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AIm and Rationale

Aim: to examine the source of factors that
make traits correlate or co-vary

Rationale:

Traits may be correlated due to shared genetic
factors (A) or shared environmental factors (C
or E)

Can use information on multiple traits from twin
pairs to partition covariation into genetic and
environmental components



Example 1

Why do traits . o
correlate/covary? qﬁ 7??
. A A,
How can we explain the
association? Voun? Nocs”  [Noua?| Vo,
Additive genetic factors (rg) .
. ADHD 1Q
Shared environment (r¢) ;
Non-shared environment (rg) N N

Kuntsi et al. (2004) Am J Med ‘CG) @
Genet B, 124:41 ’\r/‘
E



Example 2

Associations between
phenotypes over time

+ Does anxiety in childhood
lead to depression in
adolescence?

How can we explain the
association?
+ Additive genetic factors (a,,)
¢ Shared environment (c,,)
+ Non-shared environment (e,,)
L 2

How much is not explained by prior
anxiety?

Rice et al. (2004) BMC Psychiatry 4:43

anxiety
7 )

Childhood

Adolescent
depression




Sources of Information

* As an example: two traits measured In
twin pairs
 Interested In:
Cross-trait covariance within individuals
Cross-trait covariance between twins

MZ:DZ ratio of cross-trait covariance between
twins
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Observed Covariance Matrix
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Observed Covariance Matrix
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SEM: Cholesky Decomposition
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SEM: Cholesky Decomposition
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SEM: Cholesky Decomposition
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Why Fit This Model?

« Covariance matrices must be positive
definite

* If a matrix Is positive definite, it can be
decomposed into the product of a
triangular matrix and its transpose:

A =a*al
« Many other multivariate models possible
Depends on data and hypotheses of interest



Cholesky Decomposition

Path Tracing



Within-Twin Covariances (A)
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Within-Twin Covariances (A)
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Within-Twin Covariances (A)
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Within-Twin Covariances (A)
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Within-Twin Covariances (C)
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Within-Twin Covariances (E)
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Cross-Twin Covariances (A)
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Cross-Twin Covariances (A)
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Cross-Twin Covariances (A)
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Cross-Twin Covariances (A)
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Cross-Twin Covariances (C)
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Predicted Model
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Predicted Model
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Example Covariance Matrix

MZ Twin 1 I Twin 2
. ] ] P2
Within-twin covariance ! ol
—
£ Pl
z
_P_Z______ Cross-twin covariance = Within-twin covariance L.
o ;
g P1 0.79 0.49 I 1
= p2 0.50 0.59 I 0.29 1
Twin 1 I Twin 2
DZ —a——— =a I P1 p2
Within-twin covariance
—
c
=S P1
= op2 —— :
N — Cross-twin covariance = Within-twin covariance L.
N 1
1
S Pl 0.39 025 | 1
— |
P2 0.24 0.43 I 0.31 1




Example Covariance Matrix

MZ Twin 1 : o Twin 2 o

Within-twin covariance

—
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Example Covariance Matrix
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Example Covariance Matrix
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Example Covariance Matrix
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Summary

o Within-individual cross-trait covariance
iImplies common aetiological influences

* Cross-twin cross-trait covariance implies
common aetiological influences are
familial

* Whether familial influences genetic or
environmental shown by MZ:DZ ratio of
Cross-twin cross-trait covariances



Cholesky Decomposition
Bivariate Genetic analyses

Specification In
OpenMx



Within-Twin Covariance

Path Tracing:
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Within-Twin Covariance

Path Tracing:
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Within-Twin Covariance

Path Tracing:
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Within-Twin Covariance

ZA —a*a' . i a 0 . a1 a21
>, = a%*%t(a) a1 G2 0 a2
_ I {1%1 +0x0 {]511{1221 + sz a9
- az1a11 T 0 X ag a3 + a9

|

S Openiix .

nv <- 2

mxMatrix ( type="Lower', nrow=nv, ncol=nv, free=TRUE, values=.6, name=
mxAlgebra( expression=a %*% t(a), name="A" ),




Total Within-Twin Covar.

