(Re)introduction to OpenMx Sarah Medland

Starting at the beginning

- o Opening R
 - Gui double click
 - Unix/Terminal type R
- Closing R
 - Gui click on the x
 - Unix/Terminal type q() then n
- Yes <- is the same as =
- What directory am I in?
 - getwd()
- Change directory?
 - setwd("H:/tues_morning")

Starting at the beginning

• Data preparation

- The algebra style used in Mx expects 1 line per case/family
- (Almost) limitless number of families and variables
- Data needs to be read into R before it can be analysed
 - (the commands to read the data can be nested within the R script)
 - \circ Default missing code is now ${\bf NA}$

Reading in data

Example data:ozbmi2.txt

Fam	agecat	age	zyg	part	wt1	wt2	ht1	ht2	htwt1	htwt2	bmi1	bmi2
115	0	0.21	1	2	58	57	1.7	1.7	20.0692	19.7232	20.9943	20.8726
121	Ø	0.24	1	2	54	53	1.6299	1.6299	20.3244	19.9481	21.0828	20.9519
158	Ø	0.21	1	2	55	50	1.6499	1.6799	20.202	17.7154	21.0405	20.121
172	Ø	0.21	1	2	66	76	1.5698	1.6499	26.7759	27.9155	23.0125	23.3043
182	Ø	0.19	1	2	50	48	1.6099	1.6299	19.2894	18.0662	20.7169	20.2583
199	0	0.26	1	2	60	60	1.5999	1.5698	23.4375	24.3418	22.0804	22.3454
		_				/				-		

- o data<-read.table("ozbmi2.txt", header=T, na.strings = "NA")
- o head(data)

>	head	l(data)											
	fam	agecat	age	zyg	part	wt1	wt2	ht1	ht2	htwt1	htwt2	bmi1	bmi2
1	115	0	0.21	1	2	- 58	- 57	1.7	1.7	20.0692	19.7232	20.9943	20.8726
2	121	0	0.24	1	2	-54	53	1.6299	1.6299	20.3244	19.9481	21.0828	20.9519
3	158	0	0.21	1	2	55	50	1.6499	1.6799	20.202	17.7154	21.0405	20.121
4	172	0	0.21	1	2	66	76	1.5698	1.6499	26.7759	27.9155	23.0125	23.3043
- 5	182	0	0.19	1	2	50	48	1.6099	1.6299	19.2894	18.0662	20.7169	20.2583
6	199	0	0.26	1	2	60	60	1.5999	1.5698	23.4375	24.3418	22.0804	22.3454

Selecting and sub-setting the data

Make separate data sets for the MZ and DZ

Check data is numeric and behaves as expected

```
> cov(mzData,use="complete")
          bmi1
                    bmi2
bmi1 0.8779390 0.6734489
bmi2 0.6734489 0.8987715
> cov(dzData,use="complete")
          bmi1
                     bmi2
bmi1 0.8908474 0.2872594
bmi2 0.2872594 0.8657751
> colMeans(mzData,na.rm=TRUE)
    bmi1
             bmi2
21.75089 21.73471
> colMeans(dzData,na.rm=TRUE)
    bmi1
             bmi2
21.68689 21.88095
```

Common error

Problem: data contains a non numeric value

0.35 5 51 79 1.5999 1.7998 19.9219 24.3827 20.9427 22.3571 20171 1 52 51 53 65 1.5698 1.73 20188 0.37 21.5019 21.7181 21.477 21.547 1 0.53 5 58 20204 64 1.6299 NA 21.83 NA Ĥ. NA 1 2 64 1.6499 1.8298 23.5078 21.7982 22.1013 21.5728 20390 0.37 73 1 0.52 60 77 1.6299 1.73 22.5827 25.7276 21.8203 22.7329 20398 1 Equivalent Mx Classic error - Uh-oh... I'm having trouble reading a number in D or E format

Important structural stuff

o Mx Classic

- Each job was composed of one or more groups
 - Each group is 'opened' with a title
 - Each group is 'closed' with an end statement
- o openMx
 - Less structured

