rn = 0,

Q(1)(x) = µ(1)(x){1 − 2µ(x)}. All the terms in Theorem 4 can be computed by numerical

integration. We have evaluated the expressions when U has a normal or Laplace distribution,

both with variance 1. We varied β1 while choosing β0 so that marginally pr(Y = 1) = 0.10.
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With β1 = 0.0, 0.5, 1.0, 1.5, the asymptotic relative efficiency of the usual information covari-

ance matrix estimate compared to the sandwich estimate when the predictors are normally

distributed is 3.00, 2.59, 1.92, 1.62, respectively. When the predictors have a Laplace distri-

bution, the corresponding efficiencies are 6.00, 4.36, 3.31, 2.57.

The interesting feature occurs at the null case β1 = 0, in which case the efficiency of the

sandwich estimator is exactly the same as the linear regression problem. This is no numerical

fluke, and in fact can be shown to hold generally when U has a symmetric distribution.

• In Poisson loglinear regression, µ(x) = V(x) = exp(x), σ2 = 1, ξ = 0 and Rn = 0. Here we

consider only the null case, so that β1 = 0. Then, as sketched in the appendix, if U has a

symmetric distribution,

Σsand/Σql = κ + 2κ exp(β0).

This is a somewhat surprising result, namely that as the background event rate exp(β0)

increases, at the null case the sandwich estimator has efficiency decreasing to zero.

• More generally, at the null case the role of the kurtosis of the design becomes clear. Let LtL =

1 and Z̃tZ̃ = nI. Then Q(x) = Q(β0) = Q, A = QI, M = Q/V, g = (∂/∂β0) log{V(β0)},

R = ξg(1, 0)t, q = U/Q, a = 1/Q, C = (Q(1)/Q2)(1, 0)t, ` = Q−1/2(1, U), v = (ε2 − σ2)Q,

W = (M (1)V/Q2)(1, 0)t and thus

Σql = E
[
ξ(ε2 − σ2)/Q− σ2{(ξg/Q) + (Q(1)/Q2)}Q−1/2ε

]2
;

Σsand = E
[
U2(ε2 − σ2)/Q + {(VM (1)/Q2)− (2σ2Q(1)/Q2)}Q−1/2ε

]2
.

The kurtosis of U arises because of fourth moments of U appear in the expression for Σsand.

4 COVERAGE PROBABILITIES AND ALTERNATIVES IN LIN-
EAR AND LOGISTIC REGRESSION

One would expect that the excess variability of the sandwich estimate would be reflected in under-

coverage of confidence intervals. Here we investigate this problem via simulation.

4.1 Linear Models

In most applications of the sandwich method, the formula (1) is used directly and the resulting

“studentized” statistic is compared to the normal distribution. In the types of sample sizes con-

sidered here, it is fairly clear that this practice makes little sense, since it is the analogue of using
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the maximum likelihood estimate of the variance and normal instead of t–percentiles. Hence, some

adjustment for degrees of freedom is necessary. In what follows, we adjusted the usual sandwich

estimator Vsand and its associated confidence intervals for degrees of freedom in the standard way.

Specifically, if the degrees of freedom are df = n − p where p is the number of parameters in β,

then the covariance matrix estimator is multiplied by n/df, an ad hoc unbiasing measure, and

the percentiles of the “studentized” statistic are compared to a t–distribution with df degrees of

freedom. For the unbiased sandwich estimator, we simply used the t–percentiles with df degrees of

freedom.

We simulated the simple linear model with homoscedastic normal errors and with an inter-

cept, so that Xt = (1, U), where U was given three distributions: Normal, Laplace, and t(3), the

t–distribution with 3 degrees of freedom. The actual design matrix Z̃ thus varied with each simu-

lation. Coverage probabilities were based on 10, 000 simulations, and are of course independent of

the parameters in the model. The confidence intervals formed had nominal 95% coverage.

