Thresholds and ordinal data

Sarah Medland – Boulder 2010

A plug for OpenMx?

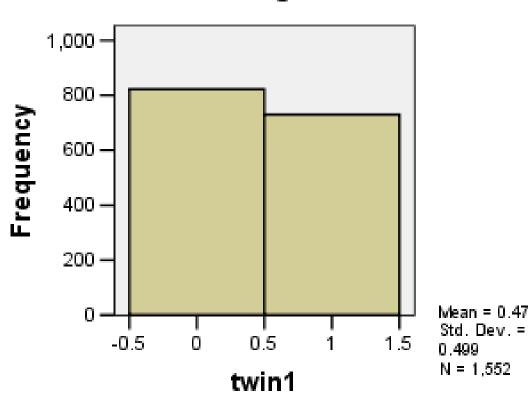
- Very few packages can handle ordinal data adequately...
- OpenMx can also be used for more than just genetic analyses
 - Regression
 - Polycohoric correlations
 - Factor analysis...

Binary data

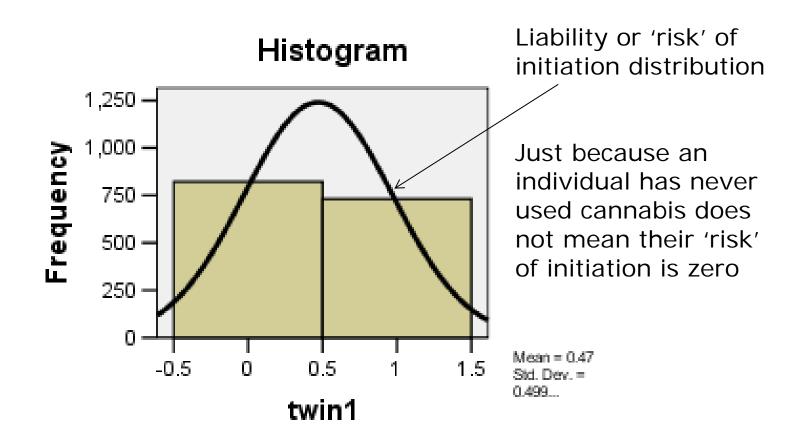
- File: two_cat.dat
 - Zyg twin1 twin2 Age Sex
- Trait lifetime cannabis use
 - Never Smoked/Ever Smoked

Zyg	twin1	twin2	Age	Sex
1	0	0	25.80	1
1	0	0	21.10	1
1	0	0	21.79	1
1	0	0	21.12	1
1	0	0	32.05	1
1	0	0	37.41	1
1	0	0	33.56	0

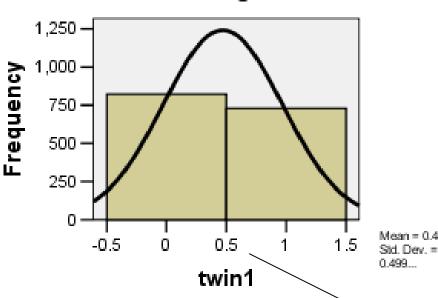
Twin 1 cannabis use


 \circ 0 = never used

twin1


					Cumulative
		Frequency	Percent	Valid Percent	Percent
Valid	0	822	47.5	53.0	53.0
	1	730	42.2	47.0	100.0
	Total	1552	89.7	100.0	
Missing	System	179	10.3		
Total		1731	100.0		

