# (Re)introduction to OpenMx Sarah Medland <br>  



## Starting at the beginning

- Opening R
- Gui - double click
- Unix/Terminal - type R
- Closing R
- Gui - click on the $x$
- Unix/Terminal - type q() then n
- Yes <- is the same as =
- What directory am I in?
- getwd()
- Change directory?
- setwd("H:/tues_morning")


## Starting at the beginning

- Data preparation
- The algebra style used in Mx expects 1 line per case/family
- (Almost) limitless number of families and variables
- Data needs to be read into R before it can be analysed
- (the commands to read the data can be nested within the R script)
- Default missing code is now NA


## Reading in data

- Example data:ozbmi2.txt

| Fam | agecat | age | 299 | part | wt1 | wt2 | nt1 | ht2 | htwt1 | htut2 | bmi1 | bmi2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 115 | 6 | 0.21 | 1 | 2 | 58 | 57 | 1.7 | 1.7 | 25. 5692 | 19.7232 | 20.9943 | 25.8726 |
| 121 | 0 | 0.24 | 1 | 2 | 54 | 53 | 1.6299 | 1.6299 | 25.3244 | 19.9481 | 21. 9828 | 25.9519 |
| 158 | 6 | 0.21 | 1 | 2 | 55 | 50 | 1.6499 | 1.6799 | 25.252 | 17.7154 | 21. 6455 | 25.121 |
| 172 | 5 | 0.21 | 1 | 2 | 66 | 76 | 1.5698 | 1.6499 | 26.7759 | 27.9155 | 23. 6125 | 23.3543 |
| 182 | 0 | 0.19 | 1 | 2 | 55 | 48 | 1.6599 | 1.6299 | 19.2894 | 18. 5662 | 20.7169 | 25.2583 |
| 199 | 0 | 0.26 | 1 | 2 | 69 | 60 | 1.5999 | 1.5698 | 23.4375 | 24.3418 | 22. 9854 | 22.3454 | na.strings = "NA")

- head(data)

|  | $\begin{aligned} & \text { hear } \\ & \text { fam } \end{aligned}$ |  | age | zyg | part | wt 1 | wt2 | ht1 | ht2 | htwt 1 | htwt2 | bmi1 | bmi2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 115 | 0 | 0.21 | 1 | 2 | 58 | 57 | 1.7 | 1.7 | 20.0692 | 19.7232 | 20.9943 | 20.8726 |
| 2 | 121 | 0 | 0.24 | 1 | 2 | 54 | 53 | 1.6299 | 1.6299 | 20.3244 | 19.9481 | 21.0828 | 20.9519 |
| 3 | 158 | 0 | 0.21 | 1 | 2 | 55 | 50 | 1.6499 | 1. 6799 | 20.202 | 17.7154 | 21.0405 | 20.121 |
| 4 | 172 | 0 | 0.21 | 1 | 2 | 66 | 76 | 1.5698 | 1.6499 | 26.7759 | 27.9155 | 23.0125 | 23.3043 |
| 5 | 182 | 0 | 0.19 | 1 | 2 | 50 | 48 | 1.6099 | 1.6299 | 19.2894 | 18.0662 | 20.7169 | 20.2583 |
| 6 | 199 | 0 | 0.26 | 1 | 2 | 60 | 60 | 1.5999 | 1.5698 | 23.4375 | 24.3418 | 22.0804 | 22.3454 |

## Selecting and sub-setting the data

## - Make separate data sets for the MZ and DZ

```
> mzData <- as.data.frame(subset(data, zyg<3, c(bmi1,bmi2)))
```

$>$ dzData <- as.data.frame (subset (data, zyg>2, c(bmi1,bmi2)))
$>$ head(dzData)
bmi1 bmi2
$84321.9642 \quad \mathrm{NA}$
84421.879121 .2112
84522.232122 .6044
84619.849120 .1743
84720.1743 NA
84821.705021 .2905

