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Linkage disequilibrium

D ′ and r 2 in a haplotypic context
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values30, or another based on the four gamete test51), most of the
sequence falls into long segments of strong LD that contain many
SNPs and yet display limited haplotype diversity (Table 5).
Specifically, addressing concerns that blocks might be an artefact

of low marker density52, in these nearly complete data most of the
sequence falls into blocks of four or more SNPs (67% in YRI to 87%
in CEU) and the average sizes of such blocks are similar to initial
estimates30. Although the average block spans many SNPs (30–70),
the average number of common haplotypes in each block ranged
only from 4.0 (CHB þ JPT) to 5.6 (YRI), with nearly all haplotypes
in each block matching one of these few common haplotypes. These
results confirm the generality of inferences drawn from disease-
mapping studies27 and genomic surveys with smaller sample sizes29

and less complete data30.
Long-range haplotypes and local patterns of recombination.
Although haplotypes often break at recombination hotspots (and
block boundaries), this tendency is not invariant. We identified all

unique haplotypes with frequency more than 0.05 across the 269
individuals in the phased data, and compared them to the fine-scale
recombination map. Figure 10 shows a region of chromosome 19
over which many such haplotypes break at identified recombination
hotspots, but others continue. Thus, the tendency towards co-
localization of recombination sites does not imply that all haplotypes
break at each recombination site.
Some regions display remarkably extended haplotype structure

based on a lack of recombination (Supplementary Fig. 8a, b). Most
striking, if unsurprising, are centromeric regions, which lack recom-
bination: haplotypes defined by more than 100 SNPs span several
megabases across the centromeres. The X chromosome has multiple
regions with very extensive haplotypes, whereas other chromosomes
typically have a few such domains.
Most global measures of LD become more consistent when

measured in genetic rather than physical distance. For example,
when plotted against physical distance, the extent of pairwise LD

Table 5 | Haplotype blocks in ENCODE regions, according to two methods

Parameter YRI CEU CHB þ JPT

Method based on a composite of local D’ values30

Average number of SNPs per block 30.3 70.1 54.4
Average length per block (kb) 7.3 16.3 13.2
Fraction of genome spanned by blocks (%) 67 87 81
Average number of haplotypes (MAF $ 0.05) per block 5.57 4.66 4.01
Fraction of chromosomes due to haplotypes with MAF $ 0.05 (%) 94 93 95

Method based on the four gamete test51

Average number of SNPs per block 19.9 24.3 24.3
Average length per block (kb) 4.8 5.9 5.9
Fraction of genome spanned by blocks (%) 86 84 84
Average number of haplotypes (MAF $ 0.05) per block 5.12 3.63 3.63
Fraction of chromosomes due to haplotypes with MAF $ 0.05 (%) 91 95 95

Figure 7 | Genealogical relationships among haplotypes and r2 values in a
region without obligate recombination events. The region of chromosome
2 (234,876,004–234,884,481 bp; NCBI build 34) within ENr131.2q37
contains 36 SNPs, with zero obligate recombination events in the CEU
samples. The left part of the plot shows the seven different haplotypes
observed over this region (alleles are indicated only at SNPs), with their
respective counts in the data. Underneath each of these haplotypes is a

binary representation of the same data, with coloured circles at SNP
positions where a haplotype has the less common allele at that site. Groups
of SNPs all captured by a single tag SNP (with r2 $ 0.8) using a pairwise
tagging algorithm53,54 have the same colour. Seven tag SNPs corresponding
to the seven different colours capture all the SNPs in this region. On the right
these SNPs are mapped to the genealogical tree relating the seven haplotypes
for the data in this region.
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Abstract

Genome-wide association studies (GWAS) have now identified at least 2,000 common variants that appear associated with
common diseases or related traits (http://www.genome.gov/gwastudies), hundreds of which have been convincingly
replicated. It is generally thought that the associated markers reflect the effect of a nearby common (minor allele frequency
.0.05) causal site, which is associated with the marker, leading to extensive resequencing efforts to find causal sites. We
propose as an alternative explanation that variants much less common than the associated one may create ‘‘synthetic
associations’’ by occurring, stochastically, more often in association with one of the alleles at the common site versus the
other allele. Although synthetic associations are an obvious theoretical possibility, they have never been systematically
explored as a possible explanation for GWAS findings. Here, we use simple computer simulations to show the conditions
under which such synthetic associations will arise and how they may be recognized. We show that they are not only
possible, but inevitable, and that under simple but reasonable genetic models, they are likely to account for or contribute to
many of the recently identified signals reported in genome-wide association studies. We also illustrate the behavior of
synthetic associations in real datasets by showing that rare causal mutations responsible for both hearing loss and sickle cell
anemia create genome-wide significant synthetic associations, in the latter case extending over a 2.5-Mb interval
encompassing scores of ‘‘blocks’’ of associated variants. In conclusion, uncommon or rare genetic variants can easily create
synthetic associations that are credited to common variants, and this possibility requires careful consideration in the
interpretation and follow up of GWAS signals.
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Introduction