E E -
a a1a c C11C:
T, =a%*%t@) = 11 o 1AL 5. =C%*%t(C) = 11 fuca
a21@11 Qg + Qg C21C11  Cy1 T Coy |
B _
€ €11€
T =e%*%t(e) = 11 211 212
€21€11 €37 T €39

Using matrix addition, the total within-twin covariance
for the phenotypes is defined as:

Y, =24+ 2 + 2E

2 y 2
ajy; + €7 T €1 a11Q@9] + €C11C21 + €11€92]

2 2 | a2 2 2 2
as10ai1 -+ C21C11 -+ €11Em,m a4 -+ A5 +— Coq -+ Coo -+ Eaq — Evq |



OpenMx Matrices & Algebra

OpenMx

multACEModel <- mxModel (’multACE", mxMode I ("*ACE"",

# Matrices a, c, and e to store a, c, and e path coefficients

mxMatrix( type="Lower", nrow=nv, ncol=nv, free=TRUE, values=.6, name="a" ),
mxMatrix( type="Lower', nrow=nv, ncol=nv, free=TRUE, values=.6, name='c" ),
mxMatrix( type="Lower', nrow=nv, ncol=nv, free=TRUE, values=.6, name="e" ),

# Matrices A, C, and E compute variance components mxAlgebra(
expression=a %*% t(a), name="A" ),

mxAlgebra( expression=c %*% t(c), name="C" ),

mxAlgebra( expression=e %*% t(e), name="E" ),

# Algebra to compute total variances and standard deviations (diagonal only)
mxAlgebra( expression=A+C+E, name="V'" ),

mxMatrix( type=""lIden", nrow=nv, ncol=nv, name="1"), mxAlgebra(
expression=solve(sgrt(1*V)), name="isd"),




Cross-Twin Covariance (DZ)

Twin 1 Twin 2



Cross-Twin Covariance (DZ)
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Cross-Twin Covariance (DZ)

Path Tracing:
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Additive Genetic Cross-Twin Covariance
(DZ)

Path Tracing:

Within-traits
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Additive Genetic Cross-Twin Covariance (M2)

Twin 1 Twin 2

1® 2, =1%x%(a% *%t(a)) =




Common Environment Cross-Twin
Covariance

Twin 1

1® Z. =1%x%(c% *%t(c))
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Covariance Model for Twin Pairs

OpenMx .

# Algebra for expected variance/covariance matrix in MZ mxAlgebra(
expression= rbind ( cbind(A+C+E , A+C),

cbind(A+C , A+C+E)),

name="expCovMZ'" ),

# Algebra for expected variance/covariance matrix in DZ, note use of 0.5,
converted to 1*1 matrix
mxAlgebra( expression= rbind ( cbind(A+C+E , 0.5%x%A+C),
cbind(0.5%x%A+C , A+C+E)),
name=""expCovDZ" ) ),




Obtaining Standardised
Estimates



Correlated Factors Solution
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« Each variable
decomposed into
genetic/environmental
components

 Correlations across
variables estimated

e Results from
Cholesky can be
converted to this
model



Genetic correlation




Standardized drawing or correlated
factors solution
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Standardized solution

. A correlation coefficient Is a standardized
covariance that lies between -1 and 1 so
that it Is easier to interpret

. It Is calculated by dividing the covariance
by the square root of the product of the
variances of the two variables
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Genetic Correlations
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Specification in OpenMx

= 1 = - 1
1 rg . \ gli’-ll ’ * 51%111 1%112 K JEAH
e 1 B 0 / 1:'—: gz%lzl Jz%lz:a 0
L Tagy =
=JleA) *AxleA)” _
Where | Is an identity matrix: é [i] ]
- 2
and LA =| “Au E
! 0 T Az

