
(Re)introduction to OpenMx 
Sarah Medland



Starting at the beginning


 

Opening R 


 

Gui – double click


 

Unix/Terminal – type R



 

Closing R


 

Gui – click on the x 


 

Unix/Terminal – type q() then n



 

Yes <- is the same as =


 

What directory am I in?


 

getwd()



 

Change directory?


 

setwd("H:/tues_morning”)



Starting at the beginning


 

Data preparation


 

The algebra style used in Mx expects 1 
line per case/family 



 

(Almost) limitless number of families 
and variables



 

Data needs to be read into R before it 
can be analysed 


 

(the commands to read the data can be 
nested within the R script)



 

Default missing code is now NA



Reading in data


 

Example data:ozbmi2.txt



 

data<-read.table("ozbmi2.txt", header=T, 
na.strings = "NA")



 

head(data)



Selecting and sub-setting the data



 

Make separate data sets for the MZ 
and DZ



 

Check data is 
numeric and behaves 
as expected



Common error 



 

Problem: data contains a non 
numeric value



 

Equivalent Mx Classic error - Uh-oh... I'm having 
trouble reading a number in D or E format



Important structural stuff 



 

Mx Classic


 

Each job was composed of one or more 
groups


 

Each group is ‘opened’ with a title


 

Each group is ‘closed’ with an end 
statement



 

openMx


 

Less structured 



General Hierarchy



Matrices: the building blocks



 

Many types eg. type="Lower"


 

Denoted by names eg. name="a“


 

Size eg. nrow=nv, ncol=nv


 

All estimated parameters must be placed 
in a matrix & Mx must be told what type 
of matrix it is

mxMatrix( type="Lower", nrow=nv, ncol=nv, free=TRUE, 
values=.6, label="a11", name="a" ), #X



Matrices: the building blocks



 

Many types

mxMatrix( type=“Zero", nrow=2, 
ncol=3, name="a" )

mxMatrix( type=“Unit", nrow=2, 
ncol=3, name="a" )

mxMatrix( type=“Ident", nrow=3, 
ncol=3, name="a" )

mxMatrix( type=“Diag", nrow=3, 
ncol=3, free=TRUE, name="a" )

mxMatrix( type=“Sdiag", nrow=3, 
ncol=3, free=TRUE, name="a" )

mxMatrix( type=“Stand", nrow=3, 
ncol=3, free=TRUE, name="a" )

mxMatrix( type=“Symm", nrow=3, 
ncol=3, free=TRUE, name="a" )

mxMatrix( type=“Lower", nrow=3, 
ncol=3, free=TRUE, name="a" )

mxMatrix( type=“Full", nrow=2, 
ncol=4, free=TRUE, name="a" )



Short cuts



 

Anything after # is read as a comment


 

Can predefine frequently used/changed 
parameters


 

nv <- 1



 

Can read in scripts or R functions


 

source("GenEpiHelperFunctions.R")



Setting up the script – 
overview

univACEModel <- 
mxModel("univACE",

mxModel("ACE", ...    ),
mxModel("MZ", ...    ),
mxModel("DZ", ... ),
mxAlgebra( ... ),
mxAlgebraObjective( ... )

)

univACEFit <- mxRun(univACEModel)
univACESumm <- 
summary(univACEFit)



Setting up the script – 
univACE mxModel 



 

3 sub mxModels


 

ACE


 

MZ


 

DZ



 

mxAlgebra


 

mxAlgebraObjective

univACEModel <- 
mxModel("univACE",

mxModel("ACE", ...    ),
mxModel("MZ", ...    ),
mxModel("DZ", ... ),
mxAlgebra( ... ),
mxAlgebraObjective( ... )

)

univACEFit <- mxRun(univACEModel)
univACESumm <- 
summary(univACEFit)



Setting up the script – 
ACE mxModel

Classic Mx translation

univACE !Job Title
ACE !G roup Title
…
a Lower nv nv free
c Lower nv nv free
e Lower nv nv free
…
Start .6 a 1 1 1 c 1 1 1 e 1 1 1

Notice we no longer have group types and can declare all the 
information about a matrix in one place!