Efforts to fine map the causal variants responsible for genome-
wide association studies (GWAS) signals have been largely
predicated on the common disease common variant theory,
postulating a common variant as the culprit for observed
associations. This has led to extensive resequencing efforts that
have been largely unsuccessful [1–5]. Here, we explore the
possibility that part of the reason for this may be that the disease
class causing an observed association may consist of multiple low-
frequency variants across large regions of the genome—a
phenomenon we call synthetic association. For convenience, these
less common variants will be referred to here as ‘‘rare,’’ but we
emphasize that we use this term loosely, only to refer to variants
less common than those routinely studied in GWAS.
The basic idea of how synthetic associations emerge in this

model is illustrated in Figure 1, which shows how rare variants, by
chance, can occur disproportionately in some parts of a gene
genealogy. Any variant ‘‘higher up in the genealogy’’ that
partitions those parts of the genealogy containing more disease

variants than average will be identified as disease-associated. It is
well appreciated that a noncausal variant will show association
with a causal variant if the two are in strong linkage disequilibrium
(LD). We use the previously introduced term synthetic association [6],
however, to describe how such indirect association can occur
between a common variant and at least one and possibly many
rarer causal variants. Using the term synthetic as opposed to indirect
emphasizes that the properties of the association signal are very
different when the responsible variant or variants are much less
frequent than the marker that carries the signal, as we detail
below.
To assess the tendency of rare disease-causing variants to create

synthetic signals of association that are credited to single
polymorphisms that are much more common in the population
than the causal variants, we have simulated 10,000 haplotypes
based on a coalescent model in a region either with or without
recombination (Materials and Methods). We assumed that gene
variants that influence disease have an allele frequency between
0.005 and 0.02, which is generally below the range of reliable
detection (either by inclusion or indirect representation) using the
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(LD). We use the previously introduced term synthetic association [6],
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between a common variant and at least one and possibly many
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frequent than the marker that carries the signal, as we detail
below.
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synthetic signals of association that are credited to single
polymorphisms that are much more common in the population
than the causal variants, we have simulated 10,000 haplotypes
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Abstract

Genome-wide association studies (GWAS) have now identified at least 2,000 common variants that appear associated with
common diseases or related traits (http://www.genome.gov/gwastudies), hundreds of which have been convincingly
replicated. It is generally thought that the associated markers reflect the effect of a nearby common (minor allele frequency
.0.05) causal site, which is associated with the marker, leading to extensive resequencing efforts to find causal sites. We
propose as an alternative explanation that variants much less common than the associated one may create ‘‘synthetic
associations’’ by occurring, stochastically, more often in association with one of the alleles at the common site versus the
other allele. Although synthetic associations are an obvious theoretical possibility, they have never been systematically
explored as a possible explanation for GWAS findings. Here, we use simple computer simulations to show the conditions
under which such synthetic associations will arise and how they may be recognized. We show that they are not only
possible, but inevitable, and that under simple but reasonable genetic models, they are likely to account for or contribute to
many of the recently identified signals reported in genome-wide association studies. We also illustrate the behavior of
synthetic associations in real datasets by showing that rare causal mutations responsible for both hearing loss and sickle cell
anemia create genome-wide significant synthetic associations, in the latter case extending over a 2.5-Mb interval
encompassing scores of ‘‘blocks’’ of associated variants. In conclusion, uncommon or rare genetic variants can easily create
synthetic associations that are credited to common variants, and this possibility requires careful consideration in the
interpretation and follow up of GWAS signals.
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Introduction

