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R.A. Fisher, 1918

The explanation of quantitative
Inheritance in Mendelian terms
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i Finding QTLs

= Linkage

s Association



Using genetics to
dissect metabolic
pathways:
Drosophila eye color

Beadle & Ephrussi, 1936
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Association of NOD2 leucine-rich
repeat variants with
susceptibility to Crohn’s disease
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First (unequivocal)
positional cloning of a
complex disease QTL !
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Thomas Hunt Morgan — discoverer of linkage




Linkage = Co-segregation
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Linkage Markers...




Linkage for MaxCigs24 in Australia and Finland
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i Linkage

= Doesn’t depend on “guessing gene”
= WWorks over broad regions

= Only detects large effects (>10%)

= Requires large samples (10,000°s?)
= Can’t guarantee close to gene

= For complex traits results have been
disappointing............




i Association

= Looks for correlation between specific
alleles and phenotype (trait value,
disease risk)




i Association

s More sensitive to small effects

= Need to "guess” gene/alleles
(“candidate gene”) or be close enough
for linkage disequilibrium with nearby
loci

= May get spurious association
(“stratification”) — need to have genetic
controls to be convinced
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MOLECULAR STRUCTURE OF
NUCLEIC ACIDS
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Variation: Single Nucleotide Polymorphisms

Complex disease marker? SMNPs are single-base differences in DMNA
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The Flow of Genetic Information
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High density SNP arrays — up to 1 million SNPs




Genome-Wide Association Studies

- 1. 000 000 SNPs

Human Genome - 3,1x10°

500 000

Base




-log10(P)

Bipolar GWAS of 10,648 samples

>1.7 million genotyped and (high confidence) imputed SNPs
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Ankryin-G (ANK3) CACNA1C
Sample Cases Controls P-value Sample Case Controls P-value
STEP 7.4% 5.8% 0.0013 STEP 35.7% 32.4% 0.0015
WTCCC 7.6% 5.9% 0.0008 WTCCC 35.7% 31.5% 0.0003
EXT 7.3% 4.7% 0.0002 EXT 35.3% 33.7% 0.0108
Total 7.5% 5.6% 9.1x10° Total 35.6% 32.4% 7%108

Ferreira et al (Nature Genetics, 2008)
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Susceptibility variants for
male-pattern baldness on
chromosome 20p11
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Q-Q plot for hair morphology [straight vs. wavy vs. curly (Merlin)]
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Q-Q plot for hair morphology [straight vs. wavy vs. curly (Merlin)]
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GWAS for hair curliness
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ABCG8
Gallstones
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Freckles
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Manolio, Brooks, Collins, J. Clin. Invest., May 2008
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Published Genome-Wide Associations through 12/2009,
658 published GWA at p<5x10-8
O8O

LD

NHGRI GWA Catalog
www.genome.gov/GWAStudies
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Functional Classification of 284 SNPs
Associated with Complex Traits

5 UTR h n=1
3UTR | =2
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http://www.genome.gov/gwastudies/ Stephen Channock



Odds Ratio

Enrichment/depletion analysis after adjusting for "hitchhiking’ effects from non-synonymous sites
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How GWAS can change the research paradigm
example: Crohn’s Disease (inflammatory bowel)

IBDGC Crohn's genome-wide association results
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Unexpected pathway for Crohn’s:

Autophagy: digests and recycles proteins
PTPN22

and organelles; involved in fighting infection  mwz
1924
5p13 1g32
10q21 CDKAL1
3p21 MHC
PTPN2 6q21

IRGM CCR6
IL23R IL12B /p12
TNFSF15  ATG16L1 NKX2-3 8qg24

2000 2001 2002 2003 2004 2005 2006 2007 2008

JAK2
10p11
11q13
12q12
13q14
ORMDL3
STAT3
19p13
21q21
ICOSLG

Now ~65 genes contributing 12.5% variance in liability
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Ratio of 2nd to 4t finger length

Associated with:
-testosterone exposure
-aggression
-ADHD
-homosexuality
-fertility
-others

LIN28B variant associated with:
-2D:4D ratio
-Age of menarche
-Menopause
-Height
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Nature. 2009 Dec 17;462(7275):868-74.

