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Abstract Following the publication of Purcell’s approach

to the modeling of gene by environment interaction in

2002, the interest in G 9 E modeling in twin and family

data increased dramatically. The analytic techniques

described by Purcell were designed for use with continuous

data. Here we explore the re-parameterization of these

models for use with ordinal and binary outcome data.

Analysis of binary and ordinal data within the context of a

liability threshold model traditionally requires constraining

the total variance to unity to ensure identification. Here, we

demonstrate an alternative approach for use with ordinal

data, in which the values of the first two thresholds are

fixed, thus allowing the total variance to change as function

of the moderator. We also demonstrate that when using

binary data, constraining the total variance to unity for a

given value of the moderator is sufficient to ensure iden-

tification. Simulation results indicate that analyses of

ordinal and binary data can recover both the raw and

standardized patterns of results. However, the scale of the

results is dependent on the specification of (threshold or

variance) constraints rather than the underlying distribution

of liability. Example Mx scripts are provided.

Keywords Genotype by environment interaction �
Structural equation model � Twin data � Ordinal data �
G 9 E

Introduction

Genotype by Environment interaction (G 9 E) is charac-

terized by variation in the magnitude or composition of

genetic effects as a function of variation in the environ-

ment, whereby the sensitivity to different environments is

under genetic control.1 The environmental factors or

‘moderators’ involved in these interactions may be
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constant within families, such as SES or ethnicity, resulting

in genotype by shared environment (G 9 EC) interactions.

Alternatively, the moderating factors may differ between

the members of a family (the most common examples

being sex and age) leading to genotype by non-shared

environment (G 9 EE) interactions. Assuming an additive

polygenic effect ðr2
aÞ unmodeled A 9 EC would act to

inflate the estimate of r2
a while unmodeled A 9 EE would

act to inflate the estimate of r2
e (Mather and Jinks 1977;

Neale and Cardon 1992). Environmental exposures that are

under genetic control, in which the genotype of the indi-

vidual or their family members influence the environment

are known as genotype-environment correlation rGE (Eaves

et al. 1977). Assuming an additive polygenic effect, un-

modeled rGEC
would act to inflate the estimate of r2

c, and

unmodeled rGEE
would act to inflate the estimate of r2

a.

Following the publication of Purcell’s approach to the

modeling of gene by environment interaction in 2002,

many groups have implemented the analytic approaches

detailed therein. This approach may more correctly be

described as a flexible moderation framework, in which the

moderator is the independent variable. Basically, Purcell’s

approach allows interaction effects on all sources of vari-

ance (including common and unique environmental

sources of variance) as opposed to being restricted to

moderating the genetic sources of variance. To summarize,

as shown in Fig. 1, the approach incorporates linear

regressions on the path coefficients, in effect further par-

titioning the variance into that which is unrelated to the

moderator (an intercept within a standard regression

model) and that which is associated with the moderator (the

slope or beta parameter).

This modeling approach was specifically designed for

situations in which both the independent and dependent

variables are continuous. To this end, Purcell (2002)

strongly advocated reporting the unstandardized results,

because although standardizing the solution could provide

information regarding the relative values of the variance

components for a given value of the moderator, much

information regarding the source of the changes in variance

is lost. While reporting the unstandardized estimates

provides a simple solution in the case of a continuous

dependent variable, this situation is largely untenable for

ordinal and binary data, as the liability threshold model

requires a variance constraint to allow identification. The

purpose of the current paper is to present solutions for use

with polychotomous (in which there are more than two

categories) and binary data.

The problem of ordinal data

When working with a continuous dependent variable, col-

lected from siblings or twin pairs, structural equation

modeling analyses fit the means and covariance predicted by

the model to those same statistics in the data. However, when

working with univariate ordinal data from pairs of twins or

siblings the data consist of a bivariate contingency table with

c2 cells (where c is equal to the number of categories). It is

important to note, that for a variable to be considered ordinal,

the categories within the data must be arranged in a mean-

ingful ordered sequence. Categorical data, such as favorite

sport or food, in which no meaningful order exists, may be

analyzed as a series of binary dummy variables.