Twin 1 cannabis use

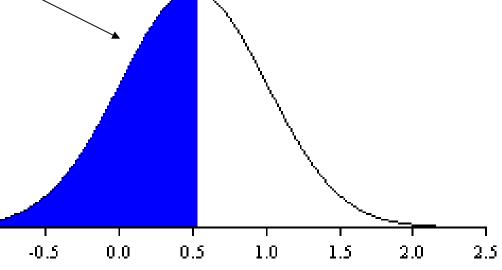


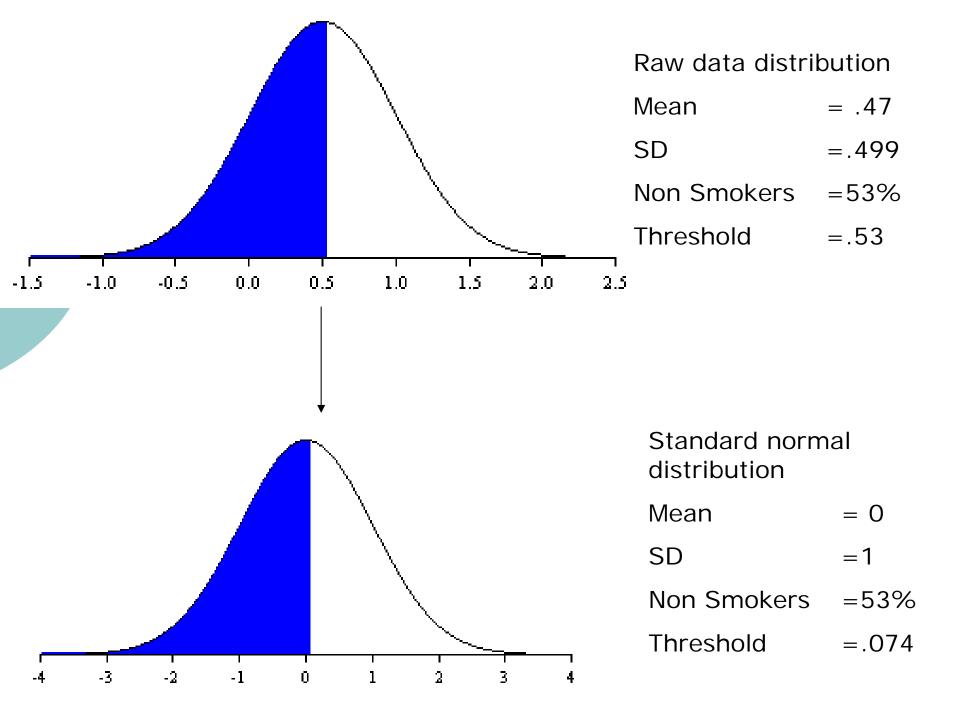
Twin 1 cannabis use



Mean = .47

SD = .499


Non Smokers =53%



-1.0

-1.5

ie Obesity vs BMI MDD vs quantitative depression scales

Threshold = .074 – Huh what?

- How can I work this out
 - Excell
 - =NORMSINV()
 - o Thresholds.xls

▼ (NORMSINV(C2)						
В	С	D	Е	F		
Binary Data	Brisbane	Amsterdam	Boulder < 2009	Boulder > 2009		
Percent of non-smokers	52.96%	85.00%	65.00%	35.00%		
Threshold	0.074365	1.03643339	0.385320466	-0.385320466		

Why do we rescale the data this way?

- Convenience
 - Variance always 1
 - Mean is always 0
 - We can interpret the area under a curve between two z-values as a probability or percentage

Why do we rescale the data this way?

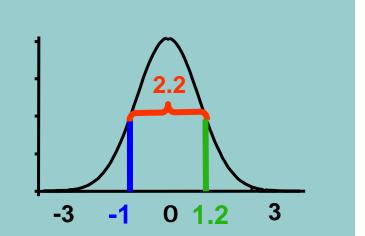
You could use other distributions but **you** would have to specify the fit function

Threshold.R

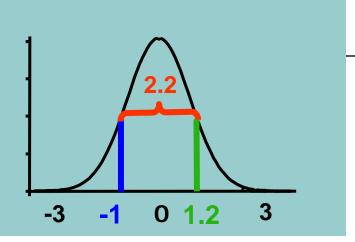
```
require(OpenMx)
Canabis <- read.table ('two cat.dat', header=T )
 Print Descriptive Statistics
summary(Canabis$twin1)
table(Canabis$twin1)
# Select data
Canabis1 <-data.frame(Canabis$twin1)</pre>
print( "Note no subset command because I want to use all the data")
head(Canabis1)
print( "This won't work because data names cannot contain '.'")
names(Canabis1) <- "twin1"</pre>
head(Canabis1)
```