Parental origin of sequence variants associated with complex diseases.
KongA, ............. , Stefansson K, Altshuler D, Boehnke M, McCarthy M.
deCODE genetics, Sturlugata 8, 101 Reykjavik, Iceland. kong@decode.is

Effects of susceptibility variants may depend on from which parent they are
inherited. Although many associations between sequence variants and human
traits have been discovered through genome-wide associations, the impact of
parental origin has largely been ignored. Here we show that for 38,167
Icelanders genotyped using single nucleotide polymorphism (SNP) chips, the
parental origin of most alleles can be determined. We focused on SNPs that
associate with diseases and are within 500 kilobases of known imprinted
genes. Five SNPs - one with breast cancer, one with basal-cell carcinoma and
three with type 2 diabetes-have parental-origin-specific associations. These
variants are located in two genomic regions, 11p15 and 7932, each harbouring
a cluster of imprinted genes. Furthermore, we observed a novel association
between the SNP rs2334499 at 11p15 and type 2 diabetes. Here the allele that
confers risk when paternally inherited is protective when maternally
transmitted.


http://www.ncbi.nlm.nih.gov/pubmed?term=%22Kong%20A%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22van%20Duijn%20CM%22
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Stefansson%20K%22
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Altshuler%20D%22
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Boehnke%20M%22
http://www.ncbi.nlm.nih.gov/pubmed?term=%22McCarthy%20MI%22
mailto:kong@decode.is

Nat Genet. 2008 May;40(5):575-83.
Genome-wide association analysis identifies 20

- loci that influence adult height.
GW A S Of H e I g ht Weedon MN, ....Evans DM., , Frayling TM.

: = =~  A-1914 Cases (WTCCC T2D)
r / / B- 4892 Cases (DGI)

C- 6788 Cases (WTCCC HT)
D- 8668 Cases (WTCCC CAD)

E- 12228 Cases (EPIC)
F- 13665 Cases (WTCCC UKBS)

Significant results

Expecied Logid P

Weedon et al. (in press) Nat Genet

> Large numbers are needed to detect QTLs !!! Other loci?

> Collaboration is the name of the game !!!



http://www.ncbi.nlm.nih.gov/pubmed?term="Weedon MN"[Author]&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVAbstract
http://www.ncbi.nlm.nih.gov/pubmed?term="Waterworth DM"[Author]&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVAbstract
http://www.ncbi.nlm.nih.gov/pubmed?term="Frayling TM"[Author]&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVAbstract

Hedgehog signaling, cell cycle, and extra-cellular
matrix genes over-represented

Candidate gene Monogenic Knockout mouse | Details*

ZBTB38 - - Transcription factor.

CDK®6 - Yes Involved in the control of the cell cycle.
HMGA2 Yes Yes Chromatin architectural factors
GDF5 Yes Yes Involved in bone formation
LCORL - - May act as transcription activator
LOC387103 - - Not known

EFEMP1 Yes - Extra-cellular matrix

C6orf106 - - Not known

PTCH1 Yes Yes Hedgehog signalling

SPAG17 - - Not known

SOCS2 - Yes Regulates cytokine signal transduction
HHIP - - Hedgehog signaling

ZNF678 - - Transcription factor

DLEU7 - - Not known

SCMH1 - Yes Polycomb protein

ADAMTSL3 - - Extra-cellular matrix

IHH Yes Yes Hedgehog signaling

ANAPC13 - - Cell cycle

ACAN Yes Yes Extra-cellular matrix

DYM Yes - Not known

Weedon et al. (i2008) Nat Genet




The combined impact of the 20 SNPS
witha P <5 x 10
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Number of height-increasing alleles

e The 20 SNPs explain only —3%6 of the variation of height

e Lots more genes to find — but extremely large numbers needed

Weedon et al. (i2008) Nat Genet



Observed -log10(p)

Schizophrenia (ISC) Q-Q plot

A=1.092

Expected -log10(p)

Consistent with:
Stratification?
Genotyping bias?