Behavioral genetic analyses of ordinal data usually adopt

a threshold model approach, describing discrete traits as

reflecting an underlying normal distribution of liability (the

vulnerability, susceptibility, or predisposition) that has not

been, or cannot be, measured directly or with sufficient

precision. Instead, liability is measured as a series of ordered

categories, characterized by phenotypic discontinuities that

occur when the liability reaches a given threshold. Liability

is assumed to reflect the combined effects of a large number

of genes and environmental factors each of small effect, also

known as the multifactorial model (Neale and Cardon 1992).

Under these conditions the expected proportion of pairs in

cell ij is (Neale et al. 1994):

Pij ¼
Z ti

ti�1

Z tj

tj�1

/ðx1; x2Þdx2dx1 ð1Þ

where ti and tj refer to the thresholds of the first and second

twins, respectively; t0 = -?; tc = ?; and /ðx1; x2Þ is the

bivariate normal density function (Neale et al. 1994):

2pRj j�n=2
exp � 1

2
xk � lkð Þ0R�1 xk � lkð Þ

� �
ð2Þ

in which R is the population variance–covariance matrix,

xk is the (column) vector of observed data from family k

and lk is the vector of population means. However, as the

measurement scale of liability is unknown, there is no

information regarding the population mean and variance.

Thus to ensure the identification of the model parameters

the liability distribution is assumed to be standard normal

with a mean of zero and a variance of one. In practice this

restriction is imposed by constraining the estimatedFig. 1 Path diagram for the Purcell moderator model

Behav Genet (2009) 39:220–229 221

123



variance of ordinal variables to unity, which maps the

thresholds on a z scale. An alternative approach in the

context of general mixed models is to constrain the vari-

ance of one of the sources, e.g., the unique environmental

variance to unit (Boomsma et al. 2008).

While these approaches work admirably in most situa-

tions, a consequence of these constraints is that the

resulting estimates are always standardized. Quite simply

as traditionally conceptualized under a liability threshold

model, there is insufficient information to investigate the

change in the absolute magnitude of the genetic and

environmental variances when analyzing ordinal data.

However a recent re-parameterization of the threshold

model by Mehta et al. (2004) provides a solution to this

problem when working with polychotomous data.

A solution for the polychotimous case

Mehta et al. (2004) demonstrated that interval level infor-

mation (means and variances) can be estimated from

ordinal level information. In essence, the scale of the latent

liability distribution is arbitrary. Thus, fixing any two

thresholds will identify the latent distribution on an arbi-

trary scale. That is, the distance between adjacent

thresholds can be parameterized to estimate the mean and

the variance of the scale of measurement.

Consider their example of height measured in feet, in

which the mean in a sample of children was 4.5 with a

standard deviation of 0.4. If we imagine that this variable

had been collected as (or transformed into) a categorical

variable with the cut points illustrated in Fig. 2, using the

liability threshold model we could map the underlying

latent height distribution to a standard normal and estimate

the thresholds, in z score units (z), as -1.5, 0.5 and 2.25. If

we knew the true cut points we could fix the thresholds to

these values and recover the original distribution. How-

ever, in practice the true distribution of liability is

unmeasured, but if we fix the first two thresholds, in this

case to 0 and 1, the means and standard deviations for the

underlying liability variable can be recovered on a new

arbitrary scale.

Following Mehta et al. the standard deviation of height

in the new units (u) can be calculated as:

SDðheightuÞ ¼ su
2 � su

1

sz
2 � sz

1

¼ 1� 0

0:5� ð�1:5Þ ¼
1

2
¼ 0:5;

where s represents the threshold on either the new (u) or z

scales. Correspondingly, the mean can be calculated as:

EðheightuÞ ¼ su
1 � sz

1 � SDðheightuÞ ¼ 0� ð�1:5Þ � 0:5
¼ 0:75

While the third threshold (and any subsequent

thresholds) can be recovered from:

su
3 ¼ EðheightuÞ þ sz

3 � SDðheightuÞ ¼ 0:75þ 2:25� 0:5
¼ 1:875:

The implementation of this method within Mx involves

explicitly modeling the relationship between the liability

threshold model and the interval level information. It is

important to note that fixing the first two thresholds to the

same values (0 and 1) for all family members does not

imply that a single mean and standard deviation are

sufficient to summarize the data. Differences in the

thresholds between first and second born twins on the z

scale will result in birth order differences in the standard

deviations, and by extension, the means on the new scales.

