Comorbidity Models

Michael C Neale
Virginia Institute for Psychiatric and Behavioral Genetics VCU
International Workshop on Methodology for Genetic Studies
Boulder Colorado 5th March 2010 ,

Overview

- Psychiatric Disorders: binary phenotypes
- Lots of comorbidity
- Substance abuse similar
- ACE model is but one of many
- Two twins, two binary variables
- 16 outcome combinations
- Fit models by maximum likelihood - (alternatives exist)

Assessment of Psychiatric Disorders

- Psychiatrists can agree on symptoms better than on diagnoses (Kendell et al 1971)
- Diagnostic and Statistical Manual of Mental Disorders (DSM-III 1980; DSM-IIIR 1987; DSMIV 1994; DSM-IV 2012). Widespread use
- Little empirical basis for classification
- "If you believe..."

Comorbidity is High

- High for Psychiatric Disorders
- Anxiety
- Depression
- Phobias
- Panic
- Alcohol Abuse
- 70\% of those with history of 1 have history of at least one other (Kessler 1993; N=18,000)
- Similar rates in 10,000+ Virginia twins

Pure forms of two disorders A \& B generate some of the same symptoms

Assessments of disorders A \& B share some symptoms

Cramer, Waldrop, Van der Maas, Borsboom (In Press) Comorbidity: A network perspective. Brain Behavior Sciences

Comorbidity due to symptom sharing

Figure 4. A comorbidity network for MDD and GAD. Larger nodes represent more frequent symptoms; darker circumference, higher centrality; thicker edges, higher frequency of co-occurrence; darker edges, stronger associations. Only edges with log odds ratio higher than (-) 0.60 are represented. Centrally positioned nodes (mConc, gConc, mSleep, gSleep, mFatig, gFatig, mRest and gRest) represent overlapping symptoms. Non-overlapping MDD symptoms are displayed on the left the figure, non-overlapping GAD symptoms on the right.

Not today!

Why do people get a disorder?

Single factor of large effect?
Lots of little factors of cumulative effect?
Both?

How do we find out which?
Measure variation
Measure covariation to understand it

Basic statistical theory

Two Dimensions: Contours

Non-normal distribution: Contours

Basic Theory

- Models for symptoms:
- Latent class analysis
- Factor analysis
- Factor mixture model
- Reprieved...

Models of Comorbidity for Multifactorial Disorders
Michael C. Neale' and Kenneth S. Kendler ${ }^{1,2}$
Deparments of 'Psyclatry and 'Human Gereekes. Medial Colege of Virginia. Richnoond

Comorbidity

A correlation between (binary) traits Neale \& Kendler (1995) 13 Models Based on Klein \& Riso (1994)

Partitioning Comorbidity

Modeling Comorbidity

Reciprocal Causation

Modeling Comorbidity

Major Depression Causes Generalized Anxiety Disorder

Modeling Comorbidity

Generalized Anxiety Disorder causes Major Depression

Alternative models of increasing risk to a second disorder

$p($ comorbid $)=$ chance of getting second disorder

- Jump Model

Threshold Model $r=.5$

Alternate forms: One underlying continuum

Alternate forms: More detail

$$
\begin{align*}
& L=\int_{-\infty}^{t_{1}} \phi(R) d R \tag{1}\\
& M=\int_{t_{1}}^{t_{1}} \phi(R) d R \tag{2}\\
& U=\int_{t_{2}}^{\infty} \phi(R) d R \tag{3}
\end{align*}
$$

$P(\bar{A}, \overline{\mathrm{~B}})=L+(1-p)(1-r) U$
$P(\bar{X}, \mathrm{~B})=p(1-r) U$
$P(\mathrm{~A}, \overline{\mathrm{~B}})=(1-p) r U$
$P(A, \mathrm{~B})=p r U$