Distribution of true
polygenic effects?



Indexing polygenic variance with large
sets of weakly associated alleles

Discovery Target
set set
Top 20 /

Do target cases
- have a higher
H-d-” T

Score#of allele load?
independent norﬂlnlal risk Individuals’
SNPs alleles” “polygenic scores”
IS —

— Independent SCZ studies (MGS,
— Bipolar disorder (STEP-BD,
— Non-psychiatric disease

Douglas Levinson, Pablo Gejman,
Jianxin Shi and colleagues
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0.03 - A greater load of “nominal”

schizophrenia alleles (from ISC)? P<01

BP<o0.2
BP<0.3
HmP <04
HP <05

0.02

Predictive information on
Risk from up to 50% of
SNPs in a GWAS !

0.01

Can predict bipolar from Sz
SNPs, but not other diseases

0.05 0.23 0.06
0.71 065 U :
0. i 030 .7
MGS MGS pohovan  STEP-BD WTCCC CAD CD HT RA TiID T2D

Euro. Af-Am

Schizophrenia Bipolar disorder Non-psychiatric (WTCCC)



GWAS' greatest success: T1D

= = " Current known loci explain a 4, of just
i - under five, as compared with the value of
15 often quoted. However, 1t 1s hkely that
= the latter figure is exaggerated, and the 4
= ) LT g 5 cxaggoerated, ) g
4 (—r—r attributable to inheritance 15 hkely to be
b less than ten. The heritability explained 2
o 0 ' . . =
e o T will be increased to some degree when the
o . : .
p known regions are more fully studied, but
g the bulk of the remainming heritability 1s
) ; - likely to be attributable to many small (or
g ( rare) eflects, most of which are unlikely to
= . .
o be mapped. Thus, even for this highly
g - heritable disease, the prediction achievable
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Figure 5. ROC curve prediction from all the SNPs listed in Supplementary Table 1 in
Text 51 (in blue). The prediction curve using the six MHC SNPs alone is shown in red, and the
dashed curve corresponds to a polygenic multiplicative model with 4, =4.75.
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Prediction and Interaction in Complex Disease Genetics:

Experience in Type 1 Diabetes

David G. Clayton*®



NEWS FEATURE PERSONAL GENOMES

o

LY

The case of the missing heritability |

When scientists opened up the human genome, they expected to find the genetic components of
common traits and diseases. But they were nowhere to be seen. Brendan Maher shines a light on
six places where the missing loot could be stashed away.




Possible explanations for missing heritability
(not mutually exclusive, but in order of increasing plausibility ?)

» Heritablility estimates are wrong

* Nonadditivity of gene effects — epistasis, GxE
* Epigenetics — including parent-of-origin effects

* Low power for common small effects

* Disease heterogeneity - lots of different diseases
with the same phenotype

* Poor tagging (1)
— rare mutations of large effect (including CNVs)
* Poor tagging (2)

— common variants in problematic genomic regions



Possible explanations for missing heritability
(in order of increasing plausibility ?)