- Check data is
numeric and behaves as expected

```
> cov(mzData,use="complete")
                            bmi1 bmi2
bmi1 0.8779390 0.6734489
bmi2 0.6734489 0.8987715
> cov(dzData,use="complete")
    bmi1 bmi2
bmi1 0.8908474 0.2872594
bmi2 0.2872594 0.8657751
> colMeans(mzData, na.rm=TRUE)
    bmi1 bmi2
21.75089 21.73471
> colMeans(dzData, na.rm=TRUE)
    bmi1 bmi2
21.68689 21.88095
```


## Common error

## - Problem: data contains a non numeric value

```
> cov(dzData,use="complete")
    bmi1 bmi2
bmi1 0.8908474 0.2872594
bmi2 0.2872594 0.8657751
Warning message:
In cov(dzData, use = "complete") : NAs introduced by coercion
> colMeans (mzData, na.rm=TRUE)
Error in colMeans(mzData, na.rm = TRUE) : 'x' must be numeric
> colMeans(dzData, na.rm=TRUE)
Error in colMeans(dzData, na.rm = TRUE) : 'x' must be numeric
```

| 26171 | 1 | 0.35 | 5 | 2 | 51 | 79 | 1.5999 | 1.7998 | 19.9219 | 24.3827 | 20.9427 | 22.3571 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 29188 | 1 | 0.37 | 5 | 2 | 53 | 65 | 1.5698 | 1.73 | 21.5019 | 21.7181 | 21.477 | 21.547 |
| 29204 | 1 | 0.53 | 5 | 1 | 58 | 6.4 | 1.6299 | NH | 21.83 | NA | A | NA |
| 29396 | 1 | 0.37 | 5 | 2 | 64 | 73 | 1.6499 | 1.8298 | 23.5978 | 21.7982 | 22.1013 | 21.5728 |
| 20398 | 1 | 9.52 | 5 | 2 | 69 | 77 | 1.6299 | 1.73 | 22.5827 | 25.7276 | 21.8203 | 22.7329 |

- Equivalent Mx Classic error - Uh-oh... I'm having trouble reading a number in D or E format


## Important structural stuff

- Mx Classic
- Each job was composed of one or more groups
- Each group is 'opened' with a title
- Each group is 'closed' with an end statement
- openMx
- Less structured


## General Hierarchy



## Matrices: the building blocks

mxMatrix( type="Lower", nrow=nv, ncol=nv, free=TRUE, values=.6, label="a11", name="a" ), \#X

- Many types eg. type="Lower"
- Denoted by names eg. name="a"
- Size eg. nrow=nv, ncol=nv
- All estimated parameters must be placed in a matrix \& Mx must be told what type of matrix it is


## Matrices: the building blocks

## - Many types

```
mxMatrix( type="Zero", nrow=2,
ncol=3, name="a" )
mxMatrix( type="Unit", nrow=2,
ncol=3, name="a" )
mxMatrix( type="I dent", nrow=3,
ncol=3, name="a" )
```

000
000
111
111
100
010
001
mxMatrix( type="Diag", nrow=3,
? 00
0 ? 0
00 ?
mxMatrix( type="Sdiag", nrow=3, ncol=3, free=TRUE, name="a" )
mxMatrix( type="Stand", nrow=3, ncol=3, free=TRUE, name="a" )
mxMatrix( type="Symm", nrow=3, ncol=3, free=TRUE, name="a" )
mxMatrix( type="Lower", nrow=3, ncol=3, free=TRUE, name="a" )
mxMatrix( type="Full", nrow=2, ncol=4, free=TRUE, name="a" )

## Short cuts

- Anything after \# is read as a comment
- Can predefine frequently used/changed parameters
- nv <- 1
- Can read in scripts or R functions
- source("GenEpiHelperFunctions.R")


## Setting up the script overview

```
univACEModel <-
mxModel("univACE",
        mxModel("ACE", ... ),
        mxModel("MZ", ... ),
        mxModel("DZ", ...),
        mxAlgebra( ...),
        mxAlgebraObjective( ... )
)
univACEFit <- mxRun(univACEModel)
univACESumm <-
summary(univACEFit)
```