According to the theory, the sandwich estimator becomes increasingly less efficient with a more

dispersed design. In Table 1, we see that this has negative consequences. For example, in a sample

of size n = 20 with the design generated from the Laplace distribution, the usual sandwich method

even with n − p degrees of freedom has a coverage probability of only 89.9%, while the unbiased

sandwich with n− p degrees of freedom has a coverage of only 91.9%.

There are many possibilities to get better coverage from confidence intervals, while still retaining

asymptotically correct coverage in case of heteroscedasticity. A few of these are examined in Table 1.

• A simple method of moments method can be constructed for the linear case. The suggestion

is to use the unbiased sandwich formula but to compare it to the t–distribution with (n−p)/κ̂

degrees of freedom, where κ̂ is the sample kurtosis of the terms ai = L(Z̃tZ̃)−1Xt
i. Here is

the motivation for this method. We know that E(Vols) = σ2/n and that

n(n− p)Vols/σ2 ∼ χ2(n− p). (6)

Also, E(Vsand,u) = E(Vols). Now, suppose that for some k we have approximately that

nkVsand,u/σ
2 ∼ χ2(k). (7)

In this case, what would k be? By (6) and (7) var(Vols) = 2σ4/{n2(n−p)} and var(Vsand,u) =

2σ4/(n2k). Therefore, the asymptotic relative efficiency of the unbiased sandwich estimate to

the ordinary estimate is ARE(Vsand,u|Vols) = var(Vols)/var(Vsand,u) = k/(n−p) = 1/κ, where
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κ is the kurtosis of XtL. Since Vsand,u is a function of the residuals, it is independent of Ltβ̂.

Thus Lt(β̂ − β)/V 1/2
sand,u is approximately t(n−p)/κ, as claimed.

There is an interesting special case where this adjustment to the degrees of freedom gives

exact inference. Consider the one-way layout with I populations and equal sample sizes of N ,

and suppose that we want a confidence interval for the difference between the means of the

first two populations. The unbiased sandwich estimator is the pooled estimate using the first

two samples only whereas Vols is the pooled estimate using all of the samples. Using Vsand,u

with the adjusted degrees of freedom, which is 2(N −1), gives the usual two-sample t-interval

and so will be exact under homoscedasticity. If I is large and N is small, then using Vsand,u

with n− p = I(N − 1) degrees of freedom will give considerable under coverage.

• A second simple method which we have found to work reasonably well is to use the unbiased

sandwich estimator but instead of the t(n−p)–distribution as a reference, use the cnt(n−2−p)–

distribution, where cn = {n/(n− 2− p)}1/2.

• One can also use the bootstrap where the pairs (Y,U) are resampled; the reason for re-

sampling pairs is that at least theoretically bootstrapping the residuals will not work under

heteroscedasticity, although it is the obvious approach for homoscedastic errors. When resam-

pling pairs, our simulations indicate that some variants of the bootstrap do not work very well,

e.g., bootstrapping the usual t–statistic assuming homoscedasticity has fairly unsatisfactory

coverage even when homoscedasticity holds. Other methods do have reasonable coverage in

our simulations, particularly the t–statistic with n− 2 degrees of freedom when the standard

error of the least squares estimate is estimated by the bootstrap standard deviation.

• There is also a theory of likelihood ratio tests modified to be consistent for heteroscedasticity,

see Schrader & Hettmansperger (1980) and Kent (1982). These methods have improved

coverage probabilities in our simulations by reference to a c2
n∗ × F (1, n − p)–distribution,

where cn∗ = {n/(n− p)}1/2.

Table 1 also gives the average lengths of some selected confidence intervals. The usual sandwich

intervals have lower than nominal coverage because they are too short, especially for n = 10.

The results we have described are averages with the predictors generated by a particular design.

In some cases, however, coverage of unmodified sandwich intervals can be very low. For example,

when n = 10, consider the design

(U1, ..., Un) = (0.030,−0.015, 0.006, 0.507,−0.173, 0.526, 0.753, 0.514, 0.554,−2.702).
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The last observation is a leverage point (it has leverage 0.91), and it is just these sorts of situations

where our theory predicts problems. Based on 20, 000 simulations, the exact percentile for the usual

sandwich test statistic is 5.44, with Hinkley’s adjustment it is 4.87, and for the unbiased sandwich

estimator it is 3.54. This is in contrast with the t–percentile with 8 degrees of freedom of 2.31.