Thus, fixing the first two thresholds for all individuals

effectively allows test of equality of means and standard

deviations between first and second born twins or between

twins and singleton siblings.

To estimate a polychoric correlation under the traditional

liability threshold model, for a trait with three categories in

pairs of siblings (s1 and s2), the threshold and covariance

matrices Z and C are defined as: Z ¼
sz

11 sz
12

sz
21 sz

22

sz
31 sz

32

2
4

3
5; and

C ¼ 1 rðs1; s2Þ
rðs1; s2Þ 1

� �
; where r(s1, s2) is the polychoric

correlation of the trait between the siblings. In Mx code

these matrices can be declared as:

Z Full 3 2

C Stan 2 2

and provided using the following:
Fig. 2 Height in a sample of children, thresholds are shown in feet, z
units and the new interval scale units
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Threshold Z;

Covariance C;

Under the new interval liability model, the Z and C

matrices are defined as:

Z ¼
sz

11 sz
12

sz
21 sz

22

sz
31 sz

32

2
4

3
5

¼
0 0

1 1

su
31 su

32

2
4

3
5�

E su
1

� �
E su

2

� �
E su

1

� �
E su

2

� �
E su

1

� �
E su

2

� �
2
4

3
5

�
SD su

1

� �
SD su

2

� �
SD su

1

� �
SD su

2

� �
SD su

1

� �
SD su

2

� �
2
4

3
5;

and

C ¼ 1 rðs1; s2Þ
rðs1; s2Þ 1

� �

¼ 1=SD su
1

� �
1=SD su

2

� �
� �

� V su
1

� �
C su

1; s
u
2

� �
C su

1; s
u
2

� �
V su

2

� �
� �

� 1=SD su
1

� �
1=SD su

2

� �
� �

In Mx code these matrices can be provided using the

following:

Threshold Z;

Covariance C;

where:

T Full 3 2 ! contains the new threshold matrix

S Sym 2 2 ! contains the model implied covariance

structure

M Full 1 2 ! contains the means matrix

U Unit 2 1 ! contains a vector (# rows = the number of

individuals) of 1 s the

! purpose of which is to duplicate the standard deviation

matrix

X Unit 3 1 ! contains a vector (# rows = the number of

thresholds) of 1 s the

!purpose of which is to duplicate the means matrix

and

Z ¼ ðT� X@MÞ%ðX@nSQRTðnD2VðSÞÞÞ;
D ¼ nV2DðU%nSQRTðnD2VðSÞÞÞ;
C ¼ D� S� D;

where (X@M)produces a full matrix [3, 2] containing the

means on the new scale and (X@\SQRT(\D2V(S))) pro-

duces a full matrix [2, 2] containing the standard deviations

on the new scale and, \V2D(U%\SQRT(\D2V(S)))produces

a diagonal matrix [2, 2] containing the inverse of the

standard deviations on the new scale. Following this the

extension to the moderated regression case involves an

expansion of the S matrix from a simple polychoric cor-

relation to the variance–covariance model summarized in

Fig. 1. It is usually necessary to bound the thresholds su
31

and su
32to be greater than 1, in order to avoid computing

negative likelihoods (and hence incomputable log-likeli-

hoods) with Eq. 1. A more general technique when there

are more than two categories is to pre-multiply the matrix

T with a lower triangular matrix L, which has every ele-

ment on and below the diagonal fixed to one, and every

element above the diagonal fixed to zero. The elements of

T are then estimated deviations from the preceding

threshold and all free elements in the T matrix are bounded

to be strictly greater than zero.