. OpenMx I

solve(sqrt(ACE.I1*ACE.A)) %*% ACE.A %*% solve(sqrt(ACE.I*ACE.A))




Genetic correlation & contribution to
observed correlation

If the rg = 1, the two sets of
genes overlap completely

If however all and a22 are
A 82 near to zero, genes do not

contribute to the observed
| correlation

P1, P2,

Twin 1

The contribution to the observed correlation is a
function of both heritabilities and the rg



Interpreting Results

* High genetic correlation = large overlap In
genetic effects on the two phenotypes

« Does it mean that the phenotypic correlation
between the traits is largely due to genetic
effects?

No: the substantive importance of a particular rg
depends the value of the correlation and the value of
the Jo,2 paths i.e. importance is also determined by
the heritability of each phenotype



Example

gc
1 Proportion of rp due to additive
5 & genetic factors:
Vap,? Vap,? [A2 % * [ 42
4 ¥ ( ax r.g ay)
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Heritability Genetic correlation Heritability Phenotypic Proportion of
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Standardised Results

S  OpenMx IS

ACEcovMatrices <-
c(""ACE.A","ACE.C","ACE.E","ACE.V"","ACE.A/ACE.V" ,""ACE.C/ACE.V" ,""ACE.E/AC
E.V')

ACEcovlLabels < c("'covComp_ A",'covComp_ C',"covComp E","Var",
""stCovComp_A,"stCovComp_C","stCovComp_ E')formatOutputMatrices(multACEF

1T, ACECcovMatrices,ACEcovLabels, Vars, 4)

[1] "Matrix ACE.AACE.V" 5 Proportion of the phenotypic
OQLrix > > . .
stCovComp_Al stCovComp_A2 h’Pl @ correlation due to genetic

LP1 @.2491 B.4784 = effects
LP2 @.4784 .2673 ACDV th

(1] "Matrix ACE.C/ACE.V" Proportion of the phenotypic
CovComp_C1 ' < @ correlation due to shared

stCovClomp_Cl stCovComp_C2 EP]_

LP1 9.2441 D.2417 C environmental effects
LP2 0.2417 9.8292 cov Cpo
5 Proportion of the phenotypic
[1] "Matrix ACE.E/ACE.V" EPl @ correlation due to unshared
stCovComp_E1 stCovComp_EZ :
Pl 9 cBEO 2 2709 EC{}V e environmental effects
LPZ ©.2799 9.7035 P2



Interpretation of Correlations

Consider two traits with a phenotypic correlation of 0.40 :

h%;; = 0.7 and h?,, = 0.6 with rg = .3
* Correlation due to additive genetic effects = ?

* Proportion of phenotypic correlation attributable to
additive genetic effects = 7

h%;, = 0.2 and h?,, = 0.3 withr; = 0.8
* Correlation due to additive genetic effects = ?

* Proportion of phenotypic correlation attributable to
additive genetic effects = 7

Correlation due to A: \/hﬁal iy h?az

Divide by rp to find proportion of phenotypic correlation.



Summary

» Genetic correlation (r;) Is the correlation
between two latent genetic factors

* The proportion of the genetic factors to the
observed correlation is a function of the ry
and the heritabilities of the two traits



More Variables...
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More Variables...
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Expanded Matrices

a1 0
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OpenMx Parameter Matrices

OpenMx

Vars <- c('varx', 'vary’, ‘varz’)
nv <- 3

multACEModel <- mxModel (C’multACE", mxModel ("*ACE"",

# Matrices a, c, and e to store a, c, and e path coefficients

mxMatrix( type="Lower', nrow=nv, ncol=nv, free=TRUE, values=.6, name="a" ),
mxMatrix( type="Lower', nrow=nv, ncol=nv, free=TRUE, values=.6, name="c" ),
mxMatrix( type="Lower', nrow=nv, ncol=nv, free=TRUE, values=.6, name="e" ),




Lunch

 After lunch: practical bivariate and
trivariate genetic analysis
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