Efforts to fine map the causal variants responsible for genome-
wide association studies (GWAS) signals have been largely
predicated on the common disease common variant theory,
postulating a common variant as the culprit for observed
associations. This has led to extensive resequencing efforts that
have been largely unsuccessful [1–5]. Here, we explore the
possibility that part of the reason for this may be that the disease
class causing an observed association may consist of multiple low-
frequency variants across large regions of the genome—a
phenomenon we call synthetic association. For convenience, these
less common variants will be referred to here as ‘‘rare,’’ but we
emphasize that we use this term loosely, only to refer to variants
less common than those routinely studied in GWAS.
The basic idea of how synthetic associations emerge in this

model is illustrated in Figure 1, which shows how rare variants, by
chance, can occur disproportionately in some parts of a gene
genealogy. Any variant ‘‘higher up in the genealogy’’ that
partitions those parts of the genealogy containing more disease

variants than average will be identified as disease-associated. It is
well appreciated that a noncausal variant will show association
with a causal variant if the two are in strong linkage disequilibrium
(LD). We use the previously introduced term synthetic association [6],
however, to describe how such indirect association can occur
between a common variant and at least one and possibly many
rarer causal variants. Using the term synthetic as opposed to indirect
emphasizes that the properties of the association signal are very
different when the responsible variant or variants are much less
frequent than the marker that carries the signal, as we detail
below.
To assess the tendency of rare disease-causing variants to create

synthetic signals of association that are credited to single
polymorphisms that are much more common in the population
than the causal variants, we have simulated 10,000 haplotypes
based on a coalescent model in a region either with or without
recombination (Materials and Methods). We assumed that gene
variants that influence disease have an allele frequency between
0.005 and 0.02, which is generally below the range of reliable
detection (either by inclusion or indirect representation) using the
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Synthetic Associations Are Unlikely to Account for Many
Common Disease Genome-Wide Association Signals
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The goal of human disease genetics is to
connect genetic variation with disease risk,
but the optimal study design for gene
mapping varies widely with the underlying
genetic architecture of the disease. Family
based linkage studies made the identi-
fication of genetic defects that directly
cause rare single gene diseases, like cystic
fibrosis and sickle cell disease, routine. By
contrast, the goal of identifying the genes
that explain the heritability of complex
diseases has remained elusive because they
are affected by a host of genetic and
environmental factors. More recently,
however, genome-wide association
studies (GWAS) have identified many
common variants associated with complex
traits. In some cases these studies have
provided valuable insight into disease
pathogenesis [1–3] but each associated
variant often confers only a modest
increase in risk (odds ratios [ORs]
typically range from 1.1 to 1.5). One
consequence of these small effects is that,
even in aggregate, these discoveries fail to
explain most of the heritability of complex
disease. Identifying sources of this missing
heritability is one of the most active areas
of complex disease genetics research [4],
and the relative contribution of rare (,1%
minor allele frequency [MAF]), low-fre-
quency (1%–5%), and common (.5%)
causal variants remains unknown. GWAS
have deeply probed the role of common
variation by exploiting the fact that a
subset of single nucleotide polymorphisms
(SNPs) can act as proxies for (or ‘‘tag’’) the
majority of common SNPs. This efficiency
has allowed inexpensive microarrays,
which directly genotype half a million
SNPs, to indirectly capture .80% of
common variation [5]. While this design
underpins the success of the GWAS
approach, it also presents a drawback:
associations to rare and low frequency

SNPs are typically missed because they do
not have a strongly correlated tag on
GWAS chips.
Dickson et al. [6], in a recent simula-

tion-based experiment, argue that com-
mon variant associations arising from
GWAS may actually reflect multiple low
frequency causal variants rather than a
single common causal variant (Figure 1).
They demonstrate that ‘‘synthetic associa-
tions,’’ where a cluster of low-frequency,
highly penetrant mutations occurs stochas-
tically more frequently with one allele than
the other at a common SNP, can cause
association signals at these common vari-
ants. If synthetic associations were wide-
spread they could in theory explain an
appreciable fraction of the missing herita-
bility. Furthermore, the proportion of
GWAS signals attributable to synthetic
associations has profound implications for
the design of GWAS follow-up studies.
Therefore, while Dickson et al. argue that
synthetic associations are an ‘‘obvious
theoretical possibility,’’ it is worthwhile to
broadly assess, in light of other theoretical
and empirical evidence, the prevalence of
synthetic associations in complex human
disease.