Towards a solution for binary data

Unfortunately, the interval liability approach requires at

least three ordered categories to extract interval level

information. Despite this limitation, a number of analytic

options are available to try and recover both the stan-

dardized and absolute path coefficients when working with

binary data. Obviously the total variance of the trait could

be constrained to unity across all values of the moderator.

However, to the extent that the moderation is expected to

lead to changes in the total magnitude of the variance, this

approach is obviously undesirable and is unlikely to

recover the absolute variance coefficients. A conceptually

attractive approach would be to apply the continuous

model to the binary data, simply substituting a threshold

model for the means model. However, this model is not

identified without additional constraints. Similarly, ana-

lyzing the binary data using a model for continuous data

also seems attractive. However, this approach invalidates

the likelihood ratio tests of hypotheses and may bias

parameter estimates. The solution we propose is to use a

constrained binary model in which the variance is con-

strained to unity at a specified value of the moderator.

Simulations

To determine the extent to which the constrained binary

and Mehta et al. approaches recovered the information

contained in the continuous liability distribution, we sim-

ulated data under three sets of parameters (summarized in

Table 1) and examined the estimated absolute and stan-

dardized variance components produced by each approach.

All simulations included a small mean effect of the mod-

erator, b = .05.

One hundred replicate samples of 5,000 monozygotic

and 5,000 dizygotic twin pairs were simulated under each

set of parameters. The moderator variables for each twin

were randomly sampled from the unit normal distribution,
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and were not correlated between members of the twin pair.

The use of standardized moderators avoids computation

problems that may arise through correlation of the main

and interaction effects, and increases the interpretability of

the results (Aiken and West 1991). In each case a contin-

uous data set was simulated. To create a binary phenotype

a single threshold was then applied, the lower 20% were

recoded as one with the remainder recoded zero. To create

an ordinal phenotype thresholds were applied at -1 and 1,

scores less than -1 were recoded as zero, scores between

-1 and 1 (inclusive) were recoded as one, while scores

greater than one were recoded as two. This resulted in

symmetric categories with 75% of the sample falling in the

middle category in simulation 1, 30% in simulation 2 and

20% in simulation 3.

We analyzed the binary data using the constrained

binary model and the ordinal data using the Mehta et al.

approach described above. For the binary case the variance

was constrained to unit at the mean of the moderator (0). In

addition, the continuous data (from which the binary and

ordinal data arose) were also analyzed using a standard

moderated regression script for continuous data (after

Purcell 2002). As recommended by Purcell all analyses

included a simple regression of the moderator on the mean/

threshold model, which accounted for the mean effect so

that the decomposition of variance was not influenced by

this effect. Example scripts for the ordinal and constrained

binary analysis are given in Appendix 1 and 2.

In the first two simulations, analysis of the continuous

data performed well returning the simulation parameters.

Across simulations, comparison of the continuous, binary

and ordinal data reveals that the binary and ordinal anal-

yses adequately reproduce the A 9 EE effects present in

the data. As may be expected, the scales of the unstan-

dardized solutions (left column, Figs. 3, 4, and 5) differ

markedly. Standardization removes this difference and

assuming that the moderator has been mean-centered prior

to analysis, allows a direct comparison between the values

obtained from a constrained binary or ordinal analysis and

those from a standard ACE or ADE analysis.

Table 1 Additive genetic (A) common environmental (C) and

unique environmental (E) unmoderated variance components and

moderator betas

Simulation 1 Simulation 2 Simulation 3

VC b VC b VC b

A .3 .45 3 .71 5 .71

C .2 0 .5 .45 1 .32

E .2 .32 4 1 4 .63

Fig. 3 Results from simulation

1: additive genetic variance is

indicated by the solid line,

common environment as a

broken line and unique

environment by the dotted line.

