Path Analysis

Frühling Rijsdijk

Method of Path Analysis

- Allows us to represent linear models for the relationship between variables in diagrammatic form, e.g. a genetic model; a factor model; a regression model
- Makes it easy to derive expectations for the variances and covariances of variables in terms of the parameters of the proposed linear model
- Permits easy translation into matrix formulation as used by programs such as Mx, OpenMx.

Conventions of Path Analysis I

- Squares or rectangles denote observed variables
- Circles or ellipses denote latent (unmeasured) variables
- Upper-case letters are used to denote variables
- Lower-case letters (or numeric values) are used to denote covariances or path coefficients
- Single-headed arrows or paths (->) represent hypothesized causal relationships

where the variable at the tail
 is hypothesized to have a direct
 causal influence on the variable
 at the head

Conventions of Path Analysis II

- Double-headed arrows (<->) are used to represent a covariance between two variables, which may arise through common causes not represented in the model.
- Double-headed arrows may also be used to represent the variance of a variable.

Y = aX + bZ + eE

Conventions of Path Analysis III

- Variables that do not receive causal input from any one variable in the diagram are referred to as *independent*, or *predictor* or **exogenous** variables.
- Variables that do, are referred to as *dependent* or endogenous variables.
- Only independent variables are connected by doubleheaded arrows.
- Single-headed arrows may be drawn from independent to dependent variables or from dependent variables to other dependent variables.

Conventions of Path Analysis IV

- Omission of a two-headed arrow between two independent variables implies the assumption that the covariance of those variables is zero
- Omission of a direct path from an independent (or dependent) variable to a dependent variable implies that there is no direct causal effect of the former on the latter variable

Path Tracing

The covariance between any two variables is the sum of all legitimate chains connecting the variables

The numerical value of a chain is the product of all traced path coefficients in it

A legitimate chain is a path along arrows that follow 3 rules:

 Trace backward, then forward, or simply forward from one variable to another.
 NEVER forward then backward!
 Include double-headed arrows from the independent variables to itself. These variances will be
 1 for latent variables

- (ii) Loops are not allowed, i.e. we can not trace twice through the same variable
- (iii) There is a maximum of one curved arrow per path.
 So, the double-headed arrow from the independent variable to itself is included, unless the chain includes another double-headed arrow (e.g. a correlation path)

The Variance

Since the variance of a variable is the covariance of the variable with itself, the expected variance will be the sum of all paths from the variable to itself, which follow the path tracing rules

- Cov AB = kI + mqn + mpl
- Cov BC = no
- Cov AC = mqo
- Var A = $k^2 + m^2 + 2$ kpm
- Var B = $I^2 + n^2$
- Var $C = o^2$

Path Diagrams for the Classical Twin Model

Quantitative Genetic Theory

- There are two sources of Genetic influences: Additive (A) and non-additive or Dominance (D)
- There are two sources of environmental influences:
 Common or shared (C) and non-shared or unique (E)

In the preceding diagram...

- A, D, C, E are *independent* variables
 - -A = Additive genetic influences
 - D = Non-additive genetic influences (i.e., dominance)
 - C = Shared environmental influences
 - E = Non-shared environmental influences

-A, D, C, E have variances of 1

- Phenotype is a dependent variable
 P = phenotype; the measured variable
- a, d, c, e are parameter estimates

Model for MZ Pairs Reared Together

Note: a, c and e are the same cross twins

Model for DZ Pairs Reared Together

Note: a, c and e are also the same cross groups

 $a^{*}1^{*}a = a^{2}$

 $a^{*}1^{*}a = a^{2}$ + $c^{*}1^{*}c = c^{2}$ + $e^{*}1^{*}e = e^{2}$

Total Variance = $a^2 + c^2 + e^2$

Total Covariance = a^2 +

Total Covariance = $a^2 + c^2$

Total Covariance = $.5a^2 + c^2$

Predicted Var-Cov Matrices

ADE Model

Predicted Var-Cov Matrices

ACE or ADE

Cov(mz) = $a^2 + c^2$ or $a^2 + d^2$ Cov(dz) = $\frac{1}{2}a^2 + c^2$ or $\frac{1}{2}a^2 + \frac{1}{4}d^2$ V_P = $a^2 + c^2 + e^2$ or $a^2 + d^2 + e^2$

3 unknown parameters (a, c, e or a, d, e), and only 3 distinct predictive statistics: Cov MZ, Cov DZ, Vp this model is just identified

Effects of C and D are confounded

The twin correlations indicate which of the two components is more likely to fit the data:

 $Cor(mz) = a^2 + c^2 or a^2 + d^2$ $Cor(dz) = \frac{1}{2}a^2 + c^2$ or $\frac{1}{2}a^2 + \frac{1}{4}d^2$ If $a^2 = .40$, $c^2 = .20$ $r_{\rm mz} = 0.60$ ACE $r_{\rm dz} = 0.40$ If $a^2 = .40$, $d^2 = .20$ $r_{\rm mz} = 0.60$ ADE $r_{\rm dz} = 0.25$

ADCE: classical twin design + adoption data

Cov(mz) = $a^2 + d^2 + c^2$ Cov(dz) = $\frac{1}{2}a^2 + \frac{1}{4}d^2 + c^2$ Cov(adopSibs) = c^2 V_P = $a^2 + d^2 + c^2 + e^2$

4 unknown parameters (a, c, d, e), and 4 distinct predictive statistics: Cov MZ, Cov DZ, Cov adopSibs, Vp this model is just identified

Path Tracing Rules are based on Covariance Algebra

Three Fundamental Covariance Algebra Rules

$$Var(X) = Cov(X,X)$$

Cov(aX,bY) = ab Cov(X,Y)

Cov(X,Y+Z) = Cov(X,Y) + Cov(X,Z)

The variance of a dependent variable (Y) caused by independent variable A, is the squared regression coefficient multiplied by the variance of the independent variable

Example 2

Cov(Y,Z) = Cov(aA,aA) $= a^2 Cov(A,A)$ $= a^2 * .5$

Summary

• Path Tracing and Covariance Algebra have the same aim :

to work out the predicted Variances and Covariances of variables, given the specified model

 The Ultimate Goal is to fit Predicted Variances / Covariances to observed Variances / Covariances of the data in order to estimate model parameters : – regression coefficients, correlations