## Setting up the script univACE mxModel

univACEModel <-

3 sub mxModels

- ACE
- MZ
- DZ
- mxAlgebra
- mxAlgebraObjective
mxModel("univACE", mxModel("ACE", ... ), mxModel("MZ", ... ), mxModel("DZ", ... ), mxAlgebra( ... ), mxAlgebraObjective( ... ) )
univACEFit <- mxRun(univACEModel) univACESumm <-
summary(univACEFit)


## Setting up the script ACE mxModel

\# Fit ACE Model with RathData and Matrices Input
univACEModel <- mxModel("univACE",
mxModel("ACE",
\# Matrices $a, c$, and $e$ to store $a, c$, and $e$ path coefficients
mxMatrix ( type="Lower", nrow=nv, ncol=nv, free=TRUE, values=.6, label="a11", name="a" ), \#X
mxMatrix ( type="Lower", nrow=nv, ncol=nv, free=TRUE, values=.6, label="c11", name="c" ), \#Y
mxMatrix ( type="Lower", nrow=nv, ncol=nv, free=TRUE, values=.6, label="e11", name="e" ), \#Z
Classic Mx translation

| univACE | ! Job Title |
| :--- | :--- |
| ACE | !Group Title |

a Lower nv nv free
c Lower nv nv free e Lower nv nv free

Start. 6 a 111 c 111 e 111
Notice we no longer have group types and can declare all the information about a matrix in one place!

## Setting up the script ACE mxModel

\# Matrices $A_{r} C$, and $E$ compute variance components
 mxAlgebra! Expression=e *ts tic!, name="Cr !, mxAlgebra! expression=e *ts tiel, name=rer j,

Classic Mx translation
A = $a^{*} a^{\prime}$;
$C=c^{*} c^{\prime}$;
E = $e^{*} e^{\prime}$;
Notice we are no longer restricted with matrix names!
Case maters

## Setting up the script ACE mxModel

\# Algebra to compute total variances and standard deviations (diagonal only) moxigebra! expression=A+C+E, name="Y" !, mxMatrix ( type="Iden", nrow=nv, ncol=nv, name="I"), mxAlgebra( expression=solve (sqrt (I*V)), name="isd"),

Classic Mx translation
$V=A+C+E$;
I Iden nv nv! This is matrix with 1 on the diag and 0 on the off-diag
I'sd = \sqrt(I.V) ;

Notice we no longer need to separate matrices and algebra! Also the operators are different - very important!

## Setting up the script ACE mxModel

\#\# Note that the rest of the mxModel statements do not change for bivariate/multivariate case \# Matrix $\&$ Algebore for experted means vector
mxMatrix; type="Full", nrow=1, ncol=nv, free=TRUE, values= 20, label="mean", neme="M"; , mxAlgebra! expression= cbind(M, M', name="expMean"',

Classic Mx translation
M full 1 nv free
Start 20 M 111
Means (M|M) ;

Notice all the lines end in commas No inconsistency in line endings

## Setting up the script MZ mxModel



MZ
f Algebra for expected variance/ Govariance matrix in $M Z$ mxAlgebra! expression= rbind ! cbindid+C+E, A+C), chind $A+C$, $A+C+E \prime$ ', name="expCovMz" i,
Classic Mx translation
Cov $A+C+E \mid A+C$

$$
\mathrm{A}+\mathrm{C} \mid \mathrm{A}+\mathrm{C}+\mathrm{E} ;
$$

Notice the different adhesion styles cbind $=\mid$ rbind $=$ _

## Setting up the script DZ mxModel


\# Algebra for evected variance/covariance matrix in DZ

```
mxAlgebra( expression= rbind ( cbind(A+C+E , 0.5% x% A+C),
    cbind(0.5*x* A+C , A+C+E)), name="expCovDZ")
```

Classic Mx translation
Cov A+C+EJH@A+C
$\mathrm{H} @ \mathrm{~A}+\mathrm{C} \mid \mathrm{A}+\mathrm{C}+\mathrm{E} ;$
Notice you can now use numbers in the algebra they don't have to be placed in matrices