Absolute variance is shown in

the left column with

standardized proportions in the

right column. The analysis of

the continuous trait simulated

prior to imposing the binary

threshold is shown on the top
row. The second row shows the

results under a threshold model

where the variance was

constrained to equal one at the

mean of the moderator (0). The

third row shows the results

obtained from the analysis of

the ordinal data using the Mehta

et al. approach

224 Behav Genet (2009) 39:220–229
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A small bias was observed in results of the continuous

data analysis of simulation 3. In the graph showing the

standardized results the estimates fan out as the total var-

iance approaches zero. In the absence of bias this graph

would be characterized by three parallel lines. The results

from the ordinal data analysis showed a similar degree of

bias, while the bias was exaggerated in the constrained

binary model as the value of the moderator decreased

(Fig. 5). However, it should be noted that this was a highly

contrived example, which was deliberately chosen to pro-

voke optimization difficulties. In this simulation the

moderating effects were proportionate to the un-moderated

variance components and the region in which the bias was

most extreme was populated by less than 5% of the sample.

By comparison, no such bias was observed in simulation 1

where the variance approached zero in a more densely

populated area of the data, suggesting that the bias in

simulation 3 results from a combination of low variance

and sparse data rather than the low variance per se.

To investigate the influence of the specification of the

constraint in the binary model we simulated additional

binary data under the parameters used for simulation 2. For

this simulation we analyzed each data set twice with the

total variance constrained to unity at the mean of the

moderator variable, 0, and at an extreme value of the

moderator, 3. As shown in Fig. 6, while specification of the

constraint does have a substantial influence on the scale on

which the results are mapped, the effects on the point

estimates were negligible (shown using an unbroken line).

In addition to examining the point estimates we also

computed confidence intervals by calculating the point

estimates for a range of moderator values and requesting

confidence intervals on these computed estimates. There

were subtle effects of constraint specification on the con-

fidence intervals (shown in Fig. 6 using dotted and dashed

lines). These effects were most obvious when considering

the unique environmental estimates. The confidence inter-

vals were noticeably tighter near the value of the moderator

at which the total variance was constrained to unity.

However, this effect was not seen on the confidence

intervals surrounding the standardized estimates. An

additional simulation (not shown here) which included a

quadratic moderator effect showed the same pattern of

results.

Thus, while the specification of the constraint does not

alter the pattern of the point estimates it can affect confi-

dence intervals. We would strongly recommend

standardizing the moderator and placing the constraint at

Fig. 4 Results from simulation

2: additive genetic variance is

indicated by the solid line,

common environment as a

broken line and unique

environment by the dotted line.

Absolute variance is shown in

the left column with

standardized proportions in the

right column. The analysis of

the continuous trait simulated

prior to imposing the binary

threshold is shown on the top
row. The second row shows the

results under a threshold model

where the variance was

constrained to equal one at the

mean of the moderator (0). The

third row shows the results

obtained from the analysis of

the ordinal data using the Mehta

et al. approach
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Fig. 5 Results from simulation

3: additive genetic variance is

indicated by the solid line,

common environment as a

broken line and unique

environment by the dotted line.

Absolute variance is shown in

the left column with

standardized proportions in the

right column. The analysis of

the continuous trait simulated

prior to imposing the binary

threshold is shown on the top
row. The second row shows the

results under a threshold model

where the variance was

constrained to equal one at the

mean of the moderator (0). The

third row shows the results

obtained from the analysis of

the ordinal data using the Mehta

et al. approach

Fig. 6 Analysis of a

representative data set showing

the effects of constraint

specification: The absolute point

estimates are illustrated with the

solid line, while the 95%

confidence intervals are given

by the dotted and dashed lines.

The total variance was

constrained to unity in at 0 (the

mean of the moderator) in the

left column and at three in the

right column. Additive genetic

estimates are shown on the top
row, common environment in

the middle row and unique

environment on the bottom row.

Note that the y axis differs

between the left and right
columns

226 Behav Genet (2009) 39:220–229
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the mean of the transformed moderator. This solution is

intuitively attractive in that the tightest possible confidence

intervals are observed in the region with the most data. In

addition, this strategy also aids in the interpretation of

results by placing the estimates for the mean of the sample

on the same scale as those from an unmoderated analysis.