* Heritability estimates are wrong

* Nonadditivity of gene effects — epistasis, GxE
* Epigenetics — including parent-of-origin effects

* Low power for common small effects

* Disease heterogeneity - lots of different diseases
with the same phenotype

* Poor tagging (1)
— rare mutations of large effect (including CNVs)
* Poor tagging (2)

— common variants in problematic genomic regions



Effects sizes of validated variants from 1st 16 GWAS studies
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Currant Opinion in Genetica & Development

Prediction of individual genetic risk of complex disease
Naomi R Wray', Michael E Goddard® and Peter M Visscher’

Current Opinion in Genetics & Development 2008, 18:257-263



...and will need huge sample sizes to detect

Mendelian Not possible
Large Disorders

Linkage studies
andidate association studies: Effect size RR ~2
Effect sample size- hundreds

size Genome-wide association studies Effect size RR ~1.2
Sample size - thousands

Next Generation GWAS Effect size RR ~1.05
Sample size —tens of thousands

very Not detectable/

very Not useful
Small

Common
very Allele Frequency
very

Rare



GIANT consortium

For those interested in numbers, there
are currently 418 authors, from 86
cohorts, affiliated to 240 institutions
contributing to three papers combined,
with the largest number contributing to

the BMI paper. Total N ~100,000 cases
!



Possible explanations for missing heritability
(in order of increasing plausibility ?)

* Heritability estimates are wrong

* Nonadditivity of gene effects — epistasis, GxE
* Epigenetics — including parent-of-origin effects

* Low power for common small effects

* Disease heterogeneity - lots of different diseases
with the same phenotype

* Poor tagging (1)
— rare mutations of large effect (including CNVs)
* Poor tagging (2)

— common variants in problematic genomic regions



What if our “disease” is actually
dozens (hundreds, thousands)
of different diseases that all look
the same?



Loci for Inherited Peripheral Neuropathies
Multiple causal loci for Charcot Marie Tooth disease (CMT)
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Possible explanations for missing heritability
(in order of increasing plausibility ?)

* Heritability estimates are wrong

* Nonadditivity of gene effects — epistasis, GxE
* Epigenetics — including parent-of-origin effects

* Low power for common small effects

* Disease heterogeneity - lots of different diseases
with the same phenotype

* Poor tagging (1)
— rare mutations of large effect (including CNVs)
* Poor tagging (2)

— common variants in problematic genomic regions



Genetic diversity is larger than
differences in DNA sequence

When we take into account:

« Structural variation [e.g. copy number
variants (CNV)]

« Epigenetic differences (DNA methylation
status)



Duplication ..CG [ A TG...
1bp - Mb ..CG R ATG... ...GTGGGG... ..TTGAA...
Deletion ...CGATG...
Translocation ...CGATG... ...GTG| R GGG...
..CG I ATG... ...GTGGGG... ..TTGAA...
Insertion ...CG ATG... T =——bGAA...
Inversion ...CG ATG... .. TT = GAA...
Seamental ..CGIEEEATG... ..GTG[EGGG...  ...TTGAA...
Duplication ..CG I ATG... ..GTG| S GGG...  ..TTGAA...
..CG R ATG... ..GTGEEGGG... ..TTGAA...

With no CNV



For example: Bipolar disorder

@ Molecular Psychiatry (2009} 14, 376-380
& 2009 Mature Publishing Group  All rights reserved 1359-4184/09 532.00

www. nature com/mp

IMMEDIATE COMMUNICATION

Singleton deletions throughout the genome increase risk
of bipolar disorder

D Zhang', L Cheng', Y Qian’, N Alliey-Rodriguez’, JR Kelsoe®, T Greenwood?, C Nievergelt®, TB
Barrett®, R McKinney?®, N Schork®?, EN Smith®**, C Bloss®**, J Nurnberger®, HJ Edenberg®’, T Foroud”,
W Sheftner®, WB Lawson®, EA Nwulia®, M Hipolito®, W Coryell'®, J Rice'', W Byerley'*, F McMahon'?,
TG Schulze', W Berrettini'?, JB Potash'®, PL Belmonte'®, PP Zandi'®, MG Mclnnis'®, S Zaliner’®,

D Craig'’, S Szelinger'’, D Koller®, SL Christian™, C Liu" and ES Gershon™'®

... we present a genome-wide copy number variant (CNV) survey of 1001
cases and 1034 controls ... Singleton deletions (deletions that appear only
once in the dataset) more than 100 kb in length are present in 16.2% of BD
cases and in 12.3% of controls (permutation P = 0.007).

