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Background

Linkage mapping of Mendelian diseases accelerated. . .
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Background

. . . but this success did not translate to complex disease
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Background

Different diseases require different methods

Challenge: find a genome-wide analysis well powered to find small effects
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Linkage disequilibrium

Genetic diversity

The two processes which increase genetic diversity in a population are
mutation, which introduces novel variants into the population, and
recombination, which re-shuffles the existing patterns of variation
(haplotypes).

The fate of new mutations is also affected by drift, selection, and
population history. Understanding the patterns left behind in genetic
variation because of these forces is key to designing disease studies.
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Linkage disequilibrium

Mutation and recombination in a population
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Linkage disequilibrium

Consequences of mutation and recombination

I Genetic variants are correlated because they occur on a particular
haplotype background, and segregate in populations on that
background.

I In the absence of recombination this correlation would never be
broken down and would extend a great distance along chromosomes.

I Recombination breaks down this correlation over many successive
generations, leaving a narrower and narrower window of correlation.

I This correlation (or linkage disequilibrium, LD) enables GWAS to
capture most common variation in a population without genotyping
every marker.
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Linkage disequilibrium

Quantifying LD
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HapMap

A haplotype map of the human genome
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HapMap

Project details (Phase I/II)

Samples:

I 90 Yoruba (30 parent-parent-offspring trios) from Ibadan, Nigeria
(YRI)

I 90 CEPH samples (30 trios) of European descent from Utah (CEU)

I 45 Han Chinese from Beijing (CHB)

I 45 Japanese from Tokyo (JPT)

SNPs: Original goal was 1 SNP every 5kb, but as genotyping costs
dropped, eventual catalogue included approximately 4 million polymorphic
SNPs scattered across the genome.

Panel % r2 > 0.8 mean max r2

YRI 81 0.90
CEU 94 0.97

CHB+JPT 94 0.97
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Tag SNPs

How can we use HapMap knowledge for disease studies?
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Tag SNPs

Gain efficiency by removing redundant SNPs
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Tag SNPs

Haplotypes can yield additional gains in efficiency
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Tag SNPs

Cheap genotyping arrays allowed this idea to be
implemented genome-wide

Evaluating coverage of genome-wide association studies
Jeffrey C Barrett & Lon R Cardon

Genome-wide association studies involving hundreds of
thousands of SNPs in thousands of cases and controls are now
underway. The first of many analytical challenges in these
studies involves the choice of SNPs to genotype. It is not
practical to construct a different panel of tag SNPs for each
study, so the first generation of genome-wide scans will use
predefined, commercially available marker panels, which will in
part dictate their success or failure. We compare different
approaches in use today, and show that although many of them
provide substantial coverage of common variation in non-
African populations, the precise extent is strongly dependent on
the frequencies of alleles of interest and on specific conside-
rations of study design. Overall, despite substantial differences
in genotyping technologies, marker selection strategies and
number of markers assayed, the first-generation high-throughput
platforms all offer similar levels of genome coverage.

Falling genotype costs and the recent completion of the International
HapMap Project1,2 have made genome-wide association studies
(GWAS) of complex diseases imminent3–5. Such studies have the
potential to assay 100,000–500,000 genetic markers from the 44
million validated genetic variants now available. Although genotyping
most or all of the genetic variants would be desirable in many settings,
present economic and experimental conditions render it necessary, in
practice, to reduce the complete set of genetic
variants down to a tractable but maximally
informative subset.
There are a number of potential approaches

to this problem that have resulted both from
individual investigators’ interests and from
broader questions such as the importance of
obtaining full coverage of the genome versus
focusing on potentially functional variants6,7.
Most of the ongoing or planned GWAS aim to
evaluate most of the common genetic variants
in the human genome, irrespective of their
genic location3,4. For such designs, an obvious
marker selection approach for any particular
study is to pick a theoretically ‘ideal’ set of
SNPs for the study and genotype them in
large samples. This method is appropriate for

studies of small regions or candidate genes, but it is impractical for
GWAS, as the cost of ordering a de novo SNP set for each new genome
scan is prohibitive. Instead, genome-wide studies must choose from
several commercially available alternatives. These pragmatic concerns
of what is currently available in a high-throughput capacity will be at
least as important as theory-driven marker selection for the first
generation of scans that are now underway or being planned.
The practical necessity of having a fixed set of GWAS markers has

obvious advantages, such as the potential to combine data sets across
disease laboratories and the ability to design statistical methods for
commonly used panels, as done for linkage studies over the past decade.
This broad usage makes it important to appreciate the properties of
different marker selection strategies in terms of genomic coverage, allele
frequency representation and population diversity. Here we evaluate the
different strategies (Box 1) used in several commercially available
GWAS panels, including nonsynonymous SNP (nsSNP)-exclusive
sets8, linkage disequilibrium (LD)-based tagging panels9 and random
SNP collections across the genome10. In order to provide as compre-
hensive an evaluation as possible, we use the recently available HapMap
Phase II data1 (one SNP for every 1,250 bp across the entire genome) to
provide a framework for testing and comparison of common variation.
We examine coverage as measured by simple pairwise correlation

(r2) between a member of the tag set and a potentially captured
SNP11,12. This approach is attractive in that it makes few assumptions
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Figure 1 Genomic coverage by maximally efficient (pairwise) tag sets for three HapMap panels and three
r2 cutoffs. Evaluation of common SNPs is performed against the Phase II HapMap data, which provides
a near-complete catalog of common variation (minor allele frequency Z 0.05), including 5 million SNPs
in 270 individuals from populations in North America (CEU), Africa (YRI) and Asia (CHB+JPT)1. The
finished Phase II HapMap contains one common SNP every 1,250 bp in the CEU population and is
estimated to capture 94% of common variation in CEU and CHB+JPT and 81% in YRI1.
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Genome-wide association studies

GWAS revolutionized complex disease genetics
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Genome-wide association studies

Expected challenges

Given that GWAS are feasible, what are the obstacles which stand in the
way of finding genes?

I Data quality control

I No common, single SNP main effects: all epistasis, or haplotypes, or
rare variation or. . .

I Population structure

I Multiple testing corrections will drown out signal

I Computational burden

I Sample sizes too small to detect the effects

I SNP chips don’t cover enough of the genome
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Genome-wide association studies

SNP quality control metrics

SNP QC for GWAS is straightforward, and generally similar to any other
genotyping experiment. Commonly used QC checks include:

I Hardy-Weinberg equilibrium (expected ratios of three possible
genotypes)

I Fraction of missing genotypes

I Allele frequency

I Frequency differences in separate control groups (if available)

...but the crucial difference to all previous experiments is scale! The
WTCCC had 8.5 billion genotypes, and datasets are growing all the time.
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Genome-wide association studies

Sample quality control metrics

Collecting, processing and genotyping thousands of samples (often from
many different clinicians, hospitals, countries. . . ) is difficult.

I Duplicates

I Unexpected relatives

I Low quality DNA samples

I Sample mix-ups

I Samples with different ethnic ancestry

But the good news is that simple analyses of genome-wide data can be
very informative.
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Genome-wide association studies

From intensity measurements to genotypes
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Genome-wide association studies

Clean data matters!
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Genome-wide association studies

GWAS resources

PLINK: analysis toolset
http://pngu.mgh.harvard.edu/purcell/plink/

Worked example: Data quality in case-control association
studies, Anderson CA et al. Nature Protocols 5,
1564–1573 (2010).
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