In conclusion, these simulations have shown that while

it is possible to recover unbiased estimates of G 9 E

effects from binary and ordinal data their scale depends on

the location of the variance constraint in the case of the

binary data, and the fixed values of the thresholds in the

ordinal case. There is insufficient information in either the

ordinal or the binary case, to recover the true distribution of

liability. However, as transformation and re-scaling are

common practices when working with continuous data,

characterizing the observed interaction is arguably more

important for the interpretation and implications of the

analysis than the scale on which the variable is analyzed or

graphed. Thus, we would suggest that Purcell’s G 9 E

approach is suitable for use with ordinal or binary data with

minimal modification of the existing Mx scripts. In com-

mon with the approach described by Purcell, the approach

described here is suitable only for EC and EE type mod-

erator variables that are otherwise independent of the

outcome variable. Unchangeable variables, such as age,

genotype and chromosomal sex are the most suitable for

this type of analysis; more complex methods are required

when G 9 E is accompanied by G–E covariance.
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Appendix 1: Example Mx script for a generalized

moderated regression model with the ordinal data

using the interval liability model

G1: Parameters

#define ndef 1 ! n definition variables: sex moderator1

#define nmod 2 ! unmod, moderator1

#define nind 2 ! n individuals in largest sibship

#define nthr 2 ! number of thresholds 2 = 3 categories

Data Calc NGroups = 3

Begin Matrices;

A full 1 nmod free

C full 1 nmod free

E full 1 nmod free

M full 1 nind free ! mean

B full 1 ndef free ! effects of covariates on the mean

H unit nind nind ! mz constants

J stand nind nind ! dz constants

R ident nind nind

T Full nthr nind ! contains the new threshold matrix

U unit nind 1

X Unit nthr 1 ! contains a vector of 1s

End Matrices;

Value .5 J 2 1

eq m 1 1 1 m 1 1 2

ma t

0 0

1 1

!starting values for A C and E

!unmoderated and moderated parameter start values

MATRIX A -.5 .5

MATRIX C .2 .2

MATRIX E .3 .1

labels coloumn A unmod mod

labels coloumn C unmod mod

labels coloumn E unmod mod

labels coloumn b mod

Options RSiduals

End

G2: MZ

DATA NINPUT = 8

labels rep zyg mod1 mod2 c1 c2 tw1 tw2

Ord File = mz1

select mod1 mod2 tw1 tw2;

Definition_variables mod1 mod2;

Matrices = Group 1

V full nmod nind ! contains coefficients of the cov

corrections

W full ndef nind ! contains covariates for means

regression

End Matrices;

SP V 0 0 mod1 mod2;

VALUE 1 V 1 1 V 1 2

! contains 1 s for unmoderated cov elements and

covariates for moderated

! cov elements

SP W mod1 mod2;

! contains covariates for means regression

Begin Algebra;

S=

(H.((U@A)*V).(V0*(U@A)0)) ? !variance/cov due to A

((U@C)*V).(V0*(U@C)0) ? !variance/cov due to C

(R.((U@E)*V).(V0*(U@E)0)); !variance/cov due to E

Z = (T - X@(M ? (B*W)))%(X@\SQRT(\D2V(S)));

D = \V2D(U0%\SQRT(\D2V(S)));

End Algebra;

Threshold Z;

Covariance D*S*D;

End
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G3: DZ

DATA NINPUT = 8

labels rep zyg mod1 mod2 c1 c2 tw1 tw2

ord File = dz1

select mod1 mod2 tw1 tw2;

Definition_variables mod1 mod2;

Matrices = Group 1

V full nmod nind

W full ndef nind

End Matrices;

SP V 0 0 mod1 mod2;

SP W mod1 mod2;

VALUE 1 V 1 1 V 1 2

Begin Algebra;