Alternate forms: Detail of pairs

$P(\overline{\mathrm{~A}} 1, \mathrm{~B} 1, \overline{\mathrm{~A}} 2, \overline{\mathrm{~B}} 2)=$	$L L+2(1-p)(1-r) U L$
	$+(1-p)^{2}(1-r)^{2} U \mathrm{U}$
$P(\overline{\mathrm{~A}} 1, \overline{\mathrm{~B}} 1, \overline{\mathrm{~A}} 2, \mathrm{~B} 2)=$	$r(1-p) L \mathrm{LU}$
	$+(1-p)^{2} r(1-r)^{2} U U$
$P(\overline{\mathrm{~A}} 1, \mathrm{~B} 1, \mathrm{~A} 2, \overline{\mathrm{~B}} 2)=$	$p(1-r) L U$
	$+p(1-p)(1-r)^{2} U U$
$P(\overline{\mathrm{~A}} 1, \mathrm{~B} 1, \mathrm{~A} 2, \mathrm{~B} 2)=$	$p r L U$
	$+p(1-p) r(1-r) \mathrm{UU}$
$P(\overline{\mathrm{~A}} 1, \mathrm{~B} 1, \overline{\mathrm{~A}} 2, \mathrm{~B} 2)=$	$(1-p)^{2} r^{2} U U$
$P(\overline{\mathrm{~A}} 1, \mathrm{~B} 1, \mathrm{~A} 2, \overline{\mathrm{~B}} 2)=$	$p(1-p) r(1-r) U U$
$P(\overline{\mathrm{~A}} 1, \mathrm{~B} 1, \mathrm{~A} 2, \mathrm{~B} 2)=$	$p(1-p) r^{2} U U$
$P(\mathrm{~A} 1, \mathrm{~B} 1, \mathrm{~A} 2, \overline{\mathrm{~B}} 2)=$	$p^{2}(1-r)^{2} U U$

$$
\begin{align*}
& L L_{A}=\int_{-\infty}^{1_{A}} \int_{-\infty}^{A_{A}} \phi\left(R_{A 1}, R_{N 2}\right) d R_{A} d R_{A 1} \quad \text { (24) } \\
& L M_{A}=\int_{-A}^{N_{A}} \int_{R_{A}}^{2_{A}} \phi\left(R_{A 1}, R_{A 2}\right) d R_{A Z} d R_{A S} \tag{25}\\
& L U_{A}=\int_{-A}^{N_{A}} \int_{Q_{A}}^{\infty} \phi\left(R_{A t}, R_{A 2}\right) d R_{A D} d R_{A 1} \\
& \text { (26) } \\
& M M_{A}=\int_{A_{A}}^{a_{A}} \int_{R_{A}}^{D_{A}} \phi\left(R_{A 1}, R_{A I}\right) d R_{N A} d R_{A S} \tag{27}\\
& M U_{A}=\int_{A I_{A}}^{2_{A}} \int_{R_{A}} \phi\left(R_{A 1}, R_{A A}\right) d R_{A A} d R_{A 1} \tag{28}\\
& U U_{A}=\int_{a_{A}} \int_{a_{A}} \phi\left(R_{A 1 t} R_{A 2}\right) d R_{A 2} d R_{A 1}, \tag{29}
\end{align*}
$$

$P(A 1, B 1, A 2, B 2)=p^{2} r(1-r) U U$ (38)
$P(A 1, B 1, A 2, B 2)=p^{2} r^{2} U U$. (39)

OpenMx Script algebra for Alternate Forms

```
# Program: Alternate Forms
require(OpenMx)
nv<-1
# Fit Alternate Forms Model with Cell Frequencies Input, ACE.one overall Threshold
#
AltFormsModel <- mxModel("AlternateForms",
    mxModel("ACE",
    # Matrices a, c, and e to store a, c, and e path coefficients
        mxMatrix( type="Full", nrow=nv, ncol=nv, free=TRUE, values=.6, label="a11",
name="a" ),
            mxMatrix( type="Full", nrow=nv, ncol=nv, free=TRUE, values=.6, label="c11",
name="c" ),
        mxMatrix( type="Full", nrow=nv, ncol=nv, free=TRUE, values=sqrt(.28), label="e11",
name="e" ),
    # Matrices A, C, and E compute variance components
        mxAlgebra( expression=a %*% t(a), name="A" ),
        mxAlgebra( expression=c %*% t(c), name="C" ),
        mxAlgebra( expression=e %*% t(e), name="E" ),
    # Algebra to compute total variances and standard deviations (diagonal only)
        mxAlgebra( expression=A+C+E, name="V" ),
        mxMatrix( type="Iden", nrow=nv, ncol=nv, name="I"),
        mxAlgebra( expression=solve(sqrt(I*V)), name="sd"),
    # Constraint on variance of A+C+E latent variables
        mxConstraint( alg1="V", "=", alg2="I", name="Var1"),
```