Our results strongly suggest that BD can result from the effects of multiple
rare structural variants.




50% of
human
genome Is
repetitive
DNA.
Only 1.2%
IS coding




Types of repetitive elements and their
chromosomal locations

|l il

Centromere

' ' ' Intercalary tandem rep-eatsl [ispersed tandem repeats

Centromere-associated Dispersed Ty1-copia-like
tandem repeats retroelements and microsatellites

* | Telomeric and sub- l LINEs (non-LTR retroelements)
 telomeric repeats
- Single and low-copy sequences
including genes



Triplet repeat diseases

CAG repeat

[T T T T T

¥ Transcription
CAG repeat

T EEAEEACEAGEACEACEACEACEACEACEACEAGEREARRARE

+ Translation
Polyglutamine

Led GIn Gin

CGG CAG GAA CTG

Fragile X syndrome thﬂTl'ﬁm s DIE?HH Myotonic Dystrophy
Ephucwu:-lﬁhr Ataxia

Friedreich's Ataxia



Alu elements

The structure of each Alu
element is bi-partite, with the 3'
half containing an additional 31-
bp insertion (not shown) relative
to the 5' half. The total length of
each Alu sequence is 300 bp,
depending on the length of the 3'
oligo(dA)-rich tail. The elements
also contain a central A-rich
region and are flanked by short
intact direct repeats that are
derived from the site of insertion
(black arrows). The 5' half of
each sequence contains an
RNA-polymerase-Ill promoter (A
and B boxes). The 3' terminus of
the Alu element almost always
consists of a run of As that is
only occasionally interspersed
with other bases (a).

. Alu emement Py
B - = m
T AT TR TATACAG TTTT
RNA-Pol-lll-mediated
transcription
b
5 AluRNA a
LAl 18] [ASTACA; | [AAAAAAA uuu
Insertion and
reverse transcription
c
5 ey
; TTAAAA ;.
3‘- 5\'
Second-site nick
and ligation
o
d

Mature Reviews | Genetics



The abundant Alu transposable element, a member of the middle
repetitive DNA sequences, is present in all human chromosomes (the
Alu element is stained green, while the remainder of the DNA in the
chromosomes is stained red).

* > 1 million in genome — unique to humans
* Involved in RNA editing — functional ?



Summary

Huge amount of repetitive sequence
Highly polymorphic
Some evidence that it has functional significance

Earlier studies too small (100s) to detect effect
sizes now known to be realistic

Much (most”?) such variation poorly tagged with
current chips

Current CNV arrays only detect large variants;
no systematic coverage of the vast number of
small CNVs (including microsatellites)



Possible explanations for missing heritability
(in order of increasing plausibility ?)

* Heritability estimates are wrong

* Nonadditivity of gene effects — epistasis, GxE
* Epigenetics — including parent-of-origin effects

* Low power for common small effects

* Disease heterogeneity - lots of different diseases
with the same phenotype

* Poor tagging (1)
— rare mutations of large effect (including CNVs)
* Poor tagging (2)

— common variants in problematic genomic regions



Even for “simple” diseases
the number of alleles is large

* Ischaemic heart disease (LDR) >190
» Breast cancer (BRCA1) >1000
» Colorectal cancer (MLN1) >140



Multiple Rare Alleles Contribute ,
e6; L Plasnvs Lavels 5F Complex disease: common or rare alleles?