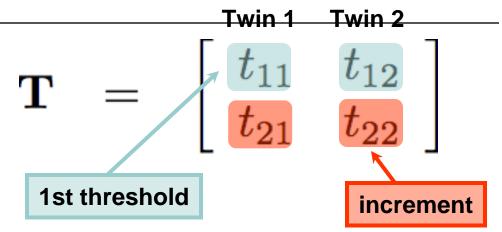
Threshold.R

```
# Specify and Run Saturated Model (Tetrachoric correlations) with RawData
nvar <- 1
nthresh <- 1
Vars <-('twin1')
|selVars <- ('twin1')
checkThresholdModel<- mxModel("checkThreshold",</pre>
mxModel("BrisbaneData",
  # Matrix & Algebra for expected means vector (SND), Thresholds and correlation
        mxMatrix(type="Zero", nrow=nvar, ncol=nvar, name="expMean"),
        mxMatrix(type="Full", nrow=nvar, ncol=nthresh, free=TRUE, values=0,
                 name="expThresh", label="threshold1",dimnames=list('th1',selVars) ),
        mxMatrix(type="Stand", nrow=nvar, ncol=nvar, name="expCor"),
        mxData(Canabis1, type="raw"),
        mxFIMLObjective( covariance="expCor", means="expMean", dimnames=selVars,
                 thresholds="expThresh" )),
        mxAlgebra(BrisbaneData.objective, name="-2LL"),
        mxAlgebraObjective("-2LL")
checkThresholdFit <- mxRun(checkThresholdModel)</pre>
checkThresholdSumm <- summary(checkThresholdFit)</pre>
checkThresholdSumm
```

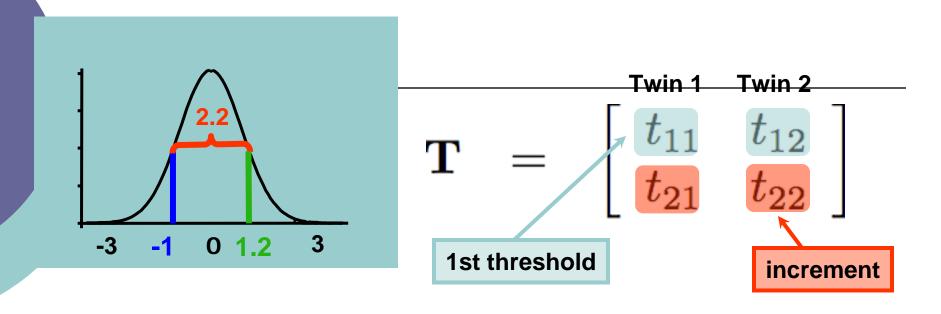

	B2	•	fx	=NORMS	SINV(B1)
		1	4		В
1	Percent of	non-si	mokers		0.52964
2	Threshold				0.074365
7					

What about more than 2 categories?

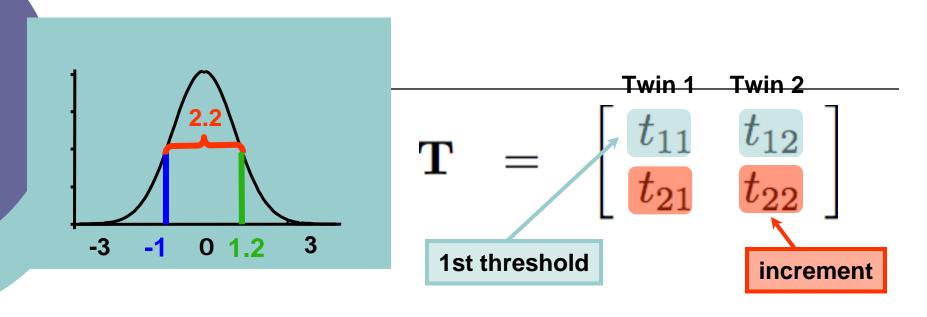

Very similar


- We create a matrix containing the 1st threshold and the displacements between subsequent matrices
- We then add the 1st threshold and the displacement to obtain the subsequent

thresholds



Mx Threshold Specification: 3+ Cat.


