Matrix Algebra Variation and Likelihood

Michael C Neale
Virginia Institute for Psychiatric and Behavioral Genetics VCU
International Workshop on Methodology for Genetic Studies
Boulder Colorado $2^{\text {nd }}$ March 2010 ,

Overview

- Matrix multiplication review
- Variation \& covariation
- Likelihood Theory
- Practical

Three Kinds of Matrix Multiplication

- Dot/Hadamard: element by element
$\square \mathrm{ln} \mathrm{R}$ use *
$\square \operatorname{ncol}(\mathrm{A})=\operatorname{ncol}(\mathrm{B})$ AND nrow(A) $=\operatorname{nrow}(\mathrm{B})$
- Ordinary matrix multiplication
$\square \ln \mathrm{R}$ use \%*\%
\square \# of columns in A = \# of rows in B
- Kronecker multiplication
$\square \mathrm{In}$ R use \%x\%
\square No conformability conditions
- http://en.wikipedia.org/wiki/Matrix_multiplication\#Ordinary_matrix_product

Dot or Hadamard Multiplication

$$
\begin{aligned}
{\left[\begin{array}{ll}
5 & 6 \\
7 & 8
\end{array}\right] \times\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] } & =\left[\begin{array}{ll}
5 \times 1 & 6 \times 2 \\
7 \times 3 & 8 \times 4
\end{array}\right] \\
\boldsymbol{A}_{\mathrm{i}, \mathrm{j}} \times \mathrm{B} & =\square \mathrm{B}, \mathrm{j}, \mathrm{j}
\end{aligned}
$$

Ordinary Multiplication

- Multiply: A (mxn) by B (n by p)

$C_{i j}=\sum_{k=1}^{n} A_{i k} \times B_{k j}$

Ordinary Multiplication I

$$
\begin{gathered}
{\left[\begin{array}{ll}
5 & 6 \\
7 & 8
\end{array}\right] \times\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]=[} \\
\underline{\mathrm{A}} \times \underline{\mathrm{B}}=
\end{gathered}
$$

Ordinary Multiplication II

$$
\begin{aligned}
& {\left[\begin{array}{ll}
5 & 6 \\
7 & 8
\end{array}\right] \times\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]=\left[\begin{array}{l}
(5 \times 1) \\
\underline{\mathrm{A}} \times \underline{\mathrm{B}}
\end{array}=\underline{\mathrm{C}}\right.}
\end{aligned}
$$

$$
C_{11}=\sum_{k=1}^{n} A_{11} \times B_{11}
$$

Ordinary Multiplication III

$$
\begin{aligned}
& {\left[\begin{array}{ll}
5 & 6 \\
7 & 8
\end{array}\right] \times\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]=\left[\begin{array}{l}
(5 \times 1)+(6 \times 3) \\
\underline{\mathrm{A}} \times \underline{\mathrm{B}}
\end{array}=\underline{\mathrm{C}}\right.}
\end{aligned}
$$

$$
C_{11}=\sum_{k=2}^{n} A_{12} \times B_{21}
$$

Ordinary Multiplication IV

$$
\begin{aligned}
{\left[\begin{array}{ll}
5 & 6 \\
7 & 8
\end{array}\right] \times\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] } & =\left[\begin{array}{ll}
23 & (5 \times 2)+(6 \times 4) \\
\mathbf{A} \times B & =\mathbf{B}
\end{array}\right.
\end{aligned}
$$

$$
C_{12}=\sum_{k=1}^{n} A_{1 k} \times B_{k 2}
$$

Ordinary Multiplication V

$$
\left[\begin{array}{ll}
5 & 6 \\
7 & 8
\end{array}\right] \times\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]=\left[\begin{array}{cc}
23 & 34 \\
(7 \times 1)+(8 \times 3) &
\end{array}\right]
$$

$$
\begin{aligned}
& \underline{A} \times \underline{B}=\underline{C} \\
& C_{21}=\sum_{k=1}^{n} A_{2 k} \times B_{k 1}
\end{aligned}
$$

Ordinary Multiplication VI

$$
\begin{aligned}
& {\left[\begin{array}{ll}
5 & 6 \\
7 & 8
\end{array}\right] \times\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] }=\left[\begin{array}{cc}
23 & 34 \\
31 & (7 \times 2)+(8 \times 4)
\end{array}\right] \\
& \underline{\mathrm{A}} \times \underline{\mathrm{B}}=\underline{\mathrm{C}} \\
& \mathrm{C}_{22}=\sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{~A}_{2 \mathrm{k}} \times \mathrm{B}_{\mathrm{k} 2}
\end{aligned}
$$

Ordinary Multiplication VII

$$
\begin{aligned}
{\left[\begin{array}{ll}
5 & 6 \\
7 & 8
\end{array}\right] \times\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] } & =\left[\begin{array}{ll}
23 & 34 \\
31 & 46
\end{array}\right] \\
\frac{\boldsymbol{A}}{m \times n} \times \underset{n \times p}{B} & =\underset{m \times p}{B}
\end{aligned}
$$