S=

(J.((U@A)*V).(V0*(U@A)0)) ? !variance/cov due to A

((U@C)*V).(V0*(U@C)0) ? ! variance/cov due to C

(R.((U@E)*V).(V0*(U@E)0)); ! variance/cov due to E

Z = (T-X@(M ? (B*W)))%(X@\SQRT(\D2V(S)));

D = \V2D(U0%\SQRT(\D2V(S)));

End Algebra;

Threshold Z;

Covariance D*S*D;

End

Appendix 2: Example Mx script for a generalized

moderated regression model with the binary data

using a variance constraint at a specified value

of the moderator

!Constrained binary script

#define ndef 1 ! n definition variables: sex moderator1

#define nmod 2 ! unmod, moderator1

#define nind 2 ! n individuals in largest sibship

G!: Parameters

Data Calc NGroups = 4

Begin Matrices;

A full 1 nmod free

C full 1 nmod free

E full 1 nmod free

M full 1 nind free ! threshold

B full 1 ndef free ! mean effects

H unit nind nind ! mz constants

J stand nind nind ! dz constants

U unit nind 1

D ident nind nind

End Matrices;

Value .5 J 2 1

!starting values for threshold

MATRIX M .8 .8

!starting values for beta

MATRIX B 0.05

!starting values for A C and E

!unmoderated and moderated parameter start values

MATRIX A 1.5 - .5

MATRIX C .7 .4

MATRIX E 2 1

labels coloumn A unmod mod

labels coloumn C unmod mod

labels coloumn E unmod mod

labels coloumn b mod

Options RSiduals

End

G2: MZ

DATA NINPUT = 10

labels loop zyg mod1 mod2 mod1b mod2b tw1 tw2

bintw1 bintw2

Ord File = mz1

select mod1 mod2 bintw1 bintw2;

Definition_variables mod1 mod2;

Matrices = Group 1

V full nmod nind ! contains coefficients of the cov

corrections

W full ndef nind ! contains covariates for threshold

regression

End Matrices;

SP V 0 0 mod1 mod2;

VALUE 1 V 1 1 V 1 2

! contains 1 s for unmoderated cov elements and

covariates for moderated

! cov elements

SP W mod1 mod2;

! contains covariates for thresholds regression

Thresholds M ? B*W;

Covariance

(H.((U@A)*V).(V0*(U@A)0))?
((U@C)*V).(V0*(U@C)0)?
(D.((U@E)*V).(V0*(U@E)0));
End

G3: DZ

DATA NINPUT = 10

labels loop zyg mod1 mod2 mod1b mod2b tw1 tw2

bintw1 bintw2

Ord File = dz1

select mod1 mod2 bintw1 bintw2;

Definition_variables mod1 mod2;

Matrices = Group 1

V full nmod nind

W full ndef nind

End Matrices;

SP V 0 0 mod1 mod2;

SP W mod1 mod2;

VALUE 1 V 1 1 V 1 2

Thresholds M ? B*W;
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Covariance

(J.((U@A)*V).(V0*(U@A)0))?
((U@C)*V).(V0*(U@C)0)?
(D.((U@E)*V).(V0*(U@E)0));
End

Constraint group to force variance = 1 when moderator

is zero

constraint

begin matrices;

A full 1 1 free

C full 1 1 free

E full 1 1 free

F full 1 1 free

G full 1 1 free

H full 1 1 free

M full 1 1 fixed !moderator

U unit 1 1

End matrices;

EQ A 1 1 1 A 4 1 1

EQ C 1 1 1 C 4 1 1

EQ E 1 1 1 E 4 1 1

EQ A 1 1 2 F 4 1 1

EQ C 1 1 2 G 4 1 1

EQ E 1 1 2 H 4 1 1

MATRIX m 0 !value of the moderator for constraint

begin Algebra;

T=

((A ? (F*M))*(A ? (F*M)))?

((C ? (G*M))*(C ? (G*M)))?

((E ? (H*M))*(E ? (H*M)));

end algebra;

Contrain U = T;

option jiggle append

End
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