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Ordinal data
• Measuring instrument discriminates 

between two or a few ordered
 

categories 
e.g.:
– Absence (0) or presence (1) of a disorder
– Score on a single Q item e.g. : 0 - 1, 0 - 4

• In such cases the data take the form of 
counts, i.e. the number of individuals within 
each category of response



Analysis of categorical 
(ordinal) variables

• The session aims to show how we can 
estimate correlations from simple count data 
(with the ultimate goal to estimate h2, c2, e2)

• For this we need to introduce the concept of 
‘Liability’ or ‘liability threshold models’

• This is followed by a more mathematical 
description of the model



Liability
Liability is a theoretical

 
construct. It’s the assumption

we make about the distribution of a variable which 
we were only able to measure in terms of a few ordered
categories  

Assumptions: 

(1)Categories reflect an imprecise measurement of     
an underlying normal distribution of liability 

(2)The liability distribution has 1 or more thresholds 
(cut-offs) to discriminate between the categories



The risk or liability to a disorder is normally distributed, only 
when a certain threshold is exceeded will someone have the 
disorder. Prevalence: proportion of affected individuals. 

For disorders: 

Affected
individuals

For a single questionnaire item score e.g: 

0 1 2

0 = not at all
1 = sometimes
2 = always

Does not make sense to talk about prevalence: we simply count 
the endorsements of each response category 



The Standard Normal Distribution
Liability is a latent variable, the scale is arbitrary, distribution is
assumed to be a Standard Normal Distribution (SND) or 
z-distribution: 
• Mathematically described by the SN Probability Density 

function (
 

=phi), a bell-shaped curve with:
– mean = 0 and SD = 1
– z-values are the number of SD away from the mean

• Convenience: area under curve =1, translates directly to 
probabilities
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Standard Normal Cumulative Probability in right-hand tail
(For negative z values, areas are found by symmetry)
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Standard Normal Cumulative Probability in right-hand tail
(For negative z values, areas are found by symmetry)
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Standard Normal Cumulative Probability in right-hand tail
(For negative z values, areas are found by symmetry)
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We can find the area between any two thresholds

Z0 Area to the right
.6 .27 (27   %)
1.8 .036 (  3.6 %) -

27-3.6 = 23.4 %

Area=P(.6 
 

z 
 

1.8)

Ability to work out the areas under the curve (proportions) 
enables the reverse operation, e.g. find the z-value
to describe proportion of affected individuals in a sample
or proportion scoring e.g 0, 1, 2 on item.   
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From sample counts to z-value
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It is possible to find a z-value
 

(threshold) so that the area 
exactly matches the observed proportion of the sample 
e.g. sample of 1000

 

individuals, where 80

 

have met the criteria for a disorder 
(8%): the z-value is 1.4
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Two ordinal traits: Data from twins

> Contingency Table with 4 observed cells:

cell a: pairs concordant for unaffected
cell d: pairs concordant for affected
cell b/c: pairs discordant for the disorder

Twin1
Twin2 0 1

0 a b

1 c d
0 = unaffected
1 = affected



Joint Liability Model for twin pairs 

• Assumed to follow a bivariate normal
 

distribution, where 
both traits have a mean of 0 and standard deviation of 1, but 
the correlation

 
between them is variable. 

• The shape
 

of a bivariate normal distribution is determined by 
the correlation

 
between the traits

r =.00 r =.90



Bivariate Normal (R=0.6) partitioned at threshold 1.4 (z-value) on both liabilities
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Expected Proportions of the BN, for R=0.6, Th1=1.4, Th2=1.4



How are expected proportions 
calculated?

By numerical integration of the bivariate normal 
over two dimensions: the liabilities for twin1 and twin2 

e.g. the probability that both twins are affected : 

Φ is the bivariate normal probability density function,
L1

 

and
 

L2 are the liabilities of twin1 and twin2, with means
 

0,
 and

 


 
is the correlation matrix of the two liabilities

T1

 

is threshold (z-value) on
 

L1

 

,
 

T2

 

is threshold (z-value) on
 

L2
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How is this used to estimate correlations between two 
observed ordinal traits? 

