
(Re)introduction to OpenMx
Sarah Medland

Starting at the beginning


Opening R


Gui – double click


Unix/Terminal – type R



Closing R


Gui – click on the x


Unix/Terminal – type q() then n



Yes <- is the same as =


What directory am I in?


getwd()



Change directory?


setwd("H:/tues_morning”)

Starting at the beginning


Data preparation


The algebra style used in Mx expects 1
line per case/family



(Almost) limitless number of families
and variables



Data needs to be read into R before it
can be analysed


(the commands to read the data can be
nested within the R script)



Default missing code is now NA

Reading in data


Example data:ozbmi2.txt



data<-read.table("ozbmi2.txt", header=T,
na.strings = "NA")



head(data)

Selecting and sub-setting the data



Make separate data sets for the MZ
and DZ



Check data is
numeric and behaves
as expected

Common error



Problem: data contains a non
numeric value



Equivalent Mx Classic error - Uh-oh... I'm having
trouble reading a number in D or E format

Important structural stuff



Mx Classic


Each job was composed of one or more
groups


Each group is ‘opened’ with a title


Each group is ‘closed’ with an end
statement



openMx


Less structured

General Hierarchy

Matrices: the building blocks



Many types eg. type="Lower"


Denoted by names eg. name="a“


Size eg. nrow=nv, ncol=nv


All estimated parameters must be placed
in a matrix & Mx must be told what type
of matrix it is

mxMatrix(type="Lower", nrow=nv, ncol=nv, free=TRUE,
values=.6, label="a11", name="a"), #X

Matrices: the building blocks



Many types

mxMatrix(type=“Zero", nrow=2,
ncol=3, name="a")

mxMatrix(type=“Unit", nrow=2,
ncol=3, name="a")

mxMatrix(type=“Ident", nrow=3,
ncol=3, name="a")

mxMatrix(type=“Diag", nrow=3,
ncol=3, free=TRUE, name="a")

mxMatrix(type=“Sdiag", nrow=3,
ncol=3, free=TRUE, name="a")

mxMatrix(type=“Stand", nrow=3,
ncol=3, free=TRUE, name="a")

mxMatrix(type=“Symm", nrow=3,
ncol=3, free=TRUE, name="a")

mxMatrix(type=“Lower", nrow=3,
ncol=3, free=TRUE, name="a")

mxMatrix(type=“Full", nrow=2,
ncol=4, free=TRUE, name="a")

Short cuts



Anything after # is read as a comment


Can predefine frequently used/changed
parameters


nv <- 1



Can read in scripts or R functions


source("GenEpiHelperFunctions.R")

Setting up the script –
overview

univACEModel <-
mxModel("univACE",

mxModel("ACE", ...),
mxModel("MZ", ...),
mxModel("DZ", ...),
mxAlgebra(...),
mxAlgebraObjective(...)

)

univACEFit <- mxRun(univACEModel)
univACESumm <-
summary(univACEFit)

Setting up the script –
univACE mxModel



3 sub mxModels


ACE


MZ


DZ



mxAlgebra


mxAlgebraObjective

univACEModel <-
mxModel("univACE",

mxModel("ACE", ...),
mxModel("MZ", ...),
mxModel("DZ", ...),
mxAlgebra(...),
mxAlgebraObjective(...)

)

univACEFit <- mxRun(univACEModel)
univACESumm <-
summary(univACEFit)

Setting up the script –
ACE mxModel

Classic Mx translation

univACE !Job Title
ACE !G roup Title
…
a Lower nv nv free
c Lower nv nv free
e Lower nv nv free
…
Start .6 a 1 1 1 c 1 1 1 e 1 1 1

Notice we no longer have group types and can declare all the
information about a matrix in one place!

Setting up the script –
ACE mxModel

Classic Mx translation

A = a*a’ ;
C = c*c’ ;
E = e*e’ ;

Notice we are no longer restricted with matrix names!
Case maters

Setting up the script –
ACE mxModel

Classic Mx translation

V=A+C+E ;
…
I Iden nv nv ! This is matrix with 1 on the diag and 0 on the off-diag
…
Isd = \sqrt(I.V) ;

Notice we no longer need to separate matrices and algebra!