General Hierarchy

testModel	mxModel(name="myModelName"	
	mxMatrix(),	
	mxMatrix(),	
	mxAlgebra(),	
and the state of the state	mxConstraint(),	
	mxModel(mxMatrix(),	
	mxData(), mxObjective(),	
),	
)	
testFit 🔶	mxRun(testModel) MxModel R Ot	ojects
testSumm 🗲	summary(testFit)	
output 🔶	mxEval(algebra, testFit)	bjects

Matrices: the building blocks

mxMatrix(type="Lower", nrow=nv, ncol=nv, free=TRUE, values=.6, label="a11", name="a"), #X

- Many types eg. type="Lower"
- Denoted by names eg. name="a"
- Size eg. nrow=nv, ncol=nv
- All estimated parameters must be placed in a matrix & Mx must be told what type of matrix it is

Matrices: the building blocks

0 0 0

0 0 0

1 1 1

1 1 1

1 0 0

0 1 0

0 0 1

Many types

mxMatrix(type="Zero", nrow=2, ncol=3, name="a")
mxMatrix(type="lilpit", prov=2

```
mxMatrix( type="Unit", nrow=2,
ncol=3, name="a" )
```

mxMatrix(type="Ident", nrow=3, ncol=3, name="a")

? 0 0 mxMatrix(type="Diag", nrow=3, 0 ? 0 ncol=3, free=TRUE, name="a") 0 0 ? mxMatrix(type="Sdiag", nrow=3, 0 0 0 ncol=3, free=TRUE, name="a") ? 0 0 ??0 mxMatrix(type="Stand", nrow=3, 1?? ncol=3, free=TRUE, name="a") ? 1 ? ??1 ??? mxMatrix(type="Symm", nrow=3, ??? ncol=3, free=TRUE, name="a") ??? ? 0 0 mxMatrix(type="Lower", nrow=3," ? ? 0 ncol=3, free=TRUE, name="a") ??? mxMatrix(type="Full", nrow=2, ???? ncol=4, free=TRUE, name="a")

????

Short cuts

- Anything after # is read as a comment
- Can predefine frequently used/changed parameters
 - nv <- 1
- Can read in scripts or R functions
 - source("GenEpiHelperFunctions.R")

Setting up the script – overview

```
univACEModel <-
mxModel("univACE",
   mxModel("ACE", ... ),
   mxModel("MZ", ... ),
   mxModel("DZ", ... ),
   mxAlgebra( ... ),
   mxAlgebraObjective( ... )
)</pre>
```

univACEFit <- mxRun(univACEModel)
univACESumm <summary(univACEFit)</pre>

- 3 sub mxModels
 - ACE
 - MZ
 - DZ

univACEModel <mxModel("univACE",
 mxModel("ACE", ...),
 mxModel("MZ", ...),
 mxModel("DZ", ...),
 mxAlgebra(...),
 mxAlgebraObjective(...)
)</pre>

mxAlgebra
 mxAlgebraObjective
 univACEFit <- mxRun(univACEModel)
 univACESumm <- univACESumm <- summary(univACEFit)

Classic Mx translation

...

univACE	Iob Title
ACE	! Group Title

```
a Lower nv nv free
c Lower nv nv free
e Lower nv nv free
```

```
Start .6 a 1 1 1 c 1 1 1 e 1 1 1
```

Notice we no longer have group types and can declare all the information about a matrix in one place!

Matrices A, C, and E compute variance components mxAlgebra(expression=a %*% t(a), name="A"), mxAlgebra(expression=c %*% t(c), name="C"), mxAlgebra(expression=e %*% t(e), name="E"),

Classic Mx translation

$$A = a^*a';$$

 $C = c^*c';$
 $E = e^*e';$

Notice we are no longer restricted with matrix names! Case maters

Algebra to compute total variances and standard deviations (diagonal only)
 mxAlgebra(expression=A+C+E, name="V"),
 mxMatrix(type="Iden", nrow=nv, ncol=nv, name="I"),
 mxAlgebra(expression=solve(sqrt(I*V)), name="isd"),

Classic Mx translation

V = A + C + E;

•••

I Iden nv nv ! This is matrix with 1 on the diag and 0 on the off-diag ... Isd = \sqrt(I.V) ;

Notice we no longer need to separate matrices and algebra! Also the operators are different - very important!