Ability to work out the expected proportions given any correlation
(shape of the BND) and set of thresholds on the liabilities, enables 
the reverse operation i.e. the sample proportions in the 4 cells
of the CT (i.e. number of 00, 01,10 and 11 scoring pairs) are used
to estimate the correlation between liabilities and the thresholds



• Estimate correlation in liabilities  separately for 
MZ and DZ pairs from their Count data

• Variance decomposition (A, C, E) can be applied 
to the liability of the trait

• Correlations in liability are determined by path 
model

• Estimate of the heritability of the liability

Twin Models



Summary
• To estimate correlations for ordinal traits 

(counts) we make assumptions about the joint 
distribution of the data (Bivariate Normal)

• The relative proportions of observations in the 
cells of the Contingency Table are translated 
into proportions under the BN

• The most likely thresholds and correlations are 
estimated

• Genetic/Environmental variance components 
are estimated based on these correlations 
derived from MZ and DZ data



ACE Liability Model

11

Twin 1

C EA

L

C AE

L

Twin 2

Unaf ¯Aff Unaf ¯Aff

1

1/.5

Threshold
model

Variance
constraint



For a 2x2 CT with 1 estimated TH on each 
liability, the 2 statistic is always 0, 3 
observed statistics, 3 param, df=0 (it is always 
possible to find a correlation and 2 TH to perfectly explain 
the proportions in each cell). No goodness of fit of the 
normal distribution assumption.

This problem is resolved if the CT is at least
2x3 (i.e. more than 2 categories on at least one liability)
A significant 2 reflects departure 
from normality.

0 1 2

0 O1 O2 O3

1 O4 O5 O6

0 1

0 O1 O2

1 O3 O4

Test of BN assumption



• The likelihood for a vector of observed ordinal 
responses is computed by the expected proportion in 
the corresponding cell of the MV distribution

• The likelihood of the model is the sum of the 
likelihoods of all vectors of observation

• This is a value that depends on the number of 
observations and isn’t very interpretable (as with 
continuous raw data analysis)

• So we compare it with the LL of other models, or a 
saturated (correlation) model to get a 2 model-fit 
index

Fit function Raw Ordinal Data

(Equations given in Mx manual, pg 89-90)



Raw Ordinal Data
ordinal ordinal

Zyg respons1 respons2
1 0 0
1 0 0
1 0 1
2 1 0
2 0 0
1 1 1
2 . 1
2 0 .
2 0 1



Power issues
• Ordinal data / Liability Threshold Model: less 

power than analyses on continuous data
Neale, Eaves & Kendler 1994

• Solutions:
1. Bigger samples
2. Use more categories

Sub-clinical 
group

casescases



Model-fitting to Raw 
Ordinal Data

Practical 



Sample and Measures

• TEDS data collected at age 8

• Parent report

• Childhood Asperger Syndrome Test 
(CAST) (Scott et al., 2002)

• twin pairs: 1221 MZ  2198 DZ 

• Includes children with autism

spectrum conditions



The CAST score dichotomized at 98% (i.e. 
Scores of >16), is the official cut-off point for 
children at risk for Autism Spectrum Disorder

This resulted in only 16 concordant affected 
pairs (0 in some groups).

Numbers improved using a cut-off point of 
90% (however, clinically less interesting)



Practical Exercise
CAST score dichotomized (0,1) at 90% > 
threshold (z-value) of around 1.28
Prevalence of boys (14%)

Observed counts:
MZM DZM
0 1  0    1 

0 483  17  0 435 53
1 29  44  1 54  29

File: cast90m.dat 
R Script: UnivACE_MatrRawOrd.R
Dir:

 
fruhling/Ordinal Analyses/Binary



Cast90m.dat

1          0          0  
2          0          0  
1          0          0  
1          0          1  
2          0          0  
2          0          .  
2          0          0  
1          0          0  
2          0          0  
2          0          0  
2          1          0  
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# Program: UnivACE_MatrRawOrd.R
require(OpenMx)
source("GenEpiHelperFunctions.R")

# Read data from REC ASCI text file (cast90m.dat) with '.' as missing values, space sep
# Variabels: zyg cast90_tw1 cast90_tw2 
# zyg: 1=mz, 2=dz (all males)

allVars<- c('zyg', 'cast90_tw1' , 'cast90_tw2')
Castdata <- read.table ('cast90m.dat', header=F, sep="", na.strings=".",col.names=allVars)
nv <- 1
ntv <- nv*2
summary(Castdata)
str(Castdata)
Vars <-('cast90')
selVars <- c('cast90_tw1' , 'cast90_tw2')
mzData <- subset(Castdata, zyg==1, selVars)
dzData <- subset(Castdata, zyg==2, selVars)

# Print Descriptive Statistics

summary(mzData)
summary(dzData)
table(mzData$cast90_tw1, mzData$cast90_tw2 )
table(dzData$cast90_tw1, dzData$cast90_tw2)



# Specify and Run Saturated Model (Tetrachoric correlations) 
# -----------------------------------------------------------------------
twinSatModel <- mxModel("twinSat",
mxModel("MZ",