Our simple adjustment for the unbiased sandwich which uses cnt(n − 2 − p)–distribution, where

cn = {n/(n−2−p)}1/2, proposes a percentile of 3.16, not perfect but reasonably close. Comparing

the unbiased sandwich to the t–distribution with (n−p)/κ̂ degrees of freedom is conservative, with

approximately 1.5 degrees of freedom and a percentile of more than 6.00. The usual sandwich with

n−p degrees of freedom has actual coverage probability, based on 5, 000 simulations, of only 72.1%,

the unbiased sandwich has coverage 86.7%, and the simple adjustment to the unbiased sandwich,

namely using {n/(n− 4)}1/2t(n− 4) as the reference distribution, has coverage 93.4%, and the use

of (n− p)/κ̂ degrees of freedom has coverage 99.9%.

4.2 Logistic Regression

We also simulated the null case of simple linear logistic regression, for samples of size 200, 300, 400,

in two scenarios: (a) when the response rate was 0.05, and (b) when the expected number of events

was 15. In all cases, the predictors U were generated to have a Laplace distribution.

We defined an “unbiased” sandwich estimate, which is just (5) except that Bn(β̂) is adjusted

for leverage, i.e.,

Bn(β̂) = n−1
n∑
i=1

XiX2
iM(Xt

iβ̂){Yi − µ(Xt
iβ̂)}2/(1 − hii),

where the hat matrix for logistic regression is defined for example in Cook & Weisberg (1982, pages

191–192). Because of the old convention that the effective sample size in the binary case is the

minimum ny of the number of events and non–events, we also compared the unbiased sandwich

Wald test to the {ny/(ny− 2)}1/2t(ny− 2) distribution, and the unbiased sandwich likelihood ratio

test was compared to the square of this distribution.

The results are displayed in Table 2, based on 5, 000 simulations. For comparison purposes, we

also display the usual logistic regression Wald test and likelihood ratio test for a null effect due

to the predictor, both of which have nearly nominal coverage. Once again we see that the usual

sandwich estimate has lower than nominal coverage, “unbiasing” the sandwich helps somewhat,

and making a further adjustment for degrees of freedom helps even more.

We reran these simulations when the predictors U were normally distributed. As expected, with

the smaller leverage, the coverage probabilities of the sandwich estimators improved considerably,
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just as happens in the linear regression simulation.

5 DISCUSSION

As an estimator of variance, the sandwich estimator is inefficient compared to a parametric estima-

tor computed at the correct model. We have shown that in linear, logistic and Poisson regression,

the sandwich estimator becomes increasingly inefficient as the values of the predictors become

heavier–tailed. The sandwich estimator will typically be inefficient if the design includes leverage

values.

Simulations show that the inefficiency of sandwich methods, caused largely by leverage values,

carries over to lower than nominal coverages for heavier–tailed designs, again when the parametric

model is correct.

We do believe that the sandwich estimator is useful in practice, especially for larger sample sizes

and/or when a hypothesized parametric model underlying (say) the generalized estimating equation

approach is seriously questionable. With small samples, and particularly when the predictors are

generated from a heavier–tailed distribution, the increased variability of the sandwich estimator

often leads to coverage probabilities lower than the nominal. The solution is perhaps not to discard

the sandwich estimator, but on a case–by–case basis two obvious strategies are (a) to change

the reference distribution based on simulation experience (as we have done in linear and logistic

regression); and (b) test out the many forms of bootstraps consistent against model deviations to

determine one which works best in practice.
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APPENDIX

5.1 Proof of Theorem 2

The inequality in (4) follows from the Cauchy-Schwarz inequality because
n∑
i=1

a2
i ≤ n1/2(

n∑
i=1

a4
i )

1/2,

which implies that
∑

a4
i ≥ (

∑
a2
i )

2/n. Next, we approximate the variance given in (3). Observe

that
n∑
i=1

a4
i (1− hii)2 = {1 + O(max(hjj)}

n∑
i=1

a4
i ;

∑
i6=j

a2
i a

2
jh

2
ij ≤ max(h2

jj)(
n∑
i=1

a2
i )

2 = o(n−1)O(n
n∑
i=1

a4
i ) = o(

n∑
i=1

a4
i ).