Kronecker or Direct Product

$$
\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] \otimes\left[\begin{array}{ll}
0 & 5 \\
6 & 7
\end{array}\right]=\left[\begin{array}{llll}
1 \cdot 0 & 1 \cdot 5 & 2 \cdot 0 & 2 \cdot 5 \\
1 \cdot 6 & 1 \cdot 7 & 2 \cdot 6 & 2 \cdot 7 \\
3 \cdot 0 & 3 \cdot 5 & 4 \cdot 0 & 4 \cdot 5 \\
3 \cdot 6 & 3 \cdot 7 & 4 \cdot 6 & 4 \cdot 7
\end{array}\right]
$$

$$
=\left[\begin{array}{cccc}
0 & 5 & 0 & 10 \\
6 & 7 & 12 & 14 \\
0 & 15 & 0 & 20 \\
18 & 21 & 24 & 28
\end{array}\right]
$$

Kronecker or Direct Product

$$
=\left[\begin{array}{cccc}
0 & 5 & 0 & 10 \\
6 & 7 & 12 & 14 \\
0 & 15 & 0 & 20 \\
18 & 21 & 24 & 28
\end{array}\right]
$$

Summarizing Variation and Likelihood

Computing Mean

Formula $\sum\left(\mathrm{x}_{\mathrm{i}}\right) / \mathrm{N}$

Can compute with Pencil
Calculator SAS SPSS
R mean(dataframe)
OpenMx

Variance: elementary probability theory

 2 outcomes

Two Coin toss

3 outcomes

Four Coin toss

5 outcomes

Ten Coin toss

9 outcomes

Outcome

Fort Knox Toss

Infinite outcomes

Dinosaur (of a) Joke

- Elk:

The Theory by A. Elk brackets Miss brackets. My theory is along the following lines.

- Host:

Oh God.

- Elk:

All brontosauruses are thin at one end, much MUCH thicker in the middle, and then thin again at the far end.
http://www.youtube.com/ watch?v=cAYDIPizDIs

Pascal's Triangle

Frequency	Probability
1	$1 / 1$
11	$1 / 2$
121	$1 / 4$
1331	$1 / 8$
14641	$1 / 16$
15101051	$1 / 32$
1615201561	$1 / 64$
172135352171	$1 / 128$

Pascal's friend Chevalier de Mere 1654; Huygens 1657; Cardan 1501-1576

Variance

- Measure of Spread
- Easily calculated
- Individual differences

Average squared deviation Normal distribution

Measuring Variation Weighs \& Means

- Absolute differences?
- Squared differences?
- Absolute cubed?
- Squared squared?
?

Measuring Variation

Weighs \& Means
\Rightarrow • Squared differences

Fisher (1922) On the mathematical foundations of theoretical statistics. Phil Trans Roy Soc London A 222:309-368

Squared has minimum variance under normal distribution

Covariance

- Measure of association between two variables
- Closely related to variance
- Useful to partition variance

Deviations in two dimensions

Deviations in two dimensions

Measuring Covariation

Concept: Area of a rectangle

- A square, perimeter 4 - Area 1

1

Measuring Covariation

Concept: Area of a rectangle

- A skinny rectangle, perimeter 4 - Area .25*1.75 = . 4385

Measuring Covariation

Concept: Area of a rectangle

- Points can contribute negatively
- Area -.25*1.75 = -. 4385
1.75
-. 25

Measuring Covariation

Covariance Formula: Average cross-product of deviations from mean

$$
\sigma_{x y}=\frac{\Sigma\left(\mathbf{x}_{i}-\mu_{x}\right)\left(\mathbf{y}_{i}-\mu_{y}\right)}{\mathbf{N}}
$$

Correlation

- Standardized covariance - Lies between -1 and 1

Summary

Formulae for sample statistics; i=1...N observations

$$
\begin{aligned}
& \mu=\left(\sum \mathbf{x}_{\mathrm{i}}\right) / \mathbf{N} \\
& \sigma_{\mathrm{x}}^{2}=\sum\left(\mathbf{x}_{\mathrm{i}}-\mu_{\mathrm{x}}\right)^{2} / \mathbf{(N)} \\
& \sigma_{\mathrm{xy}}=\sum\left(\mathbf{x}_{\mathrm{i}}-\mu_{\mathrm{x}}\right)\left(\mathbf{y}_{\mathrm{i}}-\mu_{\mathbf{y}}\right) /(\mathbf{N}) \\
&{r_{x y}}=\frac{\sigma_{\mathrm{xy}}}{\sqrt{\sigma_{\mathrm{x}}^{2} \sigma_{\mathrm{x}}^{2}}}
\end{aligned}
$$