Note that the rest of the mxModel statements do not change for bivariate/multivariate case # Matrix & Algebra for expected means vector mxMatrix(type="Full", nrow=1, ncol=nv, free=TRUE, values= 20, label="mean", name="M"), mxAlgebra(expression= cbind(M,M), name="expMean"),

Classic Mx translation

```
M full 1 nv free
...
Start 20 M 1 1 1
```

```
Means (M|M) ;
```

Notice all the lines end in commas No inconsistency in line endings

Algebra for expected variance/_ovariance matrix in MZ
mxAlgebra(expression= rbind (cbind(A+C+E , A+C),

cbind(A+C , A+C+E)), name="expCovMZ"),

Classic Mx translation

Cov
$$A+C+E|A+C_{A+C}|A+C+E;$$

Notice the different adhesion styles cbind = | rbind = _

mxAlgebra(expression= rbind (cbind(A+C+E , 0.5%x%A+C), cbind(0.5%x%A+C , A+C+E)), name="expCovDZ")

Classic Mx translation

.

Cov $A+C+E|H@A+C_H@A+C|A+C+E;$

Notice you can now use **numbers** in the algebra they don't have to be placed in matrices

mxModel("MZ",

),

```
mxData( observed=mzData, type="raw" ),
mxFIMLObjective( covariance="ACE.expCovMZ", means="ACE.expMean", dimnames=selVars )
```

Classic Mx translation

MZ !Group Title

Rec file =mzData Select variables ...

Covariance Means

. . .

(No translation for the mxFLObjective this was black box in Mx Classic)

```
mxModel("DZ",
```

```
mxData( observed=dzData, type="raw" ),
mxFIMLObjective( covariance="ACE.expCovDZ", means="ACE.expMean", dimnames=selVars )
```

),

Setting up the script – Optimisation

mxAlgebra(expression=MZ.objective + DZ.objective, name="-2suml1"), mxAlgebraObjective("-2suml1")

univACEFit <- mxRun(univACEModel) univACESumm <- summary(univACEFit)

This section of the script calculates the -2 log likelihood and runs the optimisation

(Mx Classic equivalent is clicking run)

Setting up the script – Summarising output using helper functions

```
# Generate ACE Output
# ------
parameterSpecifications(univACEFit)
expectedMeansCovariances(univACEFit)
tableFitStatistics(un_vACEFit)
# Generate Table of Parameter Estimates using mxEval
pathEstimatesACE <- print(round(mxEval(cbind(ACE.a,ACE.c,ACE.e), univACEFit),4))
varComponentsACE <- print(round(mxEval(cbind(ACE.A/ACE.V,ACE.C/ACE.V,ACE.E/ACE.V), univACEFit),4))
rownames(pathEstimatesACE) <- 'pathEstimates'
colnames(pathEstimatesACE) <- c('a','c','e')
rownames(varComponentsACE) <- c('a'2','c'2','e'2')
pathEstimatesACE
varComponentsACE</pre>
```

Checking individual matrices

o a matrix from the ACE mxModel

Type univACEModel@submodels\$ACE@matrices\$a

Compare to

univACEFit@submodels\$ACE@matrices\$a

Testing for significance

- Set (one or more) estimated parameters to zero
- Known as 'dropping' the parameter from the model
 - ie dropping C

Variance/covariance matrices

MZ

Testing for significance

Fit CE model

 Create a new mxModel "univAE" which draws from the "univACE" mxModel

Testing for significance

Fit CE model

Redefine the c matrix within univAE Free=FALSE, values=0

Mx Classic equivalent is:

```
Drop C 1 1 1
End
```

Saving your output

Save the R workspace

- On closing click yes
- Very big
- Saves everything
- Save the fitted model
 - Equivalent to save in classic Mx
 - save(univACEFit, file="test.omxs")
 - load("test.omxs") need to load
 OpenMx first

What to report

Summary statistics

Usually from a simplified 'saturated' model

Standardized estimates

- Easier to conceptualise
 - ie 40% of the phenotypic variance vs a genetic effect of 2.84
 - Can easily be returned to original scale if summary statistics are provided

What to report

Path coefficients

- Very important in multivariate analyses
 - Gives a much clearer picture of the directionality of effects
- Variance components/proportion of variance explained
- o Genetic correlations

General Advice/Problem solving

Scripting styles differ
Check the sample description
Learn to love the webpage
Comments are your friends

Time for coffee

explodingdog.com