OpenMx Script algebra for Alternate Forms

\# Algebra for expected variance/covariance matrix in MZ $m x A l g e b r a($ expression $=~ r b i n d ~(c b i n d(A+C+E ~, ~ A+C)$, cbind(A+C , $A+C+E)$), name="expCovMZ"),
\# Algebra for expected variance/covariance matrix in DZ, note use of 0.5, $m x A l g e b r a($ expression $=r b i n d ~(c b i n d(A+C+E, 0.5 \% x \% A+C)$, cbind($0.5 \% \times \% A+C, A+C+E)$), name="expCovDZ"),
\# Matrices for probabilities P Q R S of being affected given below/above threshold mxMatrix(type="Full", nrow=1, ncol=1, free=TRUE, values=.8, label="p", name="P"), mxMatrix(type="Full", nrow=1, ncol=1, free=TRUE, values=.6, label="r", name="R"), mxMatrix(type="Iden", nrow=1, ncol=1, free=F, name="I"), mxAlgebra(expression= I-P, name="Q"), mxAlgebra(expression= I-R, name="S"),
\# Threshold parameter \& matrices for (fixed at zero) means mxMatrix(type="Full", nrow=1, ncol=1, free=TRUE, values=1, label="tmz", name="T"), mxMatrix(type="Zero", nrow=1, ncol=nv, name="M"), $m x A l g e b r a($ expression $=c b i n d(M, M)$, name="expMean"),
\# Integrals for computing the pairwise probabilities of being above/below threshold - MZ $m x A l g e b r a(e x p r e s s i o n=o m x M n o r(e x p C o v M Z, ~ e x p M e a n, ~ c b i n d(-I n f,-I n f), ~ c b i n d(T, T)), ~$ name="bothBelow"), mxAlgebra(expression=omxMnor(expCovMZ, expMean, cbind(-Inf,T), cbind(T,Inf)), name="oneBelow"), mxAlgebra(expression=omxMnor(expCovMZ, expMean, cbind(T,T), cbind(Inf,Inf)), name="bothAbove"),

OpenMx Script algebra for Alternate Forms

```
    # Integrals for computing the pairwise probabilities of being above/below threshold - DZ
        mxAlgebra(expression=omxMnor(expCovDZ, expMean, cbind(-Inf,-Inf), cbind(T,T)),
name="bothBelowDZ"),
        mxAlgebra(expression=omxMnor(expCovDZ, expMean, cbind(-Inf,T), cbind(T,Inf)),
name="oneBelowDZ"),
        mxAlgebra(expression=omxMnor(expCovDZ, expMean, cbind(T,T), cbind(Inf,Inf)),
name="bothAboveDZ"),
    # Finally, predicted proportions in each of 10 cells for MZ
        mxAlgebra(rbind(
        bothBelow + 2*oneBelow*Q*S + bothAbove*Q*Q*S*S,
        2*(oneBelow*R*Q + bothAbove*Q*Q*R*S),
        2*(oneBelow*P*S + bothAbove*P*Q*S*S),
        2*(oneBelow*P*R + bothAbove*P*R*Q*S),
        bothAbove*Q*Q*R*R,
        2*bothAbove*P*Q*R*S,
        2*bothAbove*P*Q*R*R,
        bothAbove*P*S*P*S,
        2*bothAbove*P*s*P*R,
        bothAbove*P*R*P*R
        ),name="MZExpectedFrequencies"),
```