NOD2 and Crohn’s Disease: A
Synthetic Association

The synthetic association paradigm is
supported [7] by the well-known associa-
tion between Crohn’s disease and NOD2

[8], where three rare coding variants
(G881R – MAF:0.04, R675W –
MAF:0.01, and L980fs – MAF:0.02)
confer high risk for Crohn’s (ORs for a
carrier and homozygote are 3 and 38,
respectively) [9]. None of these variants
are present on current GWAS arrays, nor
are they individually well-tagged. Never-
theless, extremely strong association is
seen at nearby common variants because
the aggregate effect size of the low-
frequency causal mutations is sufficiently
large that it creates genome-wide signifi-
cant association even at very weak,
common, tag SNPs (Figure 1). For exam-
ple, in the Wellcome Trust Case-Control
Consortium (WTCCC) Crohn’s genome-
wide association study, the most strongly
associated SNP in the region is rs4471699
(P=1.6610222, risk allele frequency: 0.52,
odds ratio: 1.52) [10]. Furthermore, in a
subset of the WTCCC data where cases
[11] and controls [8,12] have been
genotyped for the three low-frequency
coding mutations, testing for association
while conditioning on carrier status of one
of these mutations completely ablates the
signal at the common SNPs (minimum
unconditional P-value = 1.261026, condi-
tional P-value = 0.52) (Figure 2). Thus,
NOD2 fulfills two important predictions
of the synthetic association model: a
cluster of low-frequency, high-effect vari-
ants can create a GWAS signal, and that
signal vanishes when the causal alleles are
taken into account.

The Perspective section provides experts with a
forum to comment on topical or controversial issues
of broad interest.
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Introduction

Complex traits and diseases, such as
body-mass index, height, diabetes, heart
disease, and psychiatric disorders are
undoubtedly caused by multiple genetic
and environmental factors, although it has
been a major challenge to identify specific
genes. Recently, genome-wide association
studies (GWAS) have resulted in the
detection of many robustly associated
single nucleotide polymorphism (SNP)
variants across a range of outcomes [1],
although for any particular disease or trait
the SNP variants detected explain only a
fraction of the total genetic variance
calculated from family studies. The gap
between the two has been termed the
‘‘missing heritability’’ [2,3]. Many reasons
for the missing heritability have been given
[3]. One plausible explanation is that rare
variants, which existing GWAS platforms
are not designed to capture, make signif-
icant contributions to the heritability of
many traits and diseases. It is indeed likely
that many multifactorial and heteroge-
neous phenotypes will be influenced by a
diverse array of genetic factors that span
the spectrum from private mutation to
common variant. Dickson and colleagues
[4,5] recently took a step further, by
arguing that rare variants might explain
not only some of the heritability that is
currently missing, but also that they may
be the cause of a proportion of detected
associations between complex traits and
common SNPs from GWAS. Based on
computer simulations, they proposed that
some constellations of variants within a
narrow frequency and effect size range can
account for ‘‘many’’ of the observed
associations between complex traits and
common SNPs from GWAS. This is a
strong claim and one that they say has
important implications for the ‘‘design of
future studies to detect causal variants.’’ It
is of great importance to the research

community to establish whether ‘‘many’’
represents an important proportion of
GWAS results to date, since indeed this
can impact on decisions of experimental
design and allocation of research funds.
Dickson et al. define synthetic association as

the association of a genotyped common
marker resulting from multiple unobserved
low-frequency causal variants (see Figure 1).
The variance contributed by the causal
variants would be much higher than
variance explained by the associated geno-
typed SNP, because the genotyped SNPs
will not ‘‘tag’’ (see Box 1) the causal variants
with great precision, thus leading to the
‘‘missing’’ heritability from GWAS. Impor-
tantly, synthetic associations may arise
many hundreds of kilobases (kb) from the
site of the causal variant(s), which would
hamper attempts to locate the causal
variants responsible for association signals
by fine-mapping. Dickson et al. claim that
rare variants can give rise to synthetic
associations that are similar to many
observed GWAS associations. As we show
below, however, synthetic associations in
fact tend to differ in some important ways
to observations from GWAS. Furthermore,
even if rare variants can, in principle, give
rise to associations detectable in GWAS,
the converse proposition (that, for a given
trait, many, or even any, detected GWAS
associations arise from rare variants) does
not automatically follow.