Setting up the script – 
ACE mxModel

Classic Mx translation

A = a*a’ ;
C = c*c’ ;
E = e*e’ ;

Notice we are no longer restricted with matrix names!
Case maters



Setting up the script – 
ACE mxModel

Classic Mx translation

V=A+C+E ;
…
I Iden nv nv ! This is matrix with 1 on the diag and 0 on the off-diag
…
Isd = \sqrt(I.V) ;

Notice we no longer need to separate matrices and algebra!

Also the operators are different - very important!



Setting up the script – 
ACE mxModel

Classic Mx translation

M full 1 nv free
…
Start 20 M 1 1 1
…
Means (M|M) ;

Notice all the lines end in commas 
No inconsistency in line endings



1

P-t1

E AC CA E

zy zyxx

P-t2

1

MZ

t1 t2

t1 a2+c2+e2 a2+c2

t2 a2+c2 a2+c2+e2

Setting up the script – 
MZ mxModel

Classic Mx translation

Cov A+C+E|A+C_
A+C|A+C+E;

Notice the different adhesion styles cbind = | rbind = _



1

P-t1

E AC CA E

zy zyxx

P-t2

.5

DZ

t1 t2

t1 a2+c2+e2 .5a2+c2

t2 .5a2+c2 a2+c2+e2

Setting up the script – 
DZ mxModel

Classic Mx translation

Cov A+C+E|H@A+C_
H@A+C|A+C+E;

Notice you can now use numbers in the algebra they don’t have to be 
placed in matrices



Setting up the script – 
MZ mxModel

Classic Mx translation

MZ !Group Title
…
Rec file =mzData
Select variables …
…
Covariance 
Means

(No translation for the mxFLObjective this was black box in Mx 
Classic)



Setting up the script – 
DZ mxModel



Setting up the script – 
Optimisation

Classic Mx translation

This section of the script calculates the -2 log likelihood
and runs the optimisation

(Mx Classic equivalent is clicking run)



Setting up the script – 
Summarising output using helper 
functions



Checking individual matrices



 

a matrix from the ACE mxModel

Type
univACEModel@submodels$ACE@matrices$a

Compare to

univACEFit@submodels$ACE@matrices$a



Testing for significance



 

Set (one or more) estimated 
parameters to zero



 

Known as ‘dropping’ the parameter 
from the model


 

ie dropping C



1

P-t1

E AC CA E

zy zyxx

P-t2

1/0.5

MZ

t1 t2

t1 a2+c2+e2 a2+c2

t2 a2+c2 a2+c2+e2

Variance/covariance matrices

DZ

t1 t2

t1 a2+c2+e2 0.5a2+c2

t2 0.5a2+c2 a2+c2+e2



Testing for significance



 

Create a new mxModel “univAE” 
which draws from the “univACE” 
mxModel



Testing for significance



 

Redefine the c matrix within univAE


 

Free=FALSE, values=0

Mx Classic equivalent is: 

Drop C 1 1 1
End



Saving your output



 

Save the R workspace 


 

On closing click yes


 

Very big


 

Saves everything



 

Save the fitted model


 

Equivalent to save in classic Mx


 

save(univACEFit, file="test.omxs")


 

load("test.omxs") – need to load 
OpenMx first



What to report 



 

Summary statistics 


 

Usually from a simplified ‘saturated’ 
model



 

Standardized estimates 


 

Easier to conceptualise


 

ie 40% of the phenotypic variance vs a 
genetic effect of 2.84



 

Can easily be returned to original scale if 
summary statistics are provided



What to report 



 

Path coefficients 


 

Very important in multivariate analyses 


 

Gives a much clearer picture of the 
directionality of effects



 

Variance components/proportion of 
variance explained



 

Genetic correlations



General Advice/Problem solving



 

Scripting styles differ


 

Check the sample description


 

Learn to love the webpage


 

Comments are your friends



Time for coffee

explodingdog.com
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