Mx Threshold Specification: 3+ Cat.

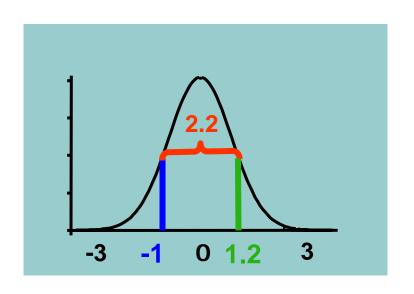
Mx Threshold Model: Thresholds L*T /

$$\mathbf{L} * \mathbf{T} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} * \begin{bmatrix} t_{11} & t_{12} \\ t_{21} & t_{22} \end{bmatrix}$$
$$= \begin{bmatrix} t_{11} & t_{12} \\ t_{11} + t_{21} & t_{12} + t_{22} \end{bmatrix}$$

Mx Threshold Specification: 3+ Cat.

Mx Threshold Model: Thresholds L*T /

$$\mathbf{L} * \mathbf{T} = egin{bmatrix} 1 & 0 \ 1 & 1 \end{bmatrix} * egin{bmatrix} t_{11} & t_{12} \ t_{21} & t_{22} \end{bmatrix}$$


$$= egin{bmatrix} t_{11} & t_{12} \ t_{11} + t_{21} & t_{12} + t_{22} \end{bmatrix}$$

$$\begin{bmatrix} t_{11} & t_{12} \\ t_{21} & t_{22} \end{bmatrix} = \begin{bmatrix} zscore1 twin1 & zscore1 twin2 \\ zscore2 twin1 - zscore1 twin1 & zscore2 twin2 - zscore1 twin2 \end{bmatrix}$$

```
mxMatrix( type="Full", nrow=2, ncol=2, free=TRUE,
values=.5, lbound= c(-3,0.0001, -3, 0.0001), name="T" ),
```

The bounds stop the thresholds going 'backwards'

ie they preserve the ordering of the data

- Lower bounds
- -3
- 0.0001.0001

```
mxMatrix( type="Lower", nrow=2, ncol=2, free=FALSE,
values=1, name="L" ),
```

```
\left[\begin{array}{cc} 1 & 0 \\ 1 & 1 \end{array}\right]
```

```
mxAlgebra( expression= L %*% T, dimnames=list(thRows,selVars)
, name="expThmz"),
```

```
mxMatrix( type="Full", nrow=2, ncol=2, free=TRUE,
  values=.5, lbound= c(-3,0.0001, -3, 0.0001), name="T" ),

mxMatrix( type="Lower", nrow=2, ncol=2, free=FALSE,
  values=1, name="L" ),

mxAlgebra( expression= L %*% T, dimnames=list(thRows, selVars)
  , name="expThmz"),
```

Thresholds.xls

Try changing the values

Ordinal Data	Brisbane	Amsterdam	Boulder < 2009	Boulder > 2009
Neverused	52.96%	85.00%	65.00%	35.00%
used >10 times	5.00%	5.00%	5.00%	5.00%
used<10 times	42.04%	10.00%	30.00%	60.00%
Threshold 1	0.074365	1.03643339	0.385320466	-0.385320466
Threshold 2	0.200973	1.28155157	0.524400513	-0.253347103
T11 (1st threshold)	0.074365	1.03643339	0.385320466	-0.385320466
T21 (displacement)	0.126608	0.24511818	0.139080046	0.131973363