Variance covariance matrix

Several variables

$$
\left[\begin{array}{lll}
\operatorname{Var}(X) & \operatorname{Cov}(X, Y) & \operatorname{Cov}(X, Z) \\
\operatorname{Cov}(X, Y) & \operatorname{Var}(Y) & \operatorname{Cov}(Y, Z) \\
\operatorname{Cov}(X, Z) & \operatorname{Cov}(Y, Z) & \operatorname{Var}(Z)
\end{array}\right]
$$

Variance covariance matrix

Univariate Twin Data

Only suitable for complete data Good conceptual perspective

Conclusion

- Means and covariances
- Basic input statistics for "Traditional SEM"
- Easy to compute
- Can use raw data instead

Likelihood: Normal Theory

Calculate height of curve

- Univariate - height of normal pdf

$$
\begin{aligned}
& -\phi(x)= \\
& -\left(2 \Pi \sigma^{2}\right)^{-.5} e^{\left.-.5\left(\left(x_{1}-\mu\right)^{\wedge} 2\right) / \sigma^{\wedge} 2\right)}
\end{aligned}
$$

- Multivariate - height of multinormal pdf

$$
-|2 \Pi \Sigma|^{-n / 2} e^{-.5\left(\left(\mathbf{x}_{1}-\mu\right) \Sigma^{-1}\left(\mathbf{x}_{1}-\mu\right) \prime\right)}
$$

Height of normal curve

Probability density function

$\phi\left(\mathrm{x}_{\mathrm{i}}\right)$ is the likelihood of data point x_{i} for particular mean \& variance estimates

Tuesday, March 2, 2010

Height of bivariate normal curve

 An unlikely pair of (x, y) values

R graphics: http:/I addictedtor.free.fr/graphiques/


```
mul<-0 # set the expected value of x1
mu2<-0 # set the expected value of x2
s11<-10 # set the variance of x1
s22<-10 # set the variance of x2
rho<-0.0 # set the correlation coefficient between x1 and x2
x1<-seq(-10,10,length=41) # generate series for values of x1 & x2
x2<-x1 # copy x1 to x2
# set up the bivariate normal density function - could use
f<-function(x1,x2){
    term1 <- 1/(2*pi*sqrt(s11*s22*(1-rho^2)))
    term2 <- -1/(2*(1-rho^2))
    term3 <- (x1-mu1)^2/s11
    term4 <- (x2-mu2)^2/s22
    term5 <- -2*rho*((x1-mu1)*(x2-mu2))/(sqrt(s11)*sqrt(s22))
    term1*exp(term2*(term3+term4-term5))
}
# calculate the density values
z<-outer(x1,x2,f)
# generate the 3-D plot
persp(x1, x2, z,
    main="Two dimensional Normal Distribution",
    sub=expression(italic(f)~(bold(x))==frac(1,2~pi~sqrt(sigma[11]~
            sigma[22]~(1-rho^2)))~phantom(0)~exp~bgroup("{",
            list(-frac(1,2(1-rho^2)),
            bgroup("[", frac((x[1]~-~mu[1])^2, sigma[11])~~~2~rho~frac(x[1]~-~mu[1],
            sqrt(sigma[11]))~ frac(x[2]~-~mu[2],sqrt(sigma[22]))~+~
            frac((x[2]~-~mu[2])^2, sigma[22]),"]")),"}")),
    col="lightblue", theta=30, phi=20, r=50, d=0.1, expand=0.5,
    ltheta=90, lphi=180, shade=0.75, ticktype="detailed", nticks=5)
# adding a text line to the graph
mtext(expression(list(mu[1]==0,mu[2]==0,sigma[11]==10,sigma[22]==10,sigma[12
] }\mp@subsup{\underline{\underline{6}}}{15}{15,rho==0.0) ),
side=3)
```


Tuesday, March 2, 2010

Two dimensional Normal Distribution

$$
\mu_{1}=0, \mu_{2}=0, \sigma_{11}=10, \sigma_{22}=10, \sigma_{12}=15, \rho=0.9
$$

$$
f(\mathbf{x})=\frac{1}{2 \pi \sqrt{\sigma_{11} \sigma_{22}\left(1-\rho^{2}\right)}} \exp \left\{-\frac{1}{2\left(1-\rho^{2}\right)^{\prime}},\left[\frac{\left(\mathrm{x}_{1}-\mu_{1}\right)^{2}}{\sigma_{11}}-2 \rho \frac{\mathrm{x}_{1}-\mu_{1} \mathrm{x}_{2}-\mu_{2}}{\sqrt{\sigma_{11}}} \frac{\left(\mathrm{x}_{2}-\mu_{2}\right)^{2}}{\sqrt{\sigma_{22}}}+\frac{\sigma_{22}}{}\right]\right\}
$$

Exercises: Compute Normal PDF

Get used to OpenMx script language

Use matrix algebra

Taste of likelihood theory