# Matrix & Algebra for expected means, Thresholds and correlation
mxMatrix( type="Zero", nrow=1, ncol=nv, name="M" ),
mxAlgebra( expression= cbind(M,M), name="expMean" ),

mxMatrix( type="Full", nrow=1, ncol=ntv, free=TRUE, values=.8, 
name="expThreMZ", dimnames=list('th1',selVars) ),

mxMatrix(type="Stand", nrow=2, ncol=2, free=T, values=.5, 
lbound=-.99, ubound=.99, name="expCorMZ"),

mxData(mzData, type="raw"),
mxFIMLObjective( covariance="expCorMZ", means="expMean", 
thresholds="expThreMZ“, dimnames=selVars, )),



# Specify and Run Saturated Model (Tetrachoric correlations) 
# -----------------------------------------------------------------------
twinSatModel <- mxModel("twinSat",
mxModel("MZ",

# Matrix & Algebra for expected means, Thresholds and correlation

mxMatrix( type="Zero", nrow=1, ncol=nv, name="M" ),

mxAlgebra( expression= cbind(M,M), name="expMean" ),

mxMatrix( type="Full", nrow=1, ncol=ntv, free=TRUE, values=.8, 

name="expThreMZ", dimnames=list('th1',selVars) ),

0
0,0

ThLiab1,            ThLiab2th1

cast90_tw1 cast90_tw2

z-values



.

.
mxMatrix(type="Stand", nrow=2, ncol=2, free=T, values=.5, lbound=-.99, 
ubound=.99, name="expCorMZ"), 
. 

C1 C2

l1 l2
1 1 L1        L2

L1

L2
1 r

1r
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r



# Specify and Run Saturated Model (Tetrachoric correlations) 
# -----------------------------------------------------------------------
twinSatModel <- mxModel("twinSat",
mxModel("MZ",

# Matrix & Algebra for expected means, Thresholds and correlation
mxMatrix( type="Zero", nrow=1, ncol=nv, name="M" ),
mxAlgebra( expression= cbind(M,M), name="expMean" ),

mxMatrix( type="Full", nrow=1, ncol=ntv, free=TRUE, values=.8, 
name="expThreMZ", dimnames=list('th1',selVars) ),

mxMatrix(type="Stand", nrow=2, ncol=2, free=T, values=.5, 
lbound=-.99, ubound=.99, name="expCorMZ"),

mxData(mzData, type="raw"),
mxFIMLObjective( covariance="expCorMZ", means="expMean", 
thresholds="expThreMZ“, dimnames=selVars, )),



# Specify and Run Saturated Model (Tetrachoric correlations) 
# -----------------------------------------------------------------------
twinSatModel <- mxModel ("twinSat",
mxModel("MZ",

# Matrix & Algebra for expected means, Thresholds and correlation
.
.
),

mxModel(“DZ",
# Matrix & Algebra for expected means, Thresholds and correlation
.
.
),

)
twinSatFit <- mxRun(twinSatModel)
twinSatSumm <- summary(twinSatFit)
twinSatSumm



# Specify and Run Saturated SubModel 1 equating Thresholds across Twin 1
# and Twin 2 within zyg group
# -----------------------------------------------------------------------
twinSatSub1 <- twinSatModel

twinSatSub1$MZ$expThreMZ <- mxMatrix(type="Full", nrow=1, ncol=2, 
free=T, 0.8, label="threMZ", name="expThreMZ", dimnames=list('th1',selVars))

twinSatSub1$DZ$expThreDZ <- mxMatrix(type="Full", nrow=1, ncol=2, 
free=T, 0.8, label="threDZ", name="expThreDZ", dimnames=list('th1',selVars))

twinSatSub1Fit <- mxRun(twinSatSub1)
twinSatSub1Summ <- summary(twinSatSub1Fit)
twinSatSub1Summ

threMZ,            threMZth1

cast90_tw1 cast90_tw2



# Fit ACE Model with RawData and Matrices Input, ONE overall Threshold
# ---------------------------------------------------------------------
univACEOrdModel <- mxModel("univACEOrd",

mxModel("ACE",
# Matrices a, c, and e to store a, c, and e path coefficients

mxMatrix( type="Full", nrow=nv, ncol=nv, free=TRUE, values=.6, 
label="a11", name="a" ),
mxMatrix( type="Full", nrow=nv, ncol=nv, free=TRUE, values=.6, 
label="c11", name="c" ),
mxMatrix( type="Full", nrow=nv, ncol=nv, free=TRUE, values=.6, 
label="e11", name="e" ),

# Matrices A, C, and E compute variance components
mxAlgebra( expression=a %*% t(a), name="A" ),
mxAlgebra( expression=c %*% t(c), name="C" ),
mxAlgebra( expression=e %*% t(e), name="E" ),

# Algebra to compute total variances and SD
mxAlgebra( expression=A+C+E, name="V" ),
mxMatrix( type="Iden", nrow=nv, ncol=nv, name="I"),
mxAlgebra( expression=solve(sqrt(I*V)), name="sd"),

# Constraint on variance of ordinal variables
mxConstraint( alg1="V", "=", alg2="I", name="Var1"),

1

C AE

L

A + C + E =1  



Illustration

Run script and check that the values in 
the  Table are correct.