OpenMx Script algebra for Alternate Forms

```
# Finally, predicted proportions in each of 10 cells for DZ
    mxAlgebra(rbind(
    bothBelowDZ + 2*oneBelowDZ*Q*S + bothAboveDZ*Q*Q*S*S,
    2*(oneBelowDZ*R*Q + bothAboveDZ*Q*Q*R*S),
    2*(oneBelowDZ*P*S + bothAboveDZ*P*Q*S*S),
    2*(oneBelowDZ*P*R + bothAboveDZ*P*R*Q*S),
    bothAboveDZ*Q*Q*R*R,
    2*bothAboveDZ*P*Q*R*S,
    2*bothAboveDZ*P*Q*R*R,
    bothAboveDZ*P*S*P*S,
    2*bothAboveDZ*P*S*P*R,
    bothAboveDZ*P*R*P*R), name="DZExpectedFrequencies")),
mxModel("MZ",
    mxMatrix(type="Full", nrow=10, ncol=1, free=FALSE,
        values=c(141,35,32,25,15,7,33,18,39,47), name="MZObservedFrequencies"),
    mxAlgebra( -2 * sum(MZObservedFrequencies * log
    (ACE.MZExpectedFrequencies)),name="MZalgobj"),
mxAlgebra0bjective("MZalgobj")),
```


OpenMx Script algebra for Alternate Forms

mxModel("DZ",
mxMatrix(type="Full", nrow=10, ncol=1, free=F, values=c $(58,18,27,44,7,6,33,15,38,81)$, name="DZObservedFrequencies"), mxAlgebra(

$$
-2 * \text { sum(DZObservedFrequencies * }
$$

log (ACE.DZExpectedFrequencies)), name="DZalgobj"),
mxAlgebra0bjective("DZalgobj"),
mxAlgebra(MZ.objective + DZ.objective, name="-2sumll"), mxAlgebraObjective("-2sumll")))

AltFormsRun<-mxRun(AltFormsModel)
summary (AltFormsRun)

Causal or correlated models

Correlated Liabilities

$$
\begin{gathered}
P(\mathrm{~A} 1, \mathrm{~B} 1, \mathrm{~A} 2, \mathrm{~B} 2) \\
=U U U U_{\mathrm{A} 1, \mathrm{~B} 1, \mathrm{~A} 2, \mathrm{~B} 2} \\
=\int_{t_{\mathrm{A}}}^{\infty} \int_{t_{\mathrm{B}}}^{\infty} \int_{t_{\mathrm{A}}}^{\infty} \int_{t_{\mathrm{B}}}^{\infty} \phi\left(R_{\mathrm{A} 1}, R_{\mathrm{B} 1}, R_{\mathrm{A} 2}, R_{\mathrm{B} 2}\right) \\
d R_{\mathrm{B} 2} d R_{\mathrm{A} 2} d R_{\mathrm{B} 1} d R_{\mathrm{A} 1}
\end{gathered}
$$

Inherent in OpenMx Ordinal Data Analysis We can do it by hand as well

Jump Model: Actually having one disorder raises chance of getting second

Random Multiformity: Detail

$$
\begin{align*}
& P(A, B)=L_{A} \cdot L_{A} \\
& P(X, B)=(1-r) L_{A} \cdot U_{B} \tag{9}\\
& P(A, B)=U_{A} \cdot(1-p) L_{3} \tag{10}\\
& P(A, B)=U_{A} \cdot\left(U_{B}+p L_{A}\right)+r L_{A} \cdot U_{B}, \tag{11}
\end{align*}
$$

(8)