Also the operators are different - very important!

Setting up the script –
ACE mxModel

Classic Mx translation

M full 1 nv free
…
Start 20 M 1 1 1
…
Means (M|M) ;

Notice all the lines end in commas
No inconsistency in line endings

1

P-t1

E AC CA E

zy zyxx

P-t2

1

MZ

t1 t2

t1 a2+c2+e2 a2+c2

t2 a2+c2 a2+c2+e2

Setting up the script –
MZ mxModel

Classic Mx translation

Cov A+C+E|A+C_
A+C|A+C+E;

Notice the different adhesion styles cbind = | rbind = _

1

P-t1

E AC CA E

zy zyxx

P-t2

.5

DZ

t1 t2

t1 a2+c2+e2 .5a2+c2

t2 .5a2+c2 a2+c2+e2

Setting up the script –
DZ mxModel

Classic Mx translation

Cov A+C+E|H@A+C_
H@A+C|A+C+E;

Notice you can now use numbers in the algebra they don’t have to be
placed in matrices

Setting up the script –
MZ mxModel

Classic Mx translation

MZ !Group Title
…
Rec file =mzData
Select variables …
…
Covariance
Means

(No translation for the mxFLObjective this was black box in Mx
Classic)

Setting up the script –
DZ mxModel

Setting up the script –
Optimisation

Classic Mx translation

This section of the script calculates the -2 log likelihood
and runs the optimisation

(Mx Classic equivalent is clicking run)

Setting up the script –
Summarising output using helper
functions

Checking individual matrices



a matrix from the ACE mxModel

Type
univACEModel@submodels$ACE@matrices$a

Compare to

univACEFit@submodels$ACE@matrices$a

Testing for significance



Set (one or more) estimated
parameters to zero



Known as ‘dropping’ the parameter
from the model


ie dropping C

1

P-t1

E AC CA E

zy zyxx

P-t2

1/0.5

MZ

t1 t2

t1 a2+c2+e2 a2+c2

t2 a2+c2 a2+c2+e2

Variance/covariance matrices

DZ

t1 t2

t1 a2+c2+e2 0.5a2+c2

t2 0.5a2+c2 a2+c2+e2

Testing for significance



Create a new mxModel “univAE”
which draws from the “univACE”
mxModel

Testing for significance



Redefine the c matrix within univAE


Free=FALSE, values=0

Mx Classic equivalent is:

Drop C 1 1 1
End

Saving your output



Save the R workspace


On closing click yes


Very big


Saves everything



Save the fitted model


Equivalent to save in classic Mx


save(univACEFit, file="test.omxs")


load("test.omxs") – need to load
OpenMx first

What to report



Summary statistics


Usually from a simplified ‘saturated’
model



Standardized estimates


Easier to conceptualise


ie 40% of the phenotypic variance vs a
genetic effect of 2.84



Can easily be returned to original scale if
summary statistics are provided

What to report



Path coefficients


Very important in multivariate analyses


Gives a much clearer picture of the
directionality of effects



Variance components/proportion of
variance explained



Genetic correlations

General Advice/Problem solving



Scripting styles differ


Check the sample description


Learn to love the webpage


Comments are your friends

Time for coffee

explodingdog.com

	(Re)introduction to OpenMx�Sarah Medland
	Starting at the beginning
	Starting at the beginning
	Reading in data
	Selecting and sub-setting the data
	Common error
	Important structural stuff
	General Hierarchy
	Matrices: the building blocks
	Matrices: the building blocks
	Short cuts
	Setting up the script – �overview
	Setting up the script – �univACE mxModel
	Setting up the script – �ACE mxModel
	Setting up the script – �ACE mxModel
	Setting up the script – �ACE mxModel
	Setting up the script – �ACE mxModel
	Setting up the script – �MZ mxModel
	Setting up the script – �DZ mxModel
	Setting up the script – �MZ mxModel
	Setting up the script – �DZ mxModel
	Setting up the script – �Optimisation
	Setting up the script – �Summarising output using helper functions
	Checking individual matrices
	Testing for significance
	Slide Number 26
	Testing for significance
	Testing for significance
	Saving your output
	What to report
	What to report
	General Advice/Problem solving
	Time for coffee