GEL S Increasing evidence for

Jonathan C. Cohen,'?3%; Robert S. Kiss,**
Alexander Pertsemlidis,” Yves L. Marcel,*+ Ruth McPherson,®

Common Disease — Rare

Heritable variation in complex traits is generally considered to be conferred by
common DNA sequence polymorphisms. We tested whether rare DNA se-

quence variants collectively contribute to variation in plasma levels of high- - -
density lipoprotein cholesterol (HDL-C). We sequenced three candidate genes a rl a n t Ot e S I S
(ABCAT, APOAT, and LCAT) that cause Mendelian forms of low HDL-C levels in
individuals from a population-based study. Monsynonymous sequence variants

were significantly more common (16% versus 2%) in individuals with low -

HDL-C (=fifth percentile) than in those with high HDL-C (>95th percentile). A p a ra d I g m fo r fu tu re
Similar findings were obtained in an independent population, and biochemical

studies indicated that most sequence variants in the low HDL-C group were

functionally important, Thus, rare alleles with major phenotypic effects con-

| ] | ]
tribute significantly to low plasma HDL-C levels in the general population. S e q u e n CI n g Stu d I e S ?
L ]

Table 1. Sequence variations in the coding regions of ABCAT, APOAT, and LCAT. Values represent the numbers
of sequence variants identified in 256 individuals from the Dallas Heart Study (DHS) (128 with low HDL-C and
128 with high HDL-C) and 263 Canadians (155 with low HDL-C and 108 with high HDL-C) (77). NS,
nonsynonymous (nucleotide substitutions resulting in an amino acid change); S, synonymous (coding
sequence substitutions that do not result in an amino acid change). GenBank accession numbers for DHS
ABCA1, APOAT, and LCAT sequences are NM_005502, NM_000039, and NM_000229, respectively.

Sequence variants Sequence variants
unique to one group common to both groups
Low HDL-C High HDL-C
NS S NS S NS S
DHS
ABCAT 14 6 2 5 10 19
APOA1 1 0 0 1 0 1
LCAT 0 1 1 0 1 1
Canadians

ABCAT 14 2 2 3 7 5
APOA1 0 1 0 0 2 0
LCAT 6 1 0 0 0

[Science 2004]



COVERAGE OF HAPMAP RELEASE 21

Human 1M HapMap Coverage by Population

1.0 -

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

GENOME COVERAGE ESTIMATED FROM 990,000 HAPMAP SNPs IN HUMAN 1M

~94%

~74%

>0

>0.1

>0.2

>0.3

>04  >05
MAX r2

>0.6

>0.7

>0.8 >0.9

Human 1M CEU
(mean 0.96 median 1.0)

-#=Human 1M CHB+JPT
(mean 0.95 median 1.0)

-+ Human 1M YRI
(mean 0.85 median 1.0)



The White House - June 26, 2000

"..,.__
DECODING THE t

BookK oF LIFE

Venter
Clinton
Collins




It took 4 months, a handful of scientists and ~ US$1.5 mil to
seguence the genome of DNA pioneer James Watson

namre

LETTERS

Val 452 (17 April 2008 |doi:10.1038/ nature06884

The complete genome of an individual by massively

parallel DNA sequencing

David A. Wheeler'*, Maithreyan Srinivasan™*, Michael Egholm®*, Yufeng Shen'*, Lei Chen', Amy McGuire®,
Wen He?, Yi-Ju Chen?, Vinod Makhijani?, G. Thomas Roth?, Xavier Gomes?, Karrie Tartaro’t, Faheem Niazi’,
Cynthia L. Turcotte?, Gerard P. Irzyk®, James R. Lupski***, Craig Chinault®, Xing-zhi Song', Yue Liu', Ye Yuan',
Lynne Nazareth', Xiang Qin’, Donna M. Muzny', Marcel Margulies®, George M. Weinstock'*, Richard A. Gibbs'*

& Jonathan M. Rnthbergz"r

The association of genetic variation with discase and drug res-
ponse, and improvements in nucleic acid technologies, have given
greal optimism for the impact of ‘genomic medicine’. However,
the formidable size of the diploid human genome', approximately
tzigabases, has prevented the routine application of sequencing
methods to deciphering complete individual human genomes.
Ta realive the full nntential of cenamice fnr human health thie

subject’s DNA, including single nucleotide polymorphisms (SNPs),
small insertions and deletions (indels), and copy number variation
(CNV}.