The study of Dickson et al. [4] is the
first to consider, in detail, a genetic
architecture of multiple rare variants
within the framework of GWAS analyses.
For ease of discussion, we use the terms
rare, common, and very common alleles,
but the cut-offs between them is necessar-
ily somewhat arbitrary. For the purposes
of simulation, Dickson et al. define rare
variants as having risk allele frequency
(RAF) 0.005–0.02 and define common
SNPs to be representative of those used in
GWAS studies (minor allele frequency,
MAF.0.05). An important proportion of
GWAS associations have risk alleles in
the very common frequency spectrum
(RAF.0.3) (Figure 2a). We will show that
it is unlikely that such associations are
driven by synthetic associations with single
or multiple rare causal variants. We set out
to understand and clarify their model and
its implications in order to answer three
questions:

i) What is the expected frequency
distribution of the most associated
genotyped SNP under the Dickson et
al. model?

ii) How many loci explain total genetic
variance of complex disease under
the Dickson et al. model?

iii) Using results from the GWAS of the
International Schizophrenia Consor-
tium as an example, are the results of
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Linkage is well powered to detect these models
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Overlap of T1DGC GWAS and linkage results
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Linkage disequilibrium

Imputation implementation (MACH, IMPUTE)

I Markov model used to model each haplotype conditional on all others
I Markov chain Monte Carlo (e.g. Gibbs sampler) is used to estimate

parameters, and update predicted (imputed) haplotypes
I Each individual is updated conditional on all the others
I In parallel to updating haplotypes, estimate “error rates” and

“crossover” probabilities

I Simpler models (e.g. BEAGLE, no parameters to estimate)
appropriate in some circumstances
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Imputation is computationally heavy-duty

I A GWAS of N samples typed on M SNPs yields a very large N ×M
matrix of input data into imputation

I ‘Chunking’ can be done both along the sample and SNP axes

I Sample chunks should be mixed case/control in the same ratio as the
overall sample (on the order of hundreds of samples per chunk)

I SNP chunks should be at least several Mb, with overlapping buffers
at chunk breakpoints to avoid edge effects.
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Pre-phasing can save a great deal of time

I Imputation aims to match skeletal target haplotypes to more
complete (in terms of variation) reference haplotypes.

I In the past, target datasets have been unphased genotype data (e.g.
basic GWAS output). This requires a combination of phasing and
matching, which underlies much of the computational burden.

I Phasing target data in advance (and saving the result) means
imputation, and re-imputation with other references, is much faster
and requires less memory.

I Implemented via flags in IMPUTE v2, BEAGLE and via Minimac for
MACH.

Haplotypes and Imputation Boulder Workshop, 2011 18 / 23
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Reference data, past, present & future

I Past: HapMap2 and HapMap3 (270–1000 samples, 2 million SNPs)

I Present: 1000 genomes pilot (179 samples, >10 million SNPs & small
indels, SV coming)
www.1000genomes.org
mathgen.stats.ox.ac.uk/impute/impute v2.html

I Future: 1000 genomes complete data (2,500 samples, 30(?) million
SNPs, indels, SVs). Phased releases of data integrated from all
platforms (low coverage sequence, high coverage exomes, genotyping
arrays, arrayCGH. . . )

Haplotypes and Imputation Boulder Workshop, 2011 19 / 23
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Example: WTCCC & 1000 Genomes pilot reference

I Imputing into ≈ 16, 000 WTCCC samples using combined SNP/indel
1000 genomes pilot data

I IMPUTE v2 ‘factory default’ settings (N.B. formatting files, aligning
strands, etc. can be fiddly)

I Total processing time > 2 CPU years

I Genome split into ≈ 600 chunks (5+1 Mb), runs of 1600 samples

I Each chunk submitted as a job (6000 total) to Sanger farm, each job
requiring 4–6 GB memory

I 1–2 CPU hours per sample (scales approx linearly with sample size)
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Imputation of rare alleles can identify causal variants
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Imputation of rare alleles can identify causal variants
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Linkage disequilibrium

Imputation of rare alleles can identify causal variants
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Linkage disequilibrium

Analyzing imputed data

I Can transform probabilistic outputs of imputation into “best guess”
genotypes, which has some advantages in interpretability, but is not
advisable except when confidence is very high

I Straightforward to analyze using a logistic regression on “dosage”
eij = 0pij0 + 1pij1 + 2pij2 (e.g. PLINK)

I Other tests (either frequentist or Bayesian) possible, but not much
difference except when uncertainty is very high (e.g. SNPTEST)

I All programs produce a confidence metric of imputed data (IMPUTE:
info; MACH, BEAGLE: r2). Filtering recommendations vary slightly,
and represent a trade-off of power
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Linkage disequilibrium

Imputation resources

MACH
http://www.sph.umich.edu/csg/abecasis/MACH/

http://genome.sph.umich.edu/wiki/Minimac

IMPUTE
http://mathgen.stats.ox.ac.uk/impute/impute v2.html

BEAGLE
http://faculty.washington.edu/browning/beagle/beagle.html

Marchini & Howie. Nat Rev Genet. 2010.
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