Three separate disorders

Three Independent Disorders

$P(\overline{\mathrm{~A}} 1, \overline{\mathrm{~B}} 1, \overline{\mathrm{~A}} 2, \mathrm{~B} 2)=L L_{\mathrm{A}} \cdot L L_{A \mathrm{~A}} \cdot L L_{\mathrm{B}}$	(60)
$P(\overline{\mathrm{~A}} 1, \overline{\mathrm{~B}} 1, \overline{\mathrm{~A}} 2, \mathrm{~B} 2)=L L_{\mathrm{A}} \cdot L L_{\mathrm{AB}} \cdot L U_{\mathrm{B}}$	(61)
$P(\bar{A} 1, \overline{\mathrm{~B}} 1, \mathrm{~A} 2, \overline{\mathrm{~B}} 2)=L U_{\mathrm{A}} \cdot L L_{\mathrm{AB}} \cdot L L_{\mathrm{B}}$	(62)
$\begin{aligned} P(\overline{\mathrm{~A}} 1, \mathrm{~B} 1, \mathrm{~A} 2, \mathrm{~B} 2)= & L_{A} \cdot L L_{A B} \cdot L L_{\mathrm{B}} \\ & +L U_{\mathrm{A}} \cdot L L_{A B} \cdot L U_{\mathrm{B}} \end{aligned}$	(63)
$P(\bar{A} 1, \mathrm{~B} 1, \overline{\mathrm{~A}} 2, \mathrm{~B} 2)=L L_{A} \cdot L L_{\Lambda B} \cdot U U_{B}$	(64)
$P(\bar{A} 1, \mathrm{~B} 1, \mathrm{~A} 2, \overline{\mathrm{~B}} 2)=L U_{\mathrm{A}} \cdot L L_{\mathrm{AB}} \cdot L U_{\mathrm{B}}$	(65)
$\begin{aligned} P(\AA 1, \mathrm{~B} 1, \mathrm{~A} 2, \mathrm{~B} 2)= & L_{A} \cdot L U_{A B} \cdot U_{\mathrm{B}} \\ & +L U_{A} \cdot L L_{A B} \cdot U U_{B} \end{aligned}$	(66)
$P(\mathrm{~A} 1, \mathrm{~B} 1, \mathrm{~A} 2, \mathrm{~B} 2)=U U_{\mathrm{A}} \cdot L L_{A B} \cdot L L_{\mathrm{B}}$	(67)
$\begin{aligned} P(\mathrm{~A} 1, \mathrm{~B} 1, \mathrm{~A} 2, \mathrm{~B} 2)= & L_{A} \cdot L U_{\mathrm{AB}} \cdot L_{\mathrm{B}} \\ & +U U_{A} \cdot L L_{A B} \cdot L U_{3} \end{aligned}$	(68)
$\begin{aligned} P(\mathrm{~A} 1, \mathrm{~B} 1, \mathrm{~A} 2, \mathrm{~B} 2)= & U U_{\mathrm{AB}}+U U_{\mathrm{A}} \cdot L L_{\mathrm{AB}} \cdot U U_{\mathrm{B}} \\ & +2 U_{\mathrm{A}} \cdot L U_{\mathrm{AB}} \cdot U_{\mathrm{B}} . \end{aligned}$	(69)

Unified Comorbidity Model?

Unified Genetic Comorbidity Model?

Sources for comorbidity scripts

- http://ibgwww.colorado.edu/cadd/software
- Soo Rhee's website! Excellent!
- Includes covariates e.g., age (Rhee et al submitted)
- Clinical selected samples as well
- Exercise: download and fit the examples and decide on best fit model
- http://www.vcu.edu/mx/examples
- Mike Neale's script website.
- More than a little bit dusty

OpenMx User-defined Functions

- Can specify AlgebraObjective

mxAlgebra(MZ.objective + DZ.objective, name="-2sumll"), mxAlgebra0bjective("-2sumll"))

- Any mxAlgebra you like!
- Woohoo!
- See, e.g., http://openmx.psyc.virginia.edu/ repoview/1/trunk/models/passingl oneLocusLikelihood.R
- One \& two locus ABO blood group examples

Comorbidity with covariates

- Soo Rhee's website again
- http://ibgwww.colorado.edu/cadd/software
- These scripts are in classic Mx
- Look out for updates

Possible Extensions

- More than two disorders
- More than one point in time
- More than pairs of twins
- Covariates \& GxE
- Models for symptoms (IRT)
- Dynamical systems models
- Generalization to continuous liability

Possible Exercises

- Modify directionofCausation.R to fit: - Anxiety (P2) causes depression (P1)
- Bidirectional causation (tricky, may need bounds)
- Test hypothesis that comorbidity in ACE bivariate is purely due to rG
- Use tableFitStatistics function to compare results of ACE \& other comorbidity models
- Find some other data, rinse \& repeat...

Comorbidity Depression \& Anxiety Disorders