The 454 base-calling software provides error estimates ( Q values)
for each base. We developed a three-step filtering process using the
patterns of error and associated Q values from the 454 base—calling

cnfhurars bn imnenws the asrrarr AaF QWD dicrnusmr An iniial 14 el



illumina’
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making sense out of life
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products & services

O overview

systems & software
dna analysis solutions
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O solexa applications
services
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solexa sequencing applications

Illumina's Solexa Sequencing technology offers a powerful new
approach to some of today's most important applications for
genetic analysis and functional genomics, including:

sequencing and resequencing

Whether yvou need to sequence an entire genome or a large
candidate region, the Illumina Genome Analyzer System is today's
most productive and economical sequencing tool. Solexa
sequencing technology and reversable terminator chemistry deliver
unprecedented volumes of high quality data, rapidly and J.
economically.

expression profiling important information
Sequencing millions of short cDNA tags per sample, the Genome - preduct literature
Analyzer allows you to generate digital expression profiles at costs - publications

comparable to current analog methods. Because our protocol does
not require any transcript-specific probes, yvou can apply the
technology to discover and guantitate transcripts in any ocrganisms,
irmespective of the annotation available on the organism.

- fags

- have a rep contact me

small rna identification and quantification

Solexa sequencing technology also offers a unigue and powerful
solution for the comprehensive discovery and characterization of
small RMAs in a2 wide range of species. The massively parallel
sequencing protocol allows researchers to discover and analyze
genome-wide profiles of small RNA in any species. With the
potential to generate several million sequence tags economically,
the Illumina Genome Analyzer offers investigators the opportunity
to uncover global profiles of small RMA at an unprecedented scale.
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1000 GENOMES PROJECT DATA RELEASE

SNP data downloads and genome browser representing four high coverage
individuals

The first set of SMP calls representing the preliminary analysis of four genome sequUences are now — _
available to download through the EBI FTP site and the MCBI FTP site. The README file dealing with the Legin | (| forgot my password)
FTP structure will help vou find the data you are looking for.

The data can alsa be viewed directly through the 1000 Genomes browser at LINKS
hitp:fbrowser.1000genomes.arg. Launch the browser and view a sample region here.

Download the meeting
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Complete Khoisan and Bantu genomes from southern

Africa

[ xhosa/Tswana

B Tuu spaaker B Arid climate
H Ju hoansi [ Desart
B |Kung (Etosha) mm kKhoizan language

[2] Migar-Congo language

Mama Location of origin Linguistic group Y chromosome
WGubi Southem Kalahari  Tuu-spoakor B2b

Gfag'o MNorthom Kalashari  Juu (Juhoansi) Adb1

D¥kgao MNorthem Kalahari  Juu (Juhoansi) A2

LAT MNorthom Kalshari  Juu [[Kung) Eibib

Tutu South Africa Bantu (Xhosa/Tswana) Eibia8a“




The genomes of Archbishop Tutu and one bushman were fully
sequenced, and the other three partially (exones).

The bushmen were found to lack genes for digesting milk and malaria
resistance, but most had genes linked to enhanced physical prowess.
One had a gene linked to increased retention of salt and water, an
advantage for a desert dweller.

On average there are more genetic differences between any two
bushmen in the study than between a European and an Asian



Exome sequencing identifies the cause of a mendelian
disorder

Sarah B Ng!19, Kati ] Buckingham®!%, Choli Lee!, Abigail W Bigham?2, Holly K Tabor??, Karin M Dent?,
Chad D Huff’, Paul T Shannon®, Ethylin Wang Jabs”3, Deborah A Nickerson!, Jay Shendure! &
Michael ] Bamshad!%?