It follows that the variance of the sandwich estimator is asymptotically equivalent to 2σ4∑ a4
i .

It remains to show that the bias of the sandwich estimator is asymptotically negligible for

regular design sequences. Using (2) we have

σ−4bias2(Sandwich) ≤ max(h2
ii)(

n∑
i=1

a2
i )

2 = o(
n∑
i=1

a4
i ).

Combining these results with the approximation mse(classical) ∼ 2σ4(
∑

a2
i )

2/n completes the

proof.
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5.2 Calculations in the Poisson Case

It is easily verified that A(β) = exp(β0)I2, where I2 is the identity matrix. Also, q = U exp(−β0),

Xtβ = β0, Q(1)(Xtβ) = exp(β0), C = exp(−β0)(1, 0)t, ` = exp(−β0/2)(1, U)t, ε = {Y −
exp(β0)}/ exp(β0/2) and hence Σql = exp(−3β0).

Let θ = exp(β0). Then E(Y 2) = θ+θ2, E(Y 3) = θ3+3θ2 +θ, and E(Y 4) = θ4+6θ3 +7θ2 +θ. If

we define Z = Y −θ, then E(Z) = 0, E(Z2) = E(Z3) = θ and E(Z4) = 3θ2+θ. Further, M(x) = 1,

M (1)(x) = 0, W = 0. A detailed calculation then shows that Σsand = 2κ exp(−2β0)+κ exp(−3β0),

as claimed.

5.3 Proof of Theorem 4

A standard quasilikelihood expansion gives n1/2(β̂ − β) ≈ n−1/2∑n
i=1 `inεi, where ≈ means that

the difference is of order op(1). A simple delta–method calculation yields

ξn1/2{σ̂2(β̂)− σ2} ≈ n−1/2
n∑
i=1

ξ(ε2
i − σ2)− σ2Rt

nn
1/2(β̂ − β).

Thus,

n1/2(Vql − Vasymp) ≈ ξn1/2{σ̂2(β̂)− σ2}an + n1/2σ2Lt{A−1
n (β̂)−A−1

n (β)}L

≈ ξn1/2{σ̂2(β̂)− σ2}an − σ2n1/2LtA−1
n (β){An(β̂)−An(β)}A−1

n (β)L

≈ ξn1/2{σ̂2(β̂)− σ2}an − σ2Ct
nn

1/2(β̂ − β)

≈ n−1/2
n∑
i=1

{anξ(ε2
i − σ2)− σ2(anRn + Cn)t`inεi},

which shows the first part of Theorem 4.

We now turn to the sandwich estimator, and note that Bn(β)−σ2An(β) = Op(n−1/2). Because

of this, we have that

n1/2(Vsand − Vasymp) ≈ −2σ2n1/2LtA−1
n (β){An(β̂)−An(β)}A−1

n (β)L

+n1/2LtA−1
n (β){Bn(β̂)− σ2An(β)}A−1

n (β)L

≈ −2σ2n−1/2
n∑
i=1

Ct
n`inεi + n−1/2

n∑
i=1

q2
in[M(Xt

iβ̂){Yi − µ(Xt
iβ̂)}2 − σ2Q(Xt

iβ)]

≈ −2σ2n−1/2
n∑
i=1

Ct
n`inεi + n−1/2

n∑
i=1

q2
invi + n−1

n∑
i=1

q2
iM

(1)(Xt
iβ)Xi{Yi − µ(Xt

iβ)}2n1/2(β̂ − β)

≈ −2σ2n−1/2
n∑
i=1

Ct
n`inεi + n−1/2

n∑
i=1

q2
invi + n−1

n∑
i=1

q2
iM

(1)(Xt
iβ)XiV(Xt

iβ)n1/2(β̂ − β)

≈ n−1/2
n∑
i=1

(−2σ2Ct
n`inεi + q2

i vi + Wt
n`inεi),

as claimed.