What are the conclusions about the thresholds?

What is the final model in terms of the thresholds?



MODEL np -2LL df 2(df) sig

1 All TH free & 6 1599.8 2282 - -

2

 

TH tw1=tw2 in MZ and DZ $ 4 1602.9 2284 3.18 (2) .20 ns

3 One TH for all males 3 1605.6 2285 5.85 (3) .12 ns

& Thresholds:
 

MZM twin 1 =1.14,  MZM twin 2 = 1.25
DZM twin 1 = 1.06,  DZM twin 2 =

 
1.06

$

 

Thresholds: MZM =1.19, DZM = 1.06

Based on these results, the final TH model in the script is:
1TH for males: 1.11

The correlations for this model are: 
r MZM  = 0.87

 
(.80-.93)       r DZM  = 0.45

 
(.29-.59)



Exercise 
• Add the ‘CE’sub-model, using the same logic as 

for the ‘AE’
 

sub-model

• Note:  In 
# Print Comparative Fit Statistics
-----------------------------------------------------------------------
univOrdACENested <- list(univOrdAEFit,
univOrdCEFit, univOrdEFit)
tableFitStatistics(univOrdACEFit,univOrdACENested)



DF and Constraints

ACE
Model
param

NPBeforeConstraint

a, c, e  (3)
thresholds (1)

NPAfterConstraint

2
1 

4 3

OS 2288

df OS -
 

NPAC

 

= 2288 –
 

3 =
 

2285
OpenMx: OS + number of Constr

 
-

 
NPBC

 

= 2289 –
 

4
= 2285

Number
Of Constr
1



Model -2LL df npBC npAC Model of 
comp 

2(df) sig

ACE 1605.6 2285 4* 3 - - -

CE 1633.6 2286 3 2 ACE 27.9 (1) p=<.001

AE 1605.7 2286 3 2 ACE 0.02 (1) p=.89

E 1774 2287 2 1 ACE 168 (2) p=<.001

* A, C, E + 1 Threshold



Estimates
h2 c2 e2

ACE .85 .02 .13

AE .88 - .12



For multiple threshold models, to ensure 
t1>t2>t3 etc....... 

We use a slightly more complicated model for 
the thresholds

Multiple Thresholds:
 more than two categories



Threshold Specification

Threshold Model T /

t11 t12

2 Categories > 1 threshold per Liability
Threshold Matrix : 1 x 2
T(1,1) T(1,2) threshold twin1 & twin2

T11

T12

Threshold twin 1
T11

Threshold twin 1
T12



3 Categories > 2 thresholds per liability
Matrix T: 2 x 2
T(1,1) T(1,2)

 
threshold 1 for twin1 & twin2

T(2,1) T(2,2)
 

increment

T11

 

= t11 T21

 

= t11

 

+ t21

t21

T12

 

= t12 T22

 

= t12

 

+ t22

t22

Increment: 
must be positive

-3 -4

-3 -4

Twin 1

Twin 2



Expected Thresholds: L*T 

1 0
1 1

t11 t12
t21 t22

* =
t11 t12
t11 + t21 t12 + t22

Thresholds twin 1
T11
T21

T11

 

= t11 T21

 

= t11

 

+ t21

t21

T12

 

= t12 T22

 

= t12

 

+ t22

t22

Use multiplication to ensure 
that second threshold is higher 
than first

Thresholds twin 2
T12
T22



nth <- 2 # number of thresholds
thRows <- paste("th",1:nth,sep="")       # thRows <- c('th1','th2')
.
.
mxMatrix( type="Full", nrow=nth, ncol=ntv, free=TRUE, values=.5, 
lbound= c(-3,  0.0001,  -3,   0.0001), name="Thmz" ),

mxMatrix( type="Lower", nrow=nth, ncol=nth, free=FALSE, values=1, 
name="Inc" ), 
mxAlgebra( expression= Inc %*% Thmz, dimnames=list(thRows,selVars), 
name="expThmz"),    

1 0
1 1

t11 t12
t21 t22

* =
t11 t12
t11 + t21 t12 + t22

expThmz



Note

• This script will work if all variables have all 
ordered categories in the right order: e.g. 1 2 
3 4 or 0 1 2 3

• If that is not true, e.g. you have a variable 
with possible categories 1-6, but no one has 
scored 3 and 6

• Or if you have a categorical variable with 4 
possible scores 1 4 9 16, openMx will treat it 
as continuous.

• This can all be done internally 
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