## Setting up the script MZ mxModel

```
mxMocle l \MMZ",
    mxData! observed=maDate, type="rem" !,
    mxFIMLObjective! covariance="dCE.expCovMZ", means="ACE.expMean", dimmemes=selvars !
1,
```

Classic Mx translation
MZ !Group Title
Rec file $=$ mzData
Select variables ...
Covariance
Means
(No translation for the mxFLObjective this was black box in Mx Classic)

## Setting up the script DZ mxModel

mxModel ("DZ",
mxDeta! observed=dzDate, type="raw" !, max IMLObjective! covariance=" $\mathrm{ACE} . \operatorname{expCovDZ",~means="ACE.expMean",~dimnames=selvars~!~}$
1,

## Setting up the script Optimisation

mxAlgebra! expression=MZ. objective + DZ. objective, name="-2sumll" ', mxAlgebraObjective ("-2sumll")

This section of the script calculates the -2 log likelihood and runs the optimisation
( Mx Classic equivalent is clicking run)

## Setting up the script Summarising output using helper functions

```
# Generate ACE Output
# ---------------------------------
parameterSpecifications(univACEFit)
expectedMeansCovariances(univMCEFit)
tableFitStatistics(un\\ACEFit)
# Generate Table of Parameter Estimates using mxEval
pathEstimatesACE <- print(round(mxEval(cbind(ACE.a,ACE.c,ACE.e), univACEFit), 4))
varComponentsACE <- print (round(mxEval(cbind(ACE.A/ACE.V,ACE.C/ACE.V,ACE.E/ACE.V), univACEFit), 4))
    rownames (pathEstimatesACE) <- 'pathEstimates'
    colnames(pathEstimatesACE) <- c('a','c','e')
    rownames(varComponentsACE) <- 'varComponents'
    colnames(varComponentsACE) <- c('a^2','c^2','e^2')
pathEstimatesACE
varComponentsACE
```


## Checking individual matrices

o a matrix from the ACE mxModel

Type
univACEModel@submodels\$ACE@matrices\$a

Compare to
univACEFit@submodels\$ACE@matrices\$a

## Testing for significance

- Set (one or more) estimated parameters to zero
- Known as ‘dropping' the parameter from the model
- ie dropping C


Variance/covariance matrices

MZ
t1


DZ


## Testing for significance

```
univAEModel <- mxModel(univACEFit, name="univAE",
```

    mxModel(univACEFit\$ACE,
        mxMatrix ( type="Full", nrow=1, ncol=1, free=FALSE, values=0, label="ci1", name="c" )
    )
    univAEFit <- mxRun(univAEModel)
univAESumm <- summary (univAEFit)
\# Fit CE model

- Create a new mxModel "univAE" which draws from the "univACE" mxModel


## Testing for significance

```
univAEModel <- mxModel(univACEFit, name="univAE",
```

    mxModel(univaCEFit\$ACE,
        mxMatrix ( type="Full", nrow=1, ncol=1, free=FALSE, values=0, label="ci1", name="c" )
    )
    univAEFit <- mxRun(univAEModel)
univAESurm <- summary (univAEFit)
\# Fit CE model

- Redefine the c matrix within univAE
- Free=FALSE, values=0

Mx Classic equivalent is:
Drop C 111
End

## Saving your output

- Save the R workspace
- On closing click yes
- Very big
- Saves everything
- Save the fitted model
- Equivalent to save in classic Mx
- save(univACEFit, file="test.omxs")
- load("test.omxs") - need to load OpenMx first


## What to report

- Summary statistics
- Usually from a simplified 'saturated' model
- Standardized estimates
- Easier to conceptualise
- ie $40 \%$ of the phenotypic variance vs a genetic effect of 2.84
- Can easily be returned to original scale if summary statistics are provided


## What to report

- Path coefficients
- Very important in multivariate analyses
- Gives a much clearer picture of the directionality of effects
- Variance components/proportion of variance explained
- Genetic correlations


## General Advice/Problem solving

- Scripting styles differ
- Check the sample description
- Learn to love the webpage
- Comments are your friends


## Time for coffee

## MATH 15 HARD


explodingdog.com