We demonstrate the first successful application of exome sequencing to discover the gene for a rare mendelian disorder of
unknown cause, Miller syndrome (MIM% 263750). For four affected individuals in three independent kindreds, we captured

and sequenced coding regions to a mean coverage of 40x and sufficient depth to call variants at ~97% of each targeted exome.
Filtering against public SNP databases and eight HapMap exomes for genes with two previously unknown variants in each of the
four individuals identified a single candidate gene, DHODH, which encodes a key enzyme in the pyrimidine de novo biosynthesis
pathway. Sanger sequencing confirmed the presence of DHODH mutations in three additional families with Miller syndrome.
Exome sequencing of a small number of unrelated affected individuals is a powerful, efficient strategy for identifying the genes
underlying rare mendelian disorders and will likely transform the genetic analysis of monogenic traits.
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Epigenetics

What next?

Transcriptomics

CNVs

David Evans



Evaluating combined effects of genes

* Select genes that are biologically ‘related’. i.e. they
share a pathway or common function

* Networks of genes underlying biological pathways
are more likely to be the crucial unit of functioning in
the biological system than single SNPs or genes



Pathway (Ingenuity) analysis of GWAS for smokinc
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Am J Hum Genet. 2010 Feb 12;86(2):113-25
ARTICLE

Functional Gene Group Analysis Reveals

a Role of Synaptic Heterotrimeric G Proteins

in Cognitive Ability

Dina Ruano® Goncalo R. Abecasis,® Beate Glaser,d Esther 5. Lips,! L. Niels Cornelisse,!

Arthur P.H. de Jong,! David M. Evans4 George Davey Smith,4 Nicolas ]. Timpson,4
August B. Smit,# Peter Heutink,® Matthijs Verhage,! and Danielle Posthuma®~-*



Vertical vs. Horizontal Grouping
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Functional gene networks for intelligence
G N N 2- P
ene-group genes | SNPs | log,,(P) EMP

All synaptic genes 900 | 22325 10146 0.001
Biological synaptic signaling pathways

Metabotropic Glutamate receptor 60 1968 865 0.3883
Dopamine 69 1584 687 0.5006
Serotonin 102 3146 1348 0.6211
Canabinoid 81 2568 1069 0.8309

Ruano et al, AJHG 2010.



‘QQ-plot’ of p-values of genetic variants in
heterotrimeric G proteins
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Accounts for +3.3% of the variation in
intelligence
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Once we have all the rare sequence
variants, how do we decide if they
are causal / harmful ?

 Too rare to use standard Ca-Co statistical
tests

« Can group variants (but heterogeneous?)
« Use DNA/protein functional analysis

» Use evolutionary criteria (sequence
conservation across species)



Domain organization of ATM and case-control
distribution of rare missense substitutions

AN
/s

Am J Hum Genet. 2009 Oct;85(4):427-46.

Rare, evolutionarily unlikely missense substitutions in
ATM confer increased risk of breast cancer.

Tavtigian SV, .........Chenevix-Trench G.

[l
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é (an in-frame deletion)

p53 & BRCA1 interaction (91-97)
beta-adaptin interaction (950-1233)

c-Abl interaction (1373-1382)

Serine 1981

FAT 2096-2491 (PFAM 02259)

P13-P14 kinase 2711-2962 (PFAM 00454)
p53 interaction (2862-3012)

FATC 3024-3056 (PFAM 02260)


http://www.ncbi.nlm.nih.gov/pubmed?term=%22Tavtigian%20SV%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVAbstract
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Chenevix-Trench%20G%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVAbstract

Using species comparisons to decide if a mutation is harmful
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Parting thought....

“One of the relevant, and scary things,
about the Tavtigian paper (and Iits
follow on, not yet written) iIs that when
we tested the 1/1000 ‘pathogenic
mutations’ in 5000 more cases, we
never saw them again so | suspect
there are heaps of them that are super
rare, and If we sequenced another
1000 cases, we’'d find a different lot”

Georgia Chenevix Trench, March 3 2010
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