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Method of Path Analysis

• Allows us to represent linear models for the relationship 
between variables in diagrammatic form, e.g. a genetic 
model; a factor model; a regression model

• Makes it easy to derive expectations for the variances 
and covariances of variables in terms of the parameters 
of the proposed linear model

• Permits easy translation into matrix formulation as used 
by programs such as Mx, OpenMx.



Conventions of Path Analysis I
• Squares or rectangles denote observed variables
• Circles or ellipses denote latent (unmeasured) 

variables
• Upper-case letters are used to denote variables
• Lower-case letters (or numeric values) are used 

to denote covariances or path coefficients
• Single-headed arrows or paths (–>) represent 

hypothesized causal relationships  
- where the variable at the tail 
is hypothesized to have a direct 
causal influence on the variable 
at the head
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Conventions of Path Analysis II
• Double-headed arrows (<–>) are used to represent a 

covariance between two variables, which may arise 
through common causes not represented in the 
model.

• Double-headed arrows may also be used to 
represent the variance of a variable.
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Conventions of Path Analysis III
• Variables that do not receive causal input from any 

one variable in the diagram are referred to as 
independent, or predictor or exogenous variables. 

• Variables that do, are referred to as dependent or 
endogenous variables. 

• Only independent variables are connected by double- 
headed arrows. 

• Single-headed arrows may be drawn from 
independent to dependent variables or from 
dependent variables to other dependent variables.
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Conventions of Path Analysis IV

• Omission of a two-headed arrow between two 
independent variables implies the assumption 
that the covariance of those variables is zero

• Omission of a direct path from an 
independent (or dependent) variable to a 
dependent variable implies that there is no 
direct causal effect of the former on the latter 
variable



Path Tracing
The covariance between any two variables 
is the sum of all legitimate chains 
connecting the variables

The numerical value of a chain is the 
product of all traced path coefficients in it 

A legitimate chain 
is a path along arrows that follow 3 rules:



(i) Trace backward, then forward, or simply forward 
from one variable to another. 
NEVER forward then backward! 
Include double-headed arrows from the independent 
variables to itself. These variances will be 
1 for latent variables

(ii) Loops are not allowed, i.e. we can not trace twice through 
the same variable

(iii) There is a maximum of one curved arrow per path.
So, the double-headed arrow from the independent 
variable to itself is included, unless the chain includes 
another double-headed arrow (e.g. a correlation path)



Since the variance of a variable is 
the covariance of the variable with 
itself, the expected variance will be 
the sum of all paths from the variable 
to itself, which follow the path tracing
rules

The Variance



• Cov AB = kl + mqn + mpl
• Cov BC = no
• Cov AC = mqo
• Var A = k2 + m2 + 2 kpm
• Var B = l2 + n2

• Var C = o2
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Path Diagrams 
for the Classical 

Twin Model



Quantitative Genetic Theory
• There are two sources of Genetic influences: Additive 

(A) and non-additive or Dominance (D)
• There are two sources of environmental influences:  

Common or shared (C) and non-shared or unique (E)
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In the preceding diagram…

• A, D, C, E are independent variables
– A = Additive genetic influences
– D = Non-additive genetic influences (i.e., 

dominance)
– C = Shared environmental influences
– E = Non-shared environmental influences
– A, D, C, E have variances of 1

• Phenotype is a dependent variable
– P = phenotype; the measured variable

• a, d, c, e are parameter estimates
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ACE or ADE
Cov(mz) =     a2 + c2 or a2 +  d2

Cov(dz)  = ½ a2 + c2 or ½ a2  + ¼ d2

VP = a2 + c2 + e2            or a2 + d2 + e2

3 unknown parameters (a, c, e  or a, d, e), 
and only 3 distinct predictive statistics: 

Cov MZ, Cov DZ, Vp
this model is just identified



The twin correlations indicate which of the two 
components is more likely to fit the data:

Cor(mz) =     a2 + c2 or a2 +  d2

Cor(dz)  = ½ a2 + c2 or ½ a2 + ¼ d2

If a2 =.40, c2 =.20 
rmz = 0.60                 
rdz = 0.40  

If a2 =.40, d2 =.20 
rmz = 0.60                      
rdz = 0.25

Effects of C and D are confounded

ADE

ACE



ADCE: classical twin design + adoption data

Cov(mz) =     a2 + d2 + c2

Cov(dz)  =    ½ a2 + ¼ d2 + c2

Cov(adopSibs)  = c2

VP = a2 + d2 + c2 + e2

4 unknown parameters (a, c, d, e), and 4 
distinct predictive statistics: 

Cov MZ, Cov DZ, Cov adopSibs, Vp
this model is just identified



Path Tracing Rules are 
based on 

Covariance Algebra



Three Fundamental Covariance 
Algebra Rules

Cov (aX,bY) = ab Cov(X,Y)

Cov (X,Y+Z) = Cov (X,Y) + Cov (X,Z)

Var (X) = Cov(X,X)
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The variance of a dependent variable (Y) caused by independent 
variable A, is the squared regression coefficient multiplied

by the variance of the independent variable  
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Summary
• Path Tracing and Covariance Algebra 

have the same aim :
to work out the predicted Variances and 
Covariances of variables, given the 
specified model 

• The Ultimate Goal is to fit Predicted 
Variances / Covariances to observed 
Variances / Covariances of the data in 
order to estimate model parameters :
– regression coefficients, correlations
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