13



Normal Laplace t(3)
Method n=10 n=20 n=30 n=10 n=20 n=30 n=10 n=20 n=30

Usual Sandwich, df=n 0.856 0.906 0.912 0.830 0.881 0.899 0.829 0.865 0.889

Usual sandwich, df=n− 2 0.896 0.923 0.923 0.878 0.899 0.910 0.870 0.883 0.893
(1.05) (0.66) (0.52)

Unbiased sandwich, df=n− 2 0.914 0.930 0.931 0.905 0.919 0.922 0.907 0.909 0.914
(1.20) (0.71) (0.55)

Usual Sandwich, df=n− 6 0.981 0.949 0.944 0.971 0.939 0.930 0.969 0.920 0.916

Unbiased Sandwich, df=n− 4
multiplicative adjustment 0.968 0.951 0.947 0.958 0.946 0.938 0.956 0.933 0.931

(1.64) (0.80) (0.60)
Unbiased Sandwich,
df uses kurtosis 0.951 0.954 0.945 0.956 0.954 0.956 0.956 0.963 0.954

Bootstrap–t
usual sandwich 0.937 0.940 0.940 0.916 0.919 0.923 0.916 0.915 0.905

(1.75) (0.85) (0.62)
Bootstrap–t
unbiased sandwich 0.929 0.933 0.937 0.928 0.927 0.931 0.930 0.915 0.919

(1.99) (0.92) (0.66)
Bootstrap–t
parametric se 0.942 0.930 0.930 0.931 0.920 0.920 0.932 0.909 0.909

(1.40) (0.71) (0.54)
Usual t–test with
bootstrap se 0.965 0.944 0.937 0.971 0.953 0.943 0.971 0.952 0.948

(1.62) (0.78) (0.58)

Usual LR Test 0.955 0.952 0.947 0.955 0.954 0.949 0.955 0.951 0.948

Sandwich LR test,
df=n− 2 0.946 0.946 0.942 0.930 0.928 0.928 0.923 0.911 0.912

Unbiased sandwich LR test,
df=n− 2 0.952 0.946 0.941 0.941 0.934 0.933 0.944 0.925 0.925

Unbiased Sandwich LR test
df=n− 2, and with 0.981 0.957 0.951 0.953 0.940 0.937 0.970 0.940 0.933
multiplicative adjustment

Table 1: Results of a simulation study for simple linear regression. Tabulated values are coverage
probabilities in based on 10, 000 simulations. Distributions are for the predictor variable U . Average
lengths of some selected confidence intervals are in parentheses.



p=.05 p=.05 p=.05 p=.075 p=.05 p=.0375
n=200 n=300 n=400 n=200 n=300 n=400

Method np=10 np=15 np=20 np=15 np=15 np=15

Logistic Wald Test, df=n .945 .949 .943 .948 .949 .951

Logistic LR test, df=n .951 .955 .947 .949 .955 .956

Usual sandwich Wald Test, df=n .887 .910 .914 .917 .910 .906

“Unbiased” sandwich Wald Test .905 .921 .920 .928 .921 .914

“Unbiased” sandwich Wald Test, df=ny − 2 .980 .961 .954 .970 .961 .955

Sandwich LR test, df=n .895 .919 .922 .919 .919 .914

“Unbiased” Sandwich LR test .912 .926 .928 .929 .926 .923

“Unbiased” Sandwich LR test, df=ny − 2 .971 .955 .953 .962 .955 .956

Table 2: Results of a simulation study for simple logistic regression. Tabulated values are coverage
probabilities in based on 5, 000 simulations. The predictor variable U has a Laplace distribution.
Here “Unbiased” refers to a leverage adjustment to the residuals, while